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Abstract—Circadian clock is an essential molecular regulatory 
mechanism that coordinates daily biological processes.  Although 
the underlying design principles of eukaryotic circadian clock have 
been investigated in great detail, the circadian mechanism in 
cyanobacteria, the only prokaryote that possesses circadian clock, 
is not fully understood. In this study, we focus on elucidating the 
underlying systems property that drives the oscillation of the 
cyanobacterial clockwork. We apply combined methods of time 
scale separation, phase space analysis and bifurcation analysis to a 
model of circadian clock proposed by us recently. The original 
model is reduced to a three-dimensional slow subsystem by time 
scale separation. Phase space analysis of the reduced subsystem 
shows that the null-surface of the Serine-phosphorylated state (S 
state) of KaiC is a bistable surface and that the features of the phase 
portrait indicate that the kernel mechanism of the clockwork is a 
relaxation oscillator induced by positive and negative feedback 
loops. Bifurcation diagrams together with phase space analysis 
show that the S state of KaiC is a key component for the protein 
regulatory network of the cyanobacterial circadian clock. 

INTRODUCTION 

 
iverse  living organisms, from bacteria to humans, have 
developed complex molecular machinery of circadian 

clock to temporally coordinate internal biological processes 
of ~24hr cycle [1]. Proper functioning of circadian clock is 
crucial to the survival and health of host organisms. 
Cyanobacteria are the only prokaryote possessing circadian 
clock [2]. Three clock genes, namely KaiA, KaiB and KaiC, 
were identified to be essential for the cyanobacterial central 
oscillator [3]. Interestingly, self-sustained oscillatory 
phosphorylation of KaiC was reconstituted in vitro by 
mixing purified KaiA, KaiB and KaiC proteins at 
appropriate stoichiometry, together with ATP [4].  

Mathematical modeling based on experiments has 
become a powerful approach to quantitatively explore 
dynamics of biological processes at systems level. Recently, 
we have proposed a mathematical model of the in vitro 
cyanobacterial circadian clock combining with experimental 
quantification, to account for the reactions of cyclic 
phosphorylation/dephosphorylation of the four KaiC 
phosphoforms as well as the association/dissociation 
reactions among species of Kai proteins (Figure 1) [5]. The 
model is represented by 10-dimensional (10-D) ordinary 
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differential equations (ODE), describing the dynamics of 
monomeric KaiC phosphoforms in free (U, T, S, ST, 
denoting unphosphorylated KaiC, Threonine phosphorylated 
KaiC, Serine phosphorylated KaiC and Threonine & Serine 
doubly phosphorylated KaiC, respectively) and complex 
forms (UA, TA, SA, UAB, TAB, SAB, SB, denoting U, T, S 
in complex with KaiA and/or KaiB) (see Appendix for 
ODE). Computer simulations of the model have shown that 
it quantitatively agrees with the ordered phosphorylation of 
KaiC phosphoforms observed by other groups and the KaiB-
C complexation measured by our FRET assay. 

 

In this paper, we ask the following questions about the 
clock mechanism: what underlying systems property drives 
the oscillation of the cyanobacterial clockwork? Can we 
dissect the dynamical network of the oscillator and explore 
its embedding nonlinear features? Can we identify plausible 
key component(s) of the clock mechanism? Addressing 
these questions will enable us to deeply understand the 
molecular regulatory mechanism underlying circadian clock, 
which may lead to better therapeutic treatment to circadian 
mechanism in disease condition. To this end, we apply 
combined methods of time scale separation, phase space 
analysis and bifurcation analysis to our model of circadian 
clock. First, fast and slow timescales are separated, and 
under the classical quasi-steady state approximation of fast 
subsystem the model degenerates to a slow subsystem. 
Secondly, the 3-dimensional slow subsystem is subjected to 
phase space analysis and the phase portrait shows that the 
null-surface of the S-state is a bistable surface and that the  
 
 
 

Fig. 1. Schematic diagram of our model of cyanobacterial 
circadian clock. 

Kernel mechanism of the cyanobacterial circadian clock is a relaxation 
oscillator 
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trait of the phase portrait of the reduced oscillator agrees 
with that of a relaxation oscillator. Thirdly, bifurcation plots 
together with phase space analysis indicate that the positive 
feedback loops are relatively more sensitive to perturbation 
than negative feedback loop. And both positive and negative 
feedback loops contribute to the bistable surface in the 
reduced phase space. Finally, we conclude that the Serine-
phosphorylated state (S state) of KaiC is a key component 
for the protein regulatory network of the cyanobacterial 
circadian clock because the bistablity-induced oscillation 
stems from the phase surface of the S state.   

RESULTS 

A. Time scale separation and reduction of the model of 
KaiABC oscillator 

To further analyze our model of circadian clock, the 
immediate difficulty we face is the high dimensionality of 
the dynamical system. By examining the model, we notice 
that the biochemical reactions underlying the in vitro 
cyanobacterial circadian oscillator undergo two different 
time scales: the phosphorylation and dephosphorylation of 
different KaiC phosphoforms are progressing slowly with 
time scale comparable to that of the circadian oscillation, 
while the association and dissociation among KaiA, KaiB 
and KaiC have relatively instantaneous reaction rates (>5-10 
fold faster). For a multi-timescale biological system with 
both fast and slow reactions, the slow dynamics are typically 
dominating experimental observations. Thus it is eligible to 
apply singular perturbation theory [6] to generate reduced 
approximate slow subsystem, which is described by smaller 
number of state variables and amenable for efficient analysis 
and simulation. A classical example of such timescale 
analysis is the irreversible enzyme-catalyzed reaction, such 
as that of the Mechaelis-Menten. For our model of 
cyanobacterial circadian oscillator, the interconversions 
among U, T, ST and S inside the shaded area depicted in the 
model diagram (Figure 1) have slow rates, while the rest of 
reactions in the diagram occur relatively fast. Therefore, the 
fast state variables are identified as the seven KaiC species 
in complex with KaiA and KaiB, which are connected by 
those fast reaction rates of the model. That is, we define a 
fast vector xf = [UA TA SA UAB TAB SAB SB], whose 
time rates of change are much larger than that of other 
variables. Then we can assume that these complexes of KaiC 
quickly settle at quasi-steady states, due to their 
instantaneous kinetics relative to the slow circadian dynamic 
with 24 hr periodicity. Based on the modified singular 
perturbation theory (see Appendix) and the subsequent 
quasi-steady state approximation, the original model can be 
reduced to a slow subsystem consisting of only three 
variables (i.e. any three species of U, T, ST and S due to 
conservation of KaiC concentration) that resides on the time-
varying pseudo-equilibrium points of the fast subsystem. 
Because previous work has indicated plausible importance 
of the S-state of KaiC for the circadian clock, we decide to 

include S instead of ST in slow subsystem and subsequent 
analysis.   

 
To derive the 3-dimensional subsystem mathematically, 

first we solve for the quasi-steady states of xf  by setting the 
derivatives d[UA]/dt, d[TA]/dt, d[SA]/dt, d[UAB]/dt, 
d[TAB]/dt, d[SAB]/dt and d[SB]/dt to zero. In addition, we 

assume that the fourth order sigmoid functions 
44

4
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= 1-4) equals to one because [B], the concentration of free 
KaiB, is much bigger than 

BiK , the threshold constants for 

KaiB association. Then we analytically solve the following 
algebraic equations (1) for the quasi-steady states of the fast 
subsystem: 
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The quasi-steady state concentrations of the KaiC 

complexes are obtained as: 
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We see that the pseudo-equilibrium point of the fast 

subsystem depends on the slow variables and thus are time-
varying. By substituting these pseudo-steady-state 
concentrations back into the slow subsystem d[U]/dt, 
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d[T]/dt, d[S]/dt, we then arrive at the final three-dimensional 
differential equations of the simplified system: 
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Note that we use S instead of ST in the 10-D ODE model 

as well as the resulting 3-D reduced model.  Simulations 
show that the reduced system oscillates well, although with 
slightly smaller amplitude as well as periodicity (~22 hr) 
comparing to the original system (Figure 2). 

 

 
                     A                                            B 

Fig. 2. Simulations of the original system (A) and reduced 
system (B). Time courses of phosphoform T, ST, S and total 
phosphorylated KaiC relative to total KaiC are represented 
by green, blue, red and black curves, respectively. 
 

B. The simplified system is a relaxation oscillator 

Phase portrait with nullclines and trajectories in 2-D phase 
plane is a standard method to analyze a 2-D dynamical 
nonlinear system. Now with the simplified 3-D clock model, 
we can analogously visualize its null-surfaces, instead of 
nullclines, in 3-D phase space. In order to do this, we set the 
right-hand-side of d[U]/dt, d[T]/dt and d[S]/dt to zero and 
solve for the solution numerically using MATLAB. The 
null-surfaces of U, T, S thus obtained are respectively 
denoted as P1, P2 and P3. As shown in Figure 3A, we notice 
that the P1 and P2 surfaces are almost flat while the P3 
surface looks nonlinear. To get a better view of the surface 
of P3, we remove the P2 surface, which is nearly orthogonal 
to the U-T surface.  By choosing an appropriate visual angle, 
we are able to see the P1 and P3 surfaces projected onto S-U 
surface (Figure 3B and 3C). Intriguingly, we find that the 
surface of P3 surface presents a rotated N- shaped feature,  

 
A 

 
                            B                                           C 
Fig. 3. Null-surfaces (P1, P2 and P3) of the reduced system. 
The purple line represents the trajectory. 
 
and the linear surface of P1 surface intersects with the P3 
surface at the intermediate portion of the N shape. It is well 
known that the hallmark of a typical 2D relaxation oscillator 
in phase portrait is that a linear nullcline (or the linear part of 
a nullcline) intersects with the middle/unstable branch of an 
N-shaped nullcline [7]. In addition, the limit cycle should 
orbit around the intersection of two nullclines, which is an 
unstable equilibrium point. For example, the famous Van der 
Pol oscillator has a straight-line nullcline intersecting with 
the other N-shaped nullcline at the middle branch [7]. The 
phase space plot of our reduced system shown in Figure 3 
agrees well with these characteristics of a relaxation 
oscillator. 
 

C. Perturbation of the oscillator 

For a 2D relaxation oscillator, the oscillation is destroyed 
if the fixed point shifts outside of the middle (unstable) 
branch of the N-shaped nullcline. One famous example is 
the “excitation block” phenomenon explained by the 
FitzHugh-Nagumo model [8]. To see if our model presents 
such type of behavior, we first perform bifurcation analysis 
of the full system. In each bifurcation plot, a single 
parameter value is perturbed and the dynamical response is 
plotted at the perturbed value. Such bifurcation plots are 
shown for parameters k11, k21, k31, k33, kaa3, kba3 and 
kba4 (Figure 4), where k11 and k21 are rates regulating 
negative feedback loops, k31, kaa3, kba3 and kba4 are rates 
regulating positive feedback loops, and k33 is rate shared by 
negative and positive feedback loops (Figure 3). By defining 
the robustness index (RI) as the ratio between the upper 
bound and lower bound of the oscillatory region, we have 
RI(k11)=141, RI(k21)=∞, RI(k31)=7.14, RI(kaa3)=4.7, 
RI(kba3)=6.8, RI(kba4)=2.3, RI(k33)=33. The larger the RI 
value, the more robust for the system with respect to that 
parameter. Note that the degree of robustness of the two 
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Fig. 4. Single-parameter bifurcation diagrams. Steady-state behavior of the model is plotted vs. a parameter 
selected from positive and negative feedback loops. Oscillation is represented by a pair of circles, while 
equilibrium point is represented by solid line. The nominal behavior is represented by a pair of red circles.   
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rates associated with negative feedback loop (k11 and k21) 
is much higher than that of the rates associated with positive 
feedback loops (k31, kaa3, kba3 and kba4).     
 

How do the perturbations of parameters affect the reduced 
system in the phase plot? For each of the above parameters, 
we choose a value right outside the oscillatory region and 
compare the 3-dimensional null-surfaces of the perturbed 
(non-oscillatory) and unperturbed (oscillatory) model 
(Figure 5). Indicating the shift of surfaces by red arrows, 
Figure 5 shows that under parameter perturbations the 
conformation of one or more null-surfaces changes. The 
shift of P2 surface seems to have the least effect on the 
system dynamics because increased k21 does not abolish the 
oscillation, which tilts P2 surface while P1 and P3 remain 
the same (data not shown). The shift of the P3 surface is 
induced by three parameters (k33, kba4, kaa3) associated 
immediately with the S-state of KaiC in the network, 
indicating that the N-shaped bistability surfaces stems from 
the direct regulations of the S-state. This result underscores 
the importance of the S-state because the N-shaped null-
surface/nullcline is the core of a relaxation oscillator. These 
phase space perturbation plots show that the robustness of 
our oscillatory model essentially is determined by the 
conformation of the null-surfaces. But how the conformation 
of the 3D null-surfaces determines the oscillation of system 
is still unclear. Since the oscillation of the system seems to 
be insensitive to the perturbation in P2 surface, we eliminate 
this degree of freedom by solving the intersections of P1 and 

P3 on P2. As shown in Figure 6, the intersection between P1 
and P2 is a straight line except near the origin, while the 
intersection between P1 and P3 is an N-shaped curve. These 
intersection curves on P2 surface have the characteristics of 
nullclines of a 2-D relaxation oscillator. Moreover, we find 
that for the nominal oscillatory model the fixed point 
(intersect of P1, P2 and P3) is on the middle branch of the 
N-shaped curve, while the oscillation is disabled if the fixed 
point sits outside of the middle branch of the N-shaped 
curve. That is, the fixed point has to lie on the middle branch 
of the N-shaped curve to be an unstable fixed point. Such 
behavior again agrees well with that of a 2-D relaxation 
oscillator. The above phase plots combined with 
perturbation analysis suggests that the kernel mechanism of 
our model of circadian clock is a relaxation oscillator.  

  
CONCLUSION 

 

In the schematic diagram of the full model, the S-state is a 
hub element of two positive feedbacks and a negative 
feedback loop, which indicates that the S-state is a critical 
component for the functioning of the circadian oscillator. 
Our phase surface analysis together with bifurcation 
diagrams show that the nonlinearity associated with the null-
surface of the S-state is critical for the simplified relaxation 
oscillator, highlighting the important role of the S-state of 
KaiC in the cyanobacterial circadian mechanism.  
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Fig. 5. Nullplanes before and after perturbation of the parameter listed above each plot. The red arrow indicates 
the direction from unperturbed to perturbed situation.  

APPENDIX 
 

The 10-D ODE model of circadian clock is given as:  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
And the eleventh KaiC species S is constrained by the 
conservation of the total concentration of KaiC, i.e., [U] + 
[T] + [ST] + [UA] + [TA] + [SA] + [UAB] + [TAB] + 
[SAB] + [SB] + [S] = KaiCT. The method of model 
reduction we use is based on singular perturbation theory 
[6]. Suppose a dynamical system has separable fast and slow 
variables, denoted by xs and xf, respectively. Due to the 
slow/fast time rate of change for slow/fast variables, the 
state-space representation of the model is represented as: 
 
 
 
where ε << 1 is a small positive parameter and f and g are 
continuously differentiable functions. On the time scale that 
slow variables show variation, the fast variables quickly 
settle to their quasi-steady-state if the fast subsystem has at 
least one isolated real roots. This leads to the standard 
singular perturbation theory that sets ε = 0 and the dimension 
of the original system reduces from m+n to n because the 
differential equation (3) degenerates to algebraic equation: 
 
 
Here we use a modified singular perturbation model that has 
improved accuracy [9]. Using such a model, we do not set ε 
to 0 and the reduced slow subsystem becomes   
 
where h(t, x) is the steady-state solution for 0

fx  in the 

following algebraic equation: 
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Fig. 6. Null-surfaces P1 and P3 projected onto P2 before (black) and after (magenta) the perturbation of the 
parameter listed in each plot. 

the phosphorylation and dephosphorylation rates (kpl and kdl, 
 l=1-4, and k11, k12, k21, k22, k32, k33 and k34). And the 
derivative of the fast variables xf = [[UA] [TA] [SA] [UAB] 
[TAB] [SAB] [SB]] is dominated by the fast binding 
reactions. That is, if we rewrite kaai = 1/ε 

aaik , kadi = 1/ ε 
adik , i 

=1-3, and kbaj = 1/ ε 
bajk  , kbdj = 1/ ε 

bdjk , j=1-4, with the 

choice of ε = 0.08 (i.e. 1/12.5), the differential equation for 
the fast subsystem then takes the standard form in (3), where 
the vector field g is: 

Note that the order of derivatives on the left-hand sides of 
equation (3) is not affected by the terms multiplied by ε on 
the right-hand side because they can be neglected in 
comparison with the other right-hand-side terms. Next we 
examine the slow subsystem of KaiABC oscillator with 
variable xs = [[U] [T] [S]]. Here we have chosen to explicitly 
include the S-state of KaiC instead of the ST-state in the 
slow variables because our previous study indicates that the 
S phorylated-state of KaiC is likely a critical component in 
determining the dynamics of the circadian oscillator. Based 
on the differential equations of xs, it is noteworthy that the 
derivatives of xs are dominated by terms of slow 

phosphorylation/dephosphorylation reactions, except for one 
or two paired association/dissociation reactions. Since the 
latter are equilibrated quickly, the net rate of these reaction 
pairs turn out to be in the same order of magnitude as the 
rest of the slow terms (simulation not shown). 

ACKNOWLEDGMENT 

The authors are grateful for the Start-up Fund from the 
University of Texas at Dallas. 

REFERENCES 

1. Bell-Pedersen, D., et al., Circadian rhythms from multiple 
oscillators: lessons from diverse organisms. Nat Rev Genet, 
2005. 6(7): p. 544-56. 
2. Golden, S.S., et al., Cyanobacterial Circadian Rhythms. 
Annu Rev Plant Physiol Plant Mol Biol, 1997. 48: p. 327-
354. 
3. Ishiura, M., et al., Expression of a gene cluster kaiABC as 
a circadian feedback process in cyanobacteria. Science, 
1998. 281(5382): p. 1519-23. 
4. Nakajima, M., et al., Reconstitution of circadian 
oscillation of cyanobacterial KaiC phosphorylation in vitro. 
Science, 2005. 308(5720): p. 414-5. 
5. Ma, L., and Ranganathan, R., Quantifying the rhythm of 
KaiB-C complexation for in vitro cyanobacterial circadian 
clock. Under revision. 
6. Khalil, H.K., Nonlinear systems. 1996, Upper Saddle 
River, NJ: Prentice Hall. 
7. Strogatz, S., Nonlinear dynamics and chaos: with 
applications to physics, biology, chemistry and engineering. 
2001: Westview Press. 
8. Keener, J., J. Sneyd Mathematical Physiology. 1998: 
Springer-Verlag  
9. Gomez-Uribe, C.A., G.C. Verghese, and A.R. Tzafriri, 
Enhanced identification and exploitation of time scales for 
 model reduction in stochastic chemical kinetics. J Chem 
Phys, 2008. 129(24): p. 244112. 


























































































]SB[
]B[

]B[
]S[

]SAB[]SAB[
]B[

]B[
]SA[

]TAB[]TAB[
]B[

]B[
]TA[

]UAB[]UAB[
]B[

]B[
]UA[

]SAB[
]B[

]B[
]SA[]SA[]S[]A[

]TAB[
]B[

]B[
]TA[]TA[]T[]A[

]UAB[
]B[

]B[
]UA[]UA[]U[]A[

444
4

4

4

31344
3

4

3

22244
2

4

2

12144
1

4

1

344
3

4

333

244
2

4

222

144
1

4

111

bd
B

ba

bd
B

ba

bd
B

ba

bd
B

ba

bd
B

baadaa

bd
B

baadaa

bd
B

baaaaa

k
K

k

kk
K

k

kk
K

k

kk
K

k

k
K

kkk

k
K

kkk

k
K

kkk

g







5855


