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Abstract— We consider a class of mean-field nonlinear
stochastic differential games (resulting from stochastic differ-
ential games in a large population regime) with risk-sensitive
cost functions and two types of uncertainties: continuous-
time disturbances (of Brownian motion type) and event-driven
random switching. Under some regularity conditions, we first
study the best response of the players to the mean field,
and then characterize the (strongly time-consistent Nash) equi-
librium solution in terms of backward-forward macroscopic
McKean-Vlasov (MV) equations, Fokker-Planck-Kolmogorov
(FPK) equations, and Hamilton-Jacobi-Bellman (HJB) equa-
tions. We then specialize the solution to linear-quadratic mean-
field stochastic differential games, and study in this framework
the optimal transport of the GlpF transmembrane channel
of Escherichia coli, where glycerol molecules (as players in
the game) choose forces to achieve optimal transport through
the membrane. Simulation studies show that GlpF improves
the glycerol conduction more in a higher periplasmic glycerol
concentration, which is consistent with observations made in
the biophysics literature.

I. INTRODUCTION

In recent years, game theory has been used to understand
and design complex systems with many interacting inde-
pendent decision-making agents in changing environments.
Several papers have focused on games with a large number of
players, and different approaches to large population games
have been proposed. In [1] and [2], evolutionary games
are used to model the multiple accesses in a population
of transmitters and receivers in wireless communication
systems. In [3], randomized sampling methods are used
to solve large zero-sum matrix games to obtain security
policies against an adversary. In [4], the equilibrium of a
Stackelberg game with a single service provider and a large
number of users is studied by taking the limit of the solution
in analytic form. In [5], large population minority games
are studied from a statistical mechanics viewpoint in the
context of financial markets. In [6], mobile subscribers are
modeled as a continuum, and it is shown that a threshold-
type Wardrop equilibrium exists as a result of competitions
for users between two base stations. In [10], the concept of
oblivious equilibrium is proposed for the analysis of a class
of large-scale stochastic games.

In this paper, we use a mean-field approach to study
a class of large population hybrid risk-sensitive stochas-
tic differential games. In most formulation of mean-field
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stochastic differential games (SDGs) such as [7] and [8],
the cost functions to be minimized are expected values of
the stage-additive loss functions. Such risk-neutral type of
games cannot capture all the behaviors of agents in an un-
certain and adversarial environment. In [14], a class of risk-
sensitive mean-field SDGs with an exponentiated long-term
cost function is considered and the corresponding mean-field
equilibrium is characterized in terms of backward-forward
macroscopic McKean-Vlasov equations, Fokker-Planck Kol-
mogorov equations and Hamilton-Jacobi-Bellman-Fleming
(HJBF) equations. In this paper, we extend the risk-sensitive
SDGs to a class of hybrid games that involve two types of
uncertainties. One is the additive disturbances modeled by
a zero-mean continuous-time Brownian motion process and
the other one is a discrete uncertainty that is modeled by
random switching between different structural states. Such a
hybrid structure of uncertainties has been considered earlier
in [22] for risk-neutral single-person linear-quadratic control
problems. The worst-case design problem for the Markovian
switching systems under a linear-quadratic cost criterion
has been studied in [15]. In [17], minimax controllers of
such switching systems have been characterized under the
sampled-data perfect-state information structure.

In the first part of this paper, we examine the risk-
sensitive SDGs with the hybrid structure of uncertainties
in the context of a large population of players. We first
present a general mean-field SDG model where the players
are coupled through their risk-sensitive cost functionals as
well as through their states. We provide the mean-field op-
timality principle and discuss compatibility with the density
distribution obtained using generalized McKean-Vlasov and
Fokker-Planck-Kolmogorov equations. We investigate the
special linear-quadratic case and characterize the equilibrium
solutions in terms of solutions to Riccati equations.

In the second part of the paper, we discuss an application
in molecular biology based on the linear-quadratic frame-
work. More specifically, we establish a hybrid stochastic
differential equation model for the aquaglyceroporin GlpF
transmembrane channel of Escherichia coli that facilitates
the uptake of glycerol by the cell. We model the potential
mean force as a control variable and the viewpoint whereby
in which nature allows glycerol molecules to choose a force
to achieve optimal transport through the membrane. Using
the hybrid SDG framework, we observe in our simulations
the phenomenon that GlpF improves the glycerol conduction
more in a higher periplasmic glycerol concentration, which
agrees with the observations made in several papers in the
biophysics literature.
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The mean-field game framework has been applied to many
areas of research. In [12] and [9], the authors have treated
pedestrians as individual entities and proposed a dynamical
crowd evolution model using mean-field differential game
theory in the framework of [8]. In [11], the consensus
problem was studied based on stochastic mean-field Nash
certainty equivalence (NCE) framework dispensing with the
global evolution of the population. In [13], SDGs are used
to understand the phase transition of a large population of
interacting oscillators. Ours here seems to be the first attempt
to use mean-field framework in biological applications.

The rest of the paper is organized as follows. In Section
II, we present the hybrid risk-sensitive SDG model and
discuss mean-field convergence and the general equilibrium
principle. In Section III, we specialize the results to a special
case of linear-quadratic differential games. In Section IV, we
discuss an application of the hybrid SDG model in molecular
biology and illustrate with numerical examples. Section V
concludes the paper.

II. PROBLEM STATEMENT

We consider a class of n-person stochastic differential
games subject to two types of uncertainties: a continuous-
time Brownian motion that models the additive disturbances
and a discrete stochastic uncertainty that models the random
switching between different structural states. Denote by
N := {1, 2, · · · , n} the set of n players. A player Pi’s
individual physical state xi ∈ X , i ∈ N , evolves according
to the following Itô stochastic differential equation (SDE)

dxi(t) =
1

n

n∑
j=1

f(t, θi(t), x
n
i (t), uni (t), xnj (t), θj(t))dt

+

√
ε

n

n∑
j=1

σ(t, θi(t), x
n
i (t), uni (t), xnj (t), θj(t))dBi(t), (1)

xni (0) = xi,0 ∈ X ⊆ Rk,
θi(0) = θi,0 ∈ Θ, t ≥ 0, i ∈ N .

where xni (t) ∈ Xi ⊆ Rk is the k-dimensional state of Pi in
a population of size n; uni ∈ Ui ∈ Rp is the p-dimensional
control of player i in a population of size n; Bi(t) are
mutually independent standard Brownian motion processes
in Rk; and ε ≥ 0 is a small positive parameter that indicates
the extent of stochastic influence from the Brownian motion;
θi(t), θi,0 ∈ Θ is a structural state taking values in a finite
state space Θ := {1, 2, · · · , S}.

The process θi(t) is a Markov jump process with right-
continuous sample paths, with initial states θi,0 according to
initial distribution π0, and with rate matrix Λ = {λss′}s,s′∈Θ;
λss′ ∈ R+ are the transition rates such that for s 6= s′, λss′ ≥
0, and λss = −

∑
s′ 6=s λss′ for s ∈ Θ. More precisely, for

h > 0,

Prob{θ(t+h) = s′|θ(t) = s} =

{
λss′ + o(h) s′ 6= s,
1 + λss + o(h), s′ = s.

.

(2)
Note that all θj have the same transition law Λ, which is

independent of the actions of the players and their states. We

consider an individual state-feedback strategy for Pi, i.e., Pi
chooses a control action ui = µi(t, x), where µi : R+ ×
Rk × Θ → Ui is a feedback strategy. Let UFi be the class
of such strategies. When the number of players is large, the
cost of Pi does not explicitly depend on the actions of the
other players but rather coupled through the distribution of
the agent states. Let mn(t, x, θ) = 1

n

∑n
i=1 δxn

i (t),θi(t) be an
empirical measure of the states of the players, where δz, z ∈
X ×Θ, is a Dirac measure on X ×Θ.

The goal of Pi, i ∈ N , is to minimize his long-term cost
functional

Lni (ui,m
n; t, x, θ,m) = δ logE

(
exp 1

δ [g(x(T ), θ(T ))

+

∫ T

t

c(t′, xi(t
′), ui(t

′),mn(t′), θi(t
′))dt′

| xi(t) = x,mn(t, ·) = m, θi(t) = θ ] ), (3)

where δ > 0 is the risk-sensitivity index. We assume the
following regularity conditions on c, g, and f .

(A1): f is piece-wise continuous in t, and Lipschitz con-
tinuous in (x, u,m) for each fixed sample path of θ,
with probability one.

(A2): g is continuous in x, and c is jointly continuous in
(t, x, u,m) for each fixed sample path of θ, with
probability one.

(A3): The entries of matrix σ are C2 and σσ′ is strictly pos-
itive for each fixed sample path of θ, with probability
one.

(A4): f, ∂xf, c, ∂xc, g, ∂xg are uniformly bounded for each
fixed sample path of θ, with probability one.

(A5): Ui is closed and bounded.
(A6): ui : [0, T ] × Rk × Θ → Ui is piece-wise continuous

in t and Lipschitz continuous in xi for every θ ∈ Θ.

The system dynamics of Pi, (1), can be further written as

dxi(t) =

(∫
w∈X×Θ

f(t, θi(t), x
n
i (t), uni (t), w)mn(t, dw)

)
dt+

√
ε

(∫
w∈X×Θ

σ(t, θi(t), x
n
i (t), uni (t), w)mn(t, dw, )

)
dBi(t),

xni (0) = xi,0 ∈ X ⊆ Rk, θi(0) = θi,0 ∈ Θ, t ≥ 0, i ∈ N .
(4)

The stochastic differential game problem with dynam-
ics (1), (2) and cost functionals (3) is called a hybrid
risk-sensitive stochastic differential game with perfect-state
measurements. We seek an individual state-feedback non-
cooperative Nash equilibrium u∗ := {u∗i , i = 1, 2, · · · , n},
satisfying the set of inequalities:

Li(u
∗
i ,m

n; 0, xi,0,m, θi,0) ≤ Li(ui,mn; 0, xi,0,m, θi,0),

for all ui ∈ UFi , i ∈ N , or the strongly time-consistent
individual state-feedback Nash equilibrium,

Li(u
∗
i ,m

n; t, xi,m, θi) ≤ Li(ui,mn; t, xi,m, θi), (5)

for all xi ∈ X , θi ∈ Θ, t ∈ [0, T ), ui ∈ UFi , i ∈ N .
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A. FPK Equations

In [14], we have shown that the system (4) has the struc-
ture satisfying the asymptotic indistinguishability conditions
of [18]. This leads to the existence of a random measure µ
such that the system is µ-chaotic. Under an i.i.d. condition
of the players and the controls u∗, the solution of the
state dynamics generates an indistinguishable sequence and
weak convergence of the population profile process mn to
µ is equivalent to µ-chaocity. The weak convergence of the
process mn to m allows one to characterize the distribution
m by the Fokker-Planck-Kolmogorov (FPK) equation. From
[19] and [20], one has the generalized FPK equations:

∂tm(x, s, t)−
∑

s′∈Θ,s′ 6=s

λs′sm(x, s′, t) +m(x, s, t)
∑
s′ 6=s

λss′

+D1
x

(
m(x, s, t)

∫
w

f(t, s, x, u∗(t), w)m(dw, t)

)
=
ε

2
D2
xx

(
m(x, s, t)

(∫
w

σ′(t, s, u∗(t), w)m(dw, t)

)
·
(∫

w

σ′(t, s, u∗(t), w)m(dw, t)

))
,

s ∈ Θ, x ∈ X , t ≥ 0,

Here D2
x(·) :=

∑k
k′′=1

∑k
k′=1

∂2

∂xk′∂xk′′
(mΓk′k′′), where

Γ = σσ′ is a k × k dimensional matrix and Γk′k′′ in-
dicates the (k′, k′′) entry of the matrix Γ; and D1

x(·) :=∑k
k′=1

∂
∂xk′

(
m
∫
w
fk′(t, s, x, u

∗, w)m(dw, s, t)
)
; fk′ de-

notes k′-th component of k-dimensional vector-valued f :=
[fk′′ ]1≤k′′≤k.

B. Hybrid Risk-Sensitive Best Response to Mean-Field

Consider the risk-sensitive stochastic differential game
defined in (1), (2) and (3). Let vni (t, xi,m, θ) denote the
value function associated with this differential game, i.e.,
vni (t, xi,m, θ) = infui∈UF

i
Lni (ui,m

n, 0, t, xi,m, θ). For the
simplicity of the results, we assume f and σ to be one-
dimensional and hence the differential operators D1 and D2

reduce to divergence div and the Laplacian operator ∆. In
addition, we make the following assumption on vi.

(A7): The differential game defined in this subsection has
value functions vi, i ∈ N , for every initial time t,
state x(t) and structure θ(t), which is jointly contin-
uously differentiable in (t, x) and twice continuously
differentiable in x.

Theorem 1: Under Assumptions (A1)-(A7), suppose the
trajectory of mn is given. Then, vni satisfies the Hamilton-
Jacobi-Bellman-Fleming (HJBF) equation

∂tv
n
i (t, xi,m, s) + inf

ui∈UF
i

{∂xi
vni (t, xi,m, s) · f

+
∑
s′∈Θ

λss′v
n
i (t, xi,m, s

′) +
ε

2
tr(σtσ′t∂

2
xixi

vni (t, xi,m, s))

+
ε

2δ
‖σ∂xi

vni (t, xi,m, s)‖2 + c
}

= 0.

vni (T, xi,m, s) = g(xi(T ), s), s ∈ Θ. (6)

Moreover, any strategy derived from

uni (t) ∈ arg min
ui∈UF

i

{∂xi
vni (t, xi,m, s) · f

+
∑
s′∈Θ

λss′v
i(t, xi,m, s

′) +
ε

2
tr(σtσ′t∂

2
xi
vni (t, xi,m, s))

+
ε

2δ
‖σ∂xiv

n
i (t, xi,m, s)‖2 + c

}
(7)

constitutes a best response strategy to the mean-field mn.
We can let δ → ∞ and obtain the risk-neutral best-

response strategies to the mean field as stated below.
Corollary 1: Under Assumptions (A1)-(A7), suppose the

trajectory of mn is given. Then, vni is a solution of the
Hamilton-Jacobi-Bellman-Fleming (HJBF) equation

∂tv
n
i (t, xi,m, s) + inf

ui∈UF
i

{∂xi
vni (t, xi,m, s) · f + c+∑

s′∈Θ λss′v
n
i (t, xi,m, s

′) + ε
2 tr(σtσ′t∂

2
xixi

vni (t, xi,m, s))}

= 0. (8)
vni (T, xi,m, s) = g(xi(T ), s), s ∈ Θ (9)

Moreover, any strategy derived from

uni (t) ∈ arg min
ui∈UF

i

{∂xiv
n
i (t, xi,m, s) · f

+
∑
s′∈Θ

λss′v
i(t, xi,m, s

′) +
ε

2
tr(σtσ′t∂

2
xi
vni (t, xi,m, s)) + c}

constitutes a risk-neutral best response strategy to the mean-
field mn.

Consider the following (n+ 1)-person game with the set
of players N ∪ {n+ 1}, in which the state dynamics of Pi,
i ∈ N , are given by

dxi(t) =

(∫
w∈X

f(t, θi(t), x
n
i (t), uni (t), w)dmn(t, w, θi)

)
dt

+σ(t)ξ(t) +
√
εσ(t)dBi(t), x

n
i (0) = xi,0 ∈ X ⊆ Rk,

θni (0) = θi,0, t ≥ 0, i ∈ N ,
(10)

where the player n+1 is a fictitious player who controls the
parameter ξ(t) ∈ ΞF to play against other players, where ΞF

is the admissible set of feedback strategies for the (n+ 1)st
player. Assume that ξ : [0, T ] × Rk × Θ → ΞF is piece-
wise continuous in t and Lipschitz continuous in x for every
s ∈ Θ. Define the risk-neutral cost function for Pi, i ∈ N ,
by

L̂ni (t, ui, ξ(t),m
n; t, x, θ,m) = E [g(x(T ), θ(T ))

+

∫ T

t

ĉ(t′, xi(t
′), ui(t

′), ξ(t′),mn(t′), θ(t′))dt′∣∣∣∣xi(t) = x,mn(t, ·) = m, θi(t) = θ

]
, (11)

where the cost ĉ is separable in ξ(t) and is given by

ĉ = c(t, xi(t), ui(t),m
n(t), θ(t))− γ2‖ξ(t)‖2. (12)

Each player Pi seeks to find a robust controller under the
uncertainty of the strategies chosen by player n+ 1, i.e, Pi

4493



minimizes the worst case of L̂ni over the feedback strategy
ξ̂ ∈ ΞFi of player n+ 1, i.e.,

v̂ni = inf
ûi∈UF

i

sup
ξ̂∈ΞF

L̂ni (ûi, ξ̂,m
n; t, xi, θ,m). (13)

Then, we can establish an equivalence of the game described
above with the hybrid risk-sensitive game in Section II.

Corollary 2: Consider the hybrid risk-neutral mean-field
game described by (11) and (13) where each player seeks
a robust (min-max) control against the (n + 1)-th player.
The robust hybrid risk-neutral mean-field stochastic game is
equivalent to the hybrid risk-sensitive mean-field stochastic
game defined by (3) and (4) under the regularity assumptions.

C. Coupled HJBF and Generalized FPK-McV Equations

The players choose an optimal controller to react to the
mean-field and the mean-field of the game is influenced by
the controls used by the players. In [14], we have shown
that under suitable controls (uni (t), t ≥ 0) → u(t), t ≥ 0)
as n→∞, one can derive a weak convergence of the risk-
sensitive cost function as stated in the following.

Theorem 2 ([14]): The risk-sensitive cost
functional Lni (uni ,m

n, t, xi, θi,m0) converges to
Li(ui,m, 0, xi, θi,m0) given by

Li(ui,m; t, xi, θi,m0) = δ logE
(

exp
1

δ
[g(x(T ), θ(T ))

+

∫ T

t

c(t, x(t), u(t),m(t), θ(t))dt∣∣ xi(t) = xi,m(t, ·) = m0, θi(t) = θi
])
, (14)

The mean-field response system requires solving a coupled
HJBF backward equation combined with the generalized
FPK equation as follows. Assuming that the population is
homogeneous, we can drop the index i.

dx(t) =
(∫
w∈X f(t, θ(t), x(t), u(t), w)dm(t, w, θ)

)
dt+√

ε
(∫
w∈X σ(t, θ(t), x(t), u(t), w)mn(t, w, θ)dt

)
dBi(t),

x(0) = x0 ∈ X ⊆ Rk, t ≥ 0, i ∈ N .

∂tm(x, θ, t)−
∑
s′∈Θ

λs′sm(x, s′, t) +m(x, s, t)
∑
s′ 6=s

λss′

+D1
x(m(x, θ, t)

∫
w
f(t, θ, x, u∗(t), w)m(dw, θ, t))

= ε
2D

2
xx

(
m(x, θ, t)

(∫
w
σ′(t, θ, u∗(t), w)m(dw, θ, t)

)
·
(∫
w
σ′(t, θ, u∗(t), w)m(dw, θ, t)

))
,

m(x, s, 0) = m0(x, s), s ∈ Θ, x ∈ X .

∂tv(t, x,m, s) + infu∈UF {∂xv(t, x,m, s) · f
+
∑
s′∈Θ λss′v(t, x,m, s′) + ε

2 tr(σtσ′t∂
2
xxv(t, x,m, s))

+ ε
2δ‖σ∂xv(t, x,m, s)‖2 + c

}
= 0.

v(T, x,m, s) = g(x(T ), s), s ∈ Θ.

III. LINEAR-QUADRATIC CASE

In this section, we consider the special case of the linear-
quadratic problem. We let the functions defined in Section

II take the following forms:

f(t, θi, xi, ui,m) = A(t, θi(t))xi +B(t, θi(t))ui;

σ(t, θi, xi, ui,m) = σ(t, θi(t));

c(t, θi, xi, ui,m) = |xi|2Q(t,θi(t),m) + |ui|2R(t,θi(t),m);

g(xi) = |xi(T )|2QT (θi(t))
.

We make the following assumptions for the problem formu-
lation for the linear-quadratic case.
(A8): A(t, s), B(t, s), D(t, s), Q(t, s,m), R(t, s,m) are

piece-wise continuous in t for each s ∈ Θ.
(A9): Matrix functions Q(t, s,m), R(t, s,m) are positive

definite for all t ∈ [0, T ], s ∈ Θ, for a given
distribution m.

(A10): The Markov chain θ is irreducible.

A. Best Response to Mean-Field

For linear-quadratic games, we can use Riccati equations
to characterize the best response to the mean field [15].

1) Finite-Horizon: For the finite horizon problem under
perfect state measurements, the value function v, whenever
it exists, is given by

v(t, θ, x,m) = x′Z(t, θ(t),m)x

+ε

∫ T

t

tr (Z(τ, θ(τ),m)σ(τ)σ′(τ)) dτ, (15)

where Z(t, θ(t),m), θ(t) ∈ Θ, t ∈ [0, T ] is the nonnegative
definite solution of the generalized Riccati differential equa-
tion (GRDE)

−Ż(t, s,m) =
A′(t, s)Z(t, s,m) + Z(t, s,m)A(t, s)− Z ′(t, s,m)·(
B(t, s)R−1(t, s,m)B′(t, s)− 1

γ2
σ(t, s)σ′(t, s)

)
Z(t, s,m)

+ Q(t, s,m) +
∑
s′∈Θ

λss′Z(t, s′,m); Z(T, s) = QT (s),

(16)

where γ =
√

δ
2ε and the strategy for Pi in best response to

the mean field is

u∗i (t, s,m) = −R−1(t, s)B′(t, s)Z(t, s,m)xi(t). (17)

The associated Fokker-Planck equation is given by

∂tm(x, s, t) +m(x, s, t)
∑
s′ 6=s

λss′ −
∑
s′∈Θ

λss′m(x, s′, t) =

div (m(x, s, t) · (A(t, θ(t))x+B(t, θ(t))u∗(t, s,m)))

+
ε

2
∆(m(x, s, t)σ(t, s)σ′(t, s)), (18)

with initial condition m(x, s, 0) = m0(x, s). The above
discussion is now captured by the following theorem.

Theorem 3: Consider the linear-quadratic hybrid risk-
sensitive mean-field stochastic differential game of this sub-
section. Let Assumptions (A8)-(A10) hold. Then, the game
admits a best response strategy to the mean field, given by
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(17), where Z is the nonnegative solution to (GRDE) (16).
The finite-horizon mean-field equilibrium is a solution to the
coupled equations (18) and (17).

2) Infinite-Horizon Case: We take A,B,D,Q,R,Λ to be
time-invariant and QT (·) = 0 and π0 to be the stationary
distribution of the Markov chain, and require x(t) → 0 as
t → ∞. The following two assumptions are needed for the
ensuing analysis.

(A11): The pair (A(θ(t)), B(θ(t))) is stochastically stabiliz-
able (See Definition 1 in [22]).

(A12): The pair (A(s), Q(s)) is observable for each s ∈ Θ.
We introduce the following set of coupled generalized

algebraic Riccati equations (GAREs)

A′(s)Z(s) + Z(s)A(s)− Z(s)
(
B(s)R−1(s,m)B(s)

− 1

γ2
σ(s)σ′(s)

)
Z(s) +Q(s,m) +

S∑
s′=1

λss′Z(s′); (19)

i = 1, · · · , s.

Then, we have the following counterpart of Theorem 3.
Theorem 4: Consider the infinite-horizon linear-

quadratic hybrid mean-field stochastic differential game with
perfect state measurements, as defined in this subsection. Let
Assumptions (A8)-(A12) hold. The best-response strategy
for Pi to the mean field is given by

u∗i (t) = µ∗i (t, x(t), θ(t)) = −R−1(θ(t))B′(θ(t))Z(θ(t))x(t),
(20)

where Z(·) is a positive definite solution (GARE) to (19).
The closed-loop linear system given by

ẋ =
(
A(θ(t))−

(
B(θ(t))R−1(θ(t))B′(θ(t))

− 1

γ2
σ(θ(t))σ′(θ(t))

)
Z(θ(t))

)
x(t) (21)

is mean-square stable, i.e., limt→∞ E{|x(t)|2} = 0. In
addition, the infinite-horizon mean-field equilibrium is a
solution to the coupled equations (18) and (20).

IV. APPLICATION TO MOLECULAR BIOLOGY

Cell membranes act as a protective permeability barrier for
preserving the internal integrity of the cell. Cell metabolism
requires controlled molecular transport across the cell mem-
brane. The Escherichia coli glycerol uptake facilitator (GplF)
is an aquaglycerol channel protein, which transports both
water and glycerol molecules, but excludes charged solutes,
e.g. protons. It is a very efficient glycerol uptake system that
allows rapid growth of the bacteria in glycerol solution at
a concentration of 5 µM or in a nutrient-poor condition of
1 µM [28], [29]. The recent discovery of the structure of
GlpF at a resolution of 2.2 Å has revealed important fea-
tures of the transport mechanism. The channel walls match
the hydrophilic and hydrophobic sides of glycerol, so that
glycerol can be dehydrated without an energetic penalty. The
entrance to the channel contains a narrow (4 Å wide) region
that is thought to function as a selectivity filter. The potential
of mean force (PMF) that guides the transport of glycerol

Fig. 1. Section through the glycerol conduction pathway in GlpF. The
periplasmic side is taken as the origin marked with x = −1 and the
cytoplasmic side is marked with x = 0.

through the channel is highly asymmetric reflecting the
atomic structure of GlpF – a large (10 Å wide) hydrophilic
vestibule extends into the water on the external side of the
membrane [27]. In [26], the authors show that no biological
functions could be attributed to asymmetry. Conduction rate
of a single glycerol does not depend on the orientation of
GlpF, and GlpF appears to conduct equally well in both
directions under physiological conditions.

In [23], it has been demonstrated that the asymmetry of
GlpF furnishes active glycerol transport through a ratchet-
like mechanism under realistic physiological conditions. The
ratchet effect refers to the generation of directed motion of
Brownian particles in a spatially periodic and asymmetric
ratchet potential in the presence of non-equilibrium fluctua-
tions and/or externally applied time-periodic force with zero-
mean. In this section, we use stochastic large population
games to explain the dependence of the glycerol transport
on function of the structure of GlpF. We adopt a simplified
view as in [23] to model the glycerol as Brownian particles
subject to thermal fluctuations and an on-and-off stochastic
driving force. The periplasmic glycerol concentration has
an effect on the conduction rate. We model the potential
mean force as a control variable u and adopt the viewpoint
whereby nature allows glycerol molecules to choose a force
to achieve optimal transport along the membrane. In our
simulations, we have observed the same phenomena as in
[26], i.e., GlpF improves the glycerol conduction more in a
higher periplasmic glycerol concentration. Recent interests
in synthetic biology and protein designs have inspired us
to study dependence of the transport on different system
parameters such as risk sensitivity as well as weighting
parameters [30], [31].

Aquaglyceroporin is a subclass of aquaporin water chan-
nels, which organize as tetramers in cell membranes, with
each monomer forming a functionally independent water
pore. The side view of GlpF tetramer is shown in Fig. 2,
surrounded by water. In Fig. 3, we show the top view of GlpF
tetramer embedded in a lipid membrane and surrounded by
water. The tetrameric structure is universal to the entire fam-
ily of aquaporins. Each monomer in an aquaporin tetramer
functions independently as depicted in Fig. 4.

Here, we consider a fluctuation-driven molecular transport
through an aquaglyceroporin GlpF membrane channel as
depicted in Fig. 1. We let xi ∈ [−1, 0] denote the position
of molecule i with xi = −1 denoting the periplasmic side
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Fig. 2. Side view of GlpF tetramer surrounded by
water.

Fig. 3. Top view of GlpF tetramer embedded
in a lipid membrane and surrounded by water.

Fig. 4. Molecules inside the GlpF monomer.

Fig. 5. Stationary distribution m(x) with different
Q values: Q = 1 (blue), Q = 10 (dotted black),
Q = 100 (green), Q = 1000 (dotted red).

Fig. 6. Steady-state mean value for different
values of Q in a linear-log plot in risk-neutral
case.

Fig. 7. Steady-state mean value M for different
values of δ at Q = 1000.

and xi = 0 cytoplasmic side. The molecule is driven by a
stochastic driving force FRTN (t), i.e.,

dxi(t) = (ui + FRTN )dt+
√

2dB(t), (22)

where FRTN randomly switches between the two force levels
F0 and −F0, F0 ∈ [0, 8]pN, at independent, exponentially
distributed times. The distribution function of the switching
time PF (t) = 1−exp(−t/T0), where T0 is the mean switch-
ing time that is often chosen within the range from 10−9s to
10−2s. Let s+ denote the state where F0 is applied and s−
be the state where −F0 is applied. Let m := m(x, s+, t) +
m(x, s−, t) and m := m(x, s+, t) − m(x, s−, t). We are
interested in the steady-state probability density. Hence, we
can drop the time dependence of m, assuming the time limit
exists, and study the corresponding stationary Fokker-Planck
equations. By adding and subtracting two FPEs associated
with each state, we obtain the following

−∂xm(x) + u(x) ·m(x) + F0m(x) =: J,

−∂2
xm(x) + ∂x (u(x)m(x) + Fm(x)) +

2

T0
m(x) = 0,

where J is the steady-state flux constant and
∫ 0

−1
m(x)dx =

1,
∫ 0

−1
m(x)dx = 0 and the boundary condition m(−1, t) =

mp(t). From the above two coupled equations, we arrive at
an ordinary differential equation model in terms of m(x):

−∂3
xm(x) + 2u(x)∂2

xm(x) +

(
F 2 − u2(x) +

2

T0

)
∂xm

−2u(x)

T0
m+

2J

T0
= 0.

The nature of transmembrane transport is to conduct
molecules from x = 1 to x = 0. It is shown in [25] that GlpF

is an optimized mechanism for glycerol conduction under
physiological conditions. As nature seeks to use minimum
energy to achieve optimal transport through the membrane a,
we construct an objective functional in terms of state energy
and transport work as follows:

Ji = δ logE
(

1

δ
exp

[∫ ∞
0

|xi(t)|2Q(θ,m) + |ui(t)|2dt
])

,

(23)
where Q(θ,m) := Q(θ(t))−M and M := E(m) models the
interactions between the molecules in the transport channel
of GlpF. More molecules at a particular site x will lead to
a relatively higher cost on the control effort to transport the
molecules. The infinite-horizon GAREs for state s+ and s−
are

2F0z+ − (1− 4/δ)z2
+ + (Q+ −M)− 1

T0
(z+ − z−) = 0,

−2F0z− − (1− 4/δ)z2
− + (Q− −M) +

1

T0
(z+ − z−) = 0.

Letting Q+ = Q− = Q, z = z+ − z− and z = z+ + z−, we
arrive at a set of equations in terms of z and z as follows:

Fz +Q−M =
1

2
(1− 4/δ)

(
z2

+ + z2
−

2

)
, (24)

Fz +Q−M =
1

2
(1− 4/δ)zz +

1

T
z. (25)

In our simulations, we chose F0 = 5pN and T0 ∈ 10−5s.
We solved the coupled equations and obtained the steady
state distribution m(x) which is the same for both states
s+ and s−. In Fig. 5, we show the normalized stationary
distribution m(x) for different values of Q. A higher value
of Q suggests that the periplasmic concentration is high and
it is relatively easier for glycerol conduction. In Fig. 6, we
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show the mean value of the molecule positions as a function
of parameter Q in a log-linear plot. We observe that the
mean value grows almost exponentially when Q > 50 and
the transport is more efficient for higher values of Q or
higher periplasmic concentration glycerol. This result is in
agreement with the biophysical observations made in [25]
and [26], where the GlpF vestibule leads to a higher 75%
conduction rate in a 10-µM periplasmic glycerol concentra-
tion than a 45% conduction rate in a 10 mM one.

In Fig. 7, we show the effect of risk sensitivity parameter
δ on transport. We can view the effect of δ as an indicator of
robustness. A lower value of δ suggests a higher demand of
robustness in the conduction. We observe that with less need
for robustness, the transport becomes less efficient, i.e., the
mean value of the molecules at the steady state are farther
away from the cytoplasm.

V. CONCLUSION

In this paper, we have studied a class of hybrid risk-
sensitive mean-field stochastic differential games in which
the players are coupled through their states and the cost
functionals are exponentiated and coupled as well. We have
discussed the application of the linear-quadratic differential
games to the GlpF transmembrane channel of Escherichia
coli and have shown that the SDGs can provide meaning-
ful explanations to the transport phenomena and biological
regulations for a large population of molecules. One of the
interesting future directions would be the extension of the
results to systems with output feedback and imperfect or
noisy output measurements. Another direction of future work
would be to connect synthetic biology with large population
games and seek the possibility of designing proteins to
achieve efficient mechanisms in transport and chemotaxis.
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