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Abstract— This paper is concerned with the column forma-
tion control of multi-robot systems that are subject to input
constraints. A new leader-follower setup is proposed, under
which the Lyapunov method can provide a simple controller in
terms of two feedback parameters. It is shown that using an
elliptic approximation to input constraints, the two feedback
parameters can be obtained directly with a geometric analysis
method. Moreover, a sufficient condition is presented for the
leader robot to guarantee that the desired column formation
can be achieved, with which a particular controller is designed
by selecting two appropriate functions for the feedback param-
eters. Simulation results are included to verify the effectiveness
of the proposed theoretical results.

Index Terms— Column formation control; multi-robot sys-
tems; leader-follower; input constraints; elliptic approximation.

I. INTRODUCTION

Formation control of mobile robots has attracted consider-

able attention in recent years due to its wide applications in,

e.g., exploration, surveillance, search and rescue, mapping

of unknown environments, and the transportation of large

objects. Usually, the formation control is involved to control

the relative position and orientation of the robots in a group

while allowing the group to move as a whole. There are

various strategies to address the formation control problem,

such as behavior-based [1]-[2], virtual structure [3]-[4], and

leader-follower approaches [5]-[6]. For the leader-follower

formation, the robot which is designated as the leader moves

along a predefined trajectory, and the follower tracks the

leader with desired relative pose. Although there is the

disadvantage that the formation is sensitive to perturbation

because of no explicit feedback to it [7], the leader-follower

based formation control is employed in this paper due to its

flexibility and scalability.

In practice, the linear and angular velocities of mobile

robots are always bounded in limited ranges due to the
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Fig. 1: The column formation.

mechanical limitation. That is to say mobile robots are

subject to input constraints. To our best knowledge, few

works [8]-[9] have been done for formation control of mobile

robots with input constraints. In [8], the main characteristic

of the control strategy used to deal with the input constraints

was that the position of the follower varied in proper circle

arcs centered in the leader reference frame rather than being

fixed with respect to the leader. In [9], the effect of input

constraints on the admissible trajectories of the leader has

been studied. Although the theoretic results obtained in [8]

and [9] work well, their applicabilities for real mobile robots

may be limited due to the complexities of the controllers.

In this paper, the approach used to address the problem of

formation control of mobile robots which are subject to input

constraints are different from the existing methods. The main

features of our approach are in the following two aspects.

First, a leader-follower setup built on the axis of the

follower with a separation from its center is proposed,

which is alternative to those in the existing literature. In

leader-follower architectures, the conventional l − ψ setup

is represented in polar coordinates which leads to singular-

ity [10]. Meanwhile, in order to tackle the nonholonomic

constraint on the mobile robot, an off-axis marker placed on

the follower should be considered as the handling point that

degrades the precision of the formation [11]. However, the

proposed setup in this paper eliminates both the singularity

and use of the marker. Furthermore, it gives a simple forma-

tion controller with two undetermined feedback parameters

directly by Lyapunov method.

Second, an ellipse is used to approximate the input con-

straints of the mobile robot which simplifies the selection of

parameters associated to the formation controller. With the

motivation from [12] which employed an ellipse to bound

a mobile robot, we propose an elliptic approximation of

input constraints, with which a sufficient condition for the

leader is provided to ensure that the desired formation can be

achieved. In particular, two feedback parameters are selected

by geometric analysis method. The formation controller with

this specific parameters guarantees the achievement of the

desired formation as well as the satisfaction of the input

constraints.
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Fig. 2: Elliptic approximation of input constraints.

It is worth noting that only column formation control

is considered in this paper for its important application in

intelligent transport system [13]. With a little modification

to the definition in [14], the column formation for a group

of robots in this paper means that the robot acting as a

leader is in the heading direction of its follower with desired

separation (see Fig. 1).

The rest paper is organized as follows. In Section II, we

state the formation control problem of mobile robots with in-

put constraints. In Section III, a new leader-follower setup is

proposed in Cartesian coordinates, and the controller design

is discussed in Section IV. In Section V, simulation results

are provided. Finally, Section VI gives the conclusions.

II. PROBLEM STATEMENT

A. Elliptic Approximation of Input Constraints

The real mobile robots can not run as fast as we wish

due to their limited mechanic properties. Considering a

differential drive mobile robot for instance, the velocities of

the two drive wheels are restricted by the inherent properties

of the drive motors, i.e., vl, vr ∈ [−V, V ], where V is a

positive constant, and vl, vr are the velocities for the left

and right drive wheels, respectively.

Usually, the linear velocity v and angular velocity w are

taken as the control inputs. For the differential drive mobile

robot, the linear and angular velocities can be deduced by vl
and vr that

v =
vr + vl

2

w =
vr − vl
L

where L is the distance between the two drive wheels. Then,

v and w are bounded in














−
2(V + v)

L
6 w 6

2(V + v)

L
, v ∈ [−V, 0)

−
2(V − v)

L
6 w 6

2(V − v)

L
, v ∈ [0, V ].

As depicted in Fig. 2, the boundary of the feasible domain

for (v, w) is piecewise smooth. To obtain a smooth boundary,

the maximum inscribed ellipse is used to approximate the

bounded region of (v, w), i.e.,

2v2

V 2
+
L2w2

2V 2
6 1. (1)

i 

x

y ij 

iR

iC

jO

jC

jR

ix

ijx

ijy

iy

jd

jx

jy

ij 

jO
x

jO
y

j 

ijl

Fig. 3: Leader-follower setup.

By simple computation, the area enclosed by the ellipse is

3/4 of the feasible domain. Although the elliptic approxima-

tion is conservative, it gives much convenience for formation

controller design which will be shown in Section IV.

Although inequality (1) is derived from the differential

drive mobile robot, it remains a reasonable approximation

for some other mobile robots which are unicycle-type. As

for safe driving the faster the linear velocity is, the lower

the angular velocity should be.

B. Column Formation Control of Multiple Robots

In this paper, the column formation control of mobile

robots with unicycle model is considered. Define the index

set I = {1, 2, 3, ..., n} for n robots. The kinematics of robot

Rj , j ∈ I , is

ẋj = vj cos θj , ẏj = vj sin θj , θ̇j = wj (2)

where (xj , yj , θj) is the generalized coordinates for Rj with

(xj , yj) being the position and θj being the orientation in

the world frame. vj and wj are linear and angular velocities,

respectively.

Assume that each robot Rj suffers the following input

constraints
vj

2

aj2
+
wj

2

bj
2
6 1, (3)

where aj and bj are positive constants depending on the

property of individual robot. The imposed input constraints

present particular challenges for formation control. Now,

the research problem addressed in this paper is to design

controller for each follower robot to maintain the desired

column formation under the input constraints (3).

III. LEADER-FOLLOWER SYSTEM

In this paper, the relative pose between the leader and

follower is represented in a Cartesian coordinates in which

the singularity and handling point no longer need to be

considered. As shown in Fig. 3, robot Ri is assigned as the

leader to robot Rj , where i, j ∈ I and i 6= j. The reference

frame Ojxy is set on the heading orientation of Rj with

separation dj from the its center Cj . The position of Ri in
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Ojxy is denoted by (xij , yij). The generalized coordinates of

Ri and Rj in the world frame are (xi, yi, θi) and (xj , yj , θj),
respectively. Denote (xOj

, yOj
) as the coordinates of Oj in

world frame. Then we get

xOj
= xj + dj cos θj

yOj
= yj + dj sin θj .

In view of (2), differentiating both sides of the above

equations leads to

ẋOj
= vj cos θj − djwj sin θj (4)

ẏOj
= vj sin θj + djwj cos θj . (5)

The positions of Ri, (xi, yi) in the world frame and

(xij , yij) in the reference frame Ojxy, are related by the

following transformation

xi = xij cos θ − yij sin θ + xOj

yi = xij sin θ + yij cos θ + yOj
.

Then, we get

xij = (xi − xOj
) cos θ + (yi − yOj

) sin θ

yij = −(xi − xOj
) sin θ + (yi − yOj

) cos θ.

According to (2), (4) and (5), differentiating both sides of

the above equations yields

ẋij = −vj + vi cosβij + wjyij (6)

ẏij = −djwj + vi sinβij − wjxij (7)

where βij = θi − θj is the relative orientation between Ri

and Rj satisfying

β̇ij = wi − wj . (8)

Remark 1: For the leader-follower system (6) and (7), xij
and yij can not be measured by sensors directly as Oj is a

virtual point. However, xij and yij can be deduced from

xij = lij cosψij − dj (9)

yij = lij sinψij (10)

where lij and ψij are separation and relative bearing between

Ri and Rj which are measurable (see Fig. 3).

IV. CONTROLLER DESIGN

Assume that ldij and ψd
ij are the desired separation and

relative bearing between Ri and Rj , respectively. Since only

the column formation control is discussed in this paper,

ψd
ij equals zero (see Fig. 1). For convenience, let dj be

ldij . According to (9) and (10), then the desired value for

(xij , yij) is (0, 0). That is to say xij and yij can be

considered as formation errors. As the leader shares no

attention to maintain the formation, vi and wi in (6) and (7)

can be treated as exogenous inputs. Now the control objective

is to find the inputs vj and wj satisfying the input constraints

(3) to maintain the desired column formation. Choose the

control inputs as

vj = kj1(t)xij + vi cosβij , (11)

wj =
1

dj
[kj2(t)yij + vi sinβij ] . (12)

where kj1(t) > 0, kj2(t) > 0 for ∀t > 0 are feedback

parameters.

Lemma 1: Assume that vi(t) > 0 for ∀t > T , |βij(T )| <
π and |kj2(t)| < K, where T is some finite time and K is

a positive constant. If the inputs (11) and (12) are used to

control the leader-follower system (6) and (7), then xij , yij
will converge to zero and βij will be bounded.

Proof: Substituting (11) and (12) into (6) and (7) yields

ẋij = −kj1(t)xij + wjyij (13)

ẏij = −kj2(t)yij − wjxij . (14)

Let the Lyapunov function be

V =
1

2
(xij

2 + yij
2).

With (13) and (14), differentiate both sides of the Lyapunov

function to get

V̇ = ẋijxij + ẏijyij = −kj1(t)xij
2 − kj2(t)yij

2.

Clearly, V 6 0, and V equals 0 if and only if xij = yij = 0.

Therefore, xij and yij will converge to zero under the control

inputs (11) and (12). Now, we turn to the stability analysis

of βij . According to (8) and (12), we obtain

β̇ij = −
vi
dj

sinβij −
kj2(t)

dj
yij + wi.

Consider the nominal system

β̇ij = −
vi
dj

sinβij .

If vi(t) > 0 holds for ∀t > T and |βij(T )| < π, then βij = 0
is an exponentially stable equilibrium point. Since yij → 0
as t → ∞, |kj2(t)| < K and |wi| 6 bi, there must be some

positive constant σ that
∣

∣

∣

∣

−
kj2(t)

dj
yij + wi

∣

∣

∣

∣

6

∣

∣

∣

∣

−
kj2(t)

dj
yij

∣

∣

∣

∣

+ |wi| < σ.

By using of the stability theory of perturbed systems [15],

we come to the conclusion that βij will be bounded.

Remark 2: Notice that the separation dj in (12) satisfying

dj = ldij is a positive constant, once the desired column

formation is determined.

It is worthwhile to mention that any positive constants can

be chose as the feedback parameters in (11) and (12), if no

input constraints are imposed on the mobile robots. However,

it is difficult to get the feasible feedback parameters under

the input constraints. With geometric analysis, the following

theorems will discuss how to obtain feedback parameters

which make the control inputs (11) and (12) meet the input

bounds (3).
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Fig. 4: Geometric analysis of controller design for Rj .

Theorem 1: Consider the leader-follower system (6) and

(7), and let the input constraints be described by (3). If

ai < min{aj , djbj},

then there exist suitable feedback parameters kj1(t) and

kj2(t) such that the control inputs (11) and (12) can satisfy

the input constraints.

Proof: Set kj1(t) = kj2(t) = ǫ(t). Then (11) and (12)

can be rewritten as

(vj , wj) =

(

vi cosβij ,
vi sinβij

dj

)

+ ǫ(t)

(

xij ,
yij
dj

)

.

As represented in Fig. 4, set
−→
OA = (vi cosβij , vi sinβij/dj),

−→
AE = (xij , yij/dj), and

−→
AF = ǫ(t)

−→
AE. Then

(vj , wj) =
−→
OA+ ǫ(t)

−→
AE =

−→
OA+

−→
AF =

−−→
OF.

If ai < min{aj , djbj}, it is clear that

(vi cosβij)
2

aj2
+

(

vi sinβij
dj

)2

bj
2

6
(ai cosβij)

2

aj2
+

(ai sinβij)
2

dj
2bj

2
< cos2 βij + sin2 βij = 1. (15)

Inequality (15) means that
−→
OA lies in the elliptic boundary of

input constraints. Therefore, regardless of the magnitude and

angle of
−→
AE, there is always an ǫ(t) > 0 for ∀t > 0 which

makes
−−→
OF stay in the ellipse (see Fig. 4). That is to say

there are suitable feedback parameters such that controller

(11) and (12) can meet the input constraints (3).

Remark 3: In view of (15), there is a particular case that

if ai = min{aj , djbj} and aj 6= djbj , Theorem 1 still holds.

Remark 4: As stated in Theorem 1, ai < aj . It means

that the robot with better performance should be designated

as the follower for the best use of the robots.

Theorem 1 provides a sufficient condition on the leader

to guarantee that the feasible feedback parameters can be

obtained. The following theorem will give an instance of the

selection of the two feedback parameters for (11) and (12).

Theorem 2: Consider the leader-follower system (6) and

(7) with the input constraints (3). If ai < min{aj , djbj},

then the following control inputs

vj =
1

2



vi cosβij + sign(xij)aj

√

1−

(

vi sinβij
djbj

)2





(16)

wj =
1

2





vi sinβij
dj

+ sign(yij)bj

√

1−

(

vi cosβij
aj

)2





(17)

can satisfy the input constraints and maintain the desired

column formation.

Proof: Control inputs (11) and (12) can be reshaped as

(vj , wj) =

(

vi cosβij ,
vi sinβij

dj

)

+ kj1(t) (xij , 0)

+ kj2(t)

(

0,
yij
dj

)

. (18)

As depicted in Fig. 4, line vj = vi cosβij intersects with the

elliptic input boundary of Rj at

wj = ±bj

√

1−

(

vi cosβij
aj

)2

.

Similarly, line wj =
vi sin βij

dj
intersects with the elliptic input

boundary at

vj = ±aj

√

1−

(

vi sinβij
djbj

)2

.

Denote B as the vertical intersection

(

vi cosβij , sign(yij)bj

√

1− (
vi cosβij

aj
)2

)

,

and C as the oriental intersection

(

sign(xij)aj

√

1− (
vi sinβij
djbj

)2,
vi sinβij

dj

)

.

Define D as the midpoint of the line segment BC. From the

definition of
−→
OA in Theorem 1, we get

−−→
AB =



0, sign(yij)bj

√

1−

(

vi cosβij
aj

)2

−
vi sinβij

dj





−→
AC =



sign(xij)aj

√

1−

(

vi sinβij
djbj

)2

− vi cosβij , 0



 .
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Assume xij 6= 0 and yij 6= 0, and choose kj1(t) and kj2(t)
as

kj1(t) =

sign(xij)aj

√

1−

(

vi sinβij
djbj

)2

− vi cosβij

2xij

=

aj

√

1−

(

vi sinβij
djbj

)2

2|xij |
−
vi cosβij
2xij

(19)

kj2(t) =

sign(yij)bj

√

1−

(

vi cosβij
aj

)2

−
vi sinβij

dj

2
yij
dj

=

djbj

√

1−

(

vi cosβij
aj

)2

2|yij |
−
vi sinβij
2yij

. (20)

Then kj1(t)(xij , 0) =
−→
AC/2 and kj2(t)(0, yij/dj) =

−−→
AB/2.

Now, (18) can be rewritten as

(vj , wj) =
−→
OA+

1

2

−−→
AB +

1

2

−→
AC =

−→
OA+

−−→
AD =

−−→
OD

=
1

2



vi cosβij + sign(xij)aj

√

1−

(

vi sinβij
djbj

)2

,

vi sinβij
dj

+ sign(yij)bj

√

1−

(

vi cosβij
bj

)2



 .

(21)

As shown in Fig. 4, it is obvious that D is an inner point of

the ellipse, i.e., control inputs (16) and (17) satisfy the input

constraints.

Now we will show the feedback parameters defined by

(19) and (20) are positive functions. According to (15) in

Theorem 1, we get

∣

∣

∣

∣

vi cosβij
xij

∣

∣

∣

∣

<

aj

√

1−

(

vi sinβij
djbj

)2

|xij |
(22)

∣

∣

∣

∣

vi sinβij
yij

∣

∣

∣

∣

<

djbj

√

1−

(

vi cosβij
aj

)2

|yij |
. (23)

Inequalities (22) and (23) imply that kj1(t) > 0 and kj2(t) >
0. By Lemma 1, control inputs (16) and (17) can make xij
and yij converge to zero.

However, in (16) and (17) sign is a discontinuous function

which brings oscillations to control inputs when xij and yij
are small. To avoid discontinuities, (16) and (17) can be

modified as

vj =
λ(xij)

2



sign(xij)aj

√

1−

(

vi sinβij
djbj

)2

− vi cosβij





+ vi cosβij (24)

wj =
λ(yij)

2



sign(yij)bj

√

1−

(

vi cosβij
aj

)2

−
vi sinβij

dj





+
vi sinβij

dj
(25)

where λ(·) satisfies

λ(x) =

{

1, |x| > 1
|x|, |x| 6 1.

The following corollary will show the effectiveness of control

inputs (24) and (25).

Corollary 1: Consider the leader-follower system (6) and

(7) with the input constraints (3), and let (24) and (25) be

the control inputs. If ai < min{aj , djbj}, then the input

constraints can be satisfied, and xij , yij will converge to

zero.

Proof: From the proof of Theorem 2, (24) and (25) can

be rewritten as

(vj , wj) =
−→
OA+ λ(yij)

−−→
AB

2
+ λ(xij)

−→
AC

2
.

Since 0 6 λ(·) 6 1, (vj , wj) is an inner point of the elliptic

input constraints (see Fig. 4), i.e., control inputs (24) and

(25) satisfy the input constraints. In view of (19) and (20),

(24) and (25) can be rewritten as

vj = vi cosβij + λ(xij)kj1(t)xij

wj =
vi sinβij

dj
+ λ(yij)kj2(t)yij .

According to Lemma 1, xij and yij will converge to zero

by using the control inputs (24) and (25).

V. SIMULATION RESULTS

Three robots are employed in this simulation. The veloc-

ities of the leader robot R1 are

v1 = 0.5 sin(t) + 0.5

w1 =







v1
2

0s 6 t < 7.5s

−
v1
2

t > 7.5s
.

Robot R2 is the follower of R1 and the leader of R3. The

desired separations are ld
12

= ld
23

= 1m. R1, R2 and R3 suf-

fer the same input constraints v2/2+w2/32 6 1. The initial

states for R1, R2 and R3 are (0, 0, π/2), (−1.5,−1.5, 0) and

(−3,−0.5,−π/2), respectively. Control inputs (24) and (25)

are used. Fig. 5 depicts the trajectories of the three robots in

the world frame. From Fig. 6, we can see the formation errors

E12 and E23 gradually converge to zero as time increases,

where E12 =
√

x2
12

+ y2
12

and E23 =
√

x2
23

+ y2
23

. Fig. 7

represents the velocities of R2 and R3, which are continuous.

Fig. 8 shows that control inputs of R2 and R3 are always

bounded in the elliptic boundary of input constraints.
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VI. CONCLUSIONS

In this paper, the column formation control of multiple

robots with input constraints has been discussed. The major

contribution of this work includes two aspects: First, the

proposed leader-follower setup has given a simple con-

troller in term of two feedback parameters directly by Lya-

punov method. Second, the elliptic approximation of input

constraints has introduced convenience to the selection of

feedback parameters. A sufficient condition on the leader

has been provided to ensure the desired formation can be

achieved. In particular, the formation controller with specific

selection of the feedback parameters has been proposed, and

its effectiveness has been verified by simulation results.
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