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Abstract— This paper introduces the concept of Disturbance-
Dwell-Time invariance (DDT-invariance) for constrained
switching systems with additive disturbance under dwell-time
switching. This concept is useful for the characterization of
invariant sets for such systems. Necessary and sufficient con-
ditions for DDT-invariance of a set are also provided and
algorithms for the numerical computation of the minimal and
maximal constraint admissible convex DDT-invariant sets are
proposed.

I. INTRODUCTION

This paper considers the following constrained discrete-

time switched linear system with additive disturbance:

x(t+ 1) = Aσ(t)x(t) + w(t) (1a)

x(t) ∈ X , w(t) ∈ W, ∀t ∈ Z+ (1b)

where x(t) ∈ Rn, w(t) ∈ Rn are the state and disturbance

variables respectively, W ⊂ Rn is the disturbance set,

Z+ is the set of non-negative integers and σ(t) : Z+ →
IN := {1, · · · , N} is a time-dependent switching signal

that indicates the current mode of the system among N
possible modes in A := {A1, · · · , AN}. The set X ⊂
Rn models constraints imposed on physical state of the

system, including those arising from the actuator via some

appropriate state feedback when (1) is seen as a feedback

system.

The study of switching systems is quite active in the past

years. Most of the literature [1], [2], [3], [4] is concerned

with conditions that ensure stability of the system when σ(·)
is an arbitrary switching function while others [5], [6], [7],

[8] consider stability of switching systems when σ(·) respects

some dwell-time consideration. A few of them also consider

the presence of constraints and/or disturbances [9], [10], [11],

[12]. This work is concerned with the characterization and

computation of suitably defined disturbance-invariant sets for

system (1) when σ(·) is an admissible switching function

that respects the dwell-time consideration. Since only dwell-

time switching is allowed, the invariance condition is termed

Disturbance Dwell-Time invariance (DDT-invariance). Other

contributions of this work include algorithms for the com-

putations of the maximal and the minimal convex DDT-

invariant sets for system (1). In the limiting case where the

dwell-time is one sample period, σ(·) becomes an arbitrary

switching function, and the corresponding invariant sets and
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their computations have appeared in the literature, see for

example, [9] and [11], [12]. Hence, this work can also

be seen as a generalization of those obtained for arbitrary

switching systems.

The rest of this paper is organized as follows. This section

ends with a description of the notations used. Section II

reviews some standard terminology and preliminary results

for switching systems. Section III shows the main result on

the characterization of the DDT-invariant set for system (1)

and its properties. Sections IV and V consider, respectively,

computations of the minimal and the maximal convex DDT-

invariant sets for (1). Section VI contains numerical examples

followed by the conclusions in Section VII. All proofs for

the results stated in this paper can be found in forthcoming

paper [13].

Standard notations are followed. Given A ∈ Rn×n and

b ∈ Rn, Aj and bk are the corresponding j-th row and

the k-th element respectively while ρ(A) denotes its spectral

radius. The floor function ⌊a⌋ is the largest integer that is

less than a. Standard 2-norm is indicated by ‖ · ‖ while

other p-norms are ‖ · ‖p, p = 1,∞. B(η) := {x ∈ Rn :
‖x‖ ≤ η} refers to the 2-norm ball of radius η. Suppose

α > 0 and X,Y ⊂ Rn are compact sets that contain 0

in their interiors. Then, scaling of X is αX := {αx :
x ∈ X}, image of X is AX := {y : y = Ax and

x ∈ X} for some appropriate matrix A, the Minkowski sum

is X ⊕ Y := {z ∈ Rn : z = x + y, x ∈ X, y ∈ Y }, the

Pontryagin (or Minkowski) difference is X ⊖ Y := {z ∈
Rn : z + y ∈ X, ∀y ∈ Y } and A(X ⊕ Y ) = AX ⊕ AY .

The boldface 1 indicates the vector of all 1s and co{·}
denotes the convex-hull. The distance between x ∈ Rn and

a set Y ⊂ Rn is d(x, Y ) := infy∈Y ‖x − y‖. The distance

between tow sets X,Y is measured by Hausdorff met-

ric H(X,Y ) := max
{

supx∈X d(x, Y ), supy∈Y d(y,X)
}

.

Other notations are introduced as and when needed.

II. PRELIMINARIES

This section reviews definitions of switching time, dwell-

time and admissible switching functions or sequences. These

definitions have appeared in prior papers [1], [6], [7], [8]

but are repeated here for completeness and for setting up the

needed notations.

A switching sequence of (1) is denoted by Sτ (t) =
{σ(t− 1), · · · , σ(1), σ(0)} with σ(·) ∈ IN . Suppose

ts0 , ts1 , · · · , tsk , · · · are the switching instants with ts0 =
0 and tsk < tsk+1

. It follows that σ(tsk) 6= σ(tsk+1
)

and σ(tsk ) = σ(tsk + 1) = · · · = σ(tsk+1
− 1) for

all k ∈ Z+. Let {i}ℓ := {i, i, · · · , i} be a sequence
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of ℓ elements of i with i ∈ IN and Wℓ be the set of

sequences {w(·)} of length ℓ with every w(·) ∈ W . Then,

a switching sequence can equivalently be represented by

Sτ (t) = {{im}km , · · · , {i1}
k1 , {i0}

k0} for some appropriate

ij ∈ IN for all j = 0, · · · ,m and
∑m

j=0 kj = t.

Definition 1: An admissible switching sequence of system

(1), Sτ (t), with switching instants ts0 , ts1 , · · · , tsk , · · · has

a dwell-time of τ means that tsk+1
− tsk ≥ τ for all k ∈ Z+.

In addition, suppose tlast is the last switching time for an

admissible sequence Sτ (t), then t− tlast ≥ τ .

Remark 1: The last condition in Definition 1 requires

further qualification. Suppose IN = {1, 2} and τ = 3
then Sa

3 (6) = {1, 1, 1, 2, 2, 2} is an admissible sequence.

However, Sb
3(6) = {1, 1, 2, 2, 2, 2} is not an admissible

sequence because t − tlast < 3 and the dwell-time con-

sideration may be violated if σ(6) = 2. On the other hand,

if σ(6) = 1 means Sb
3(6) is a truncated subsequence of an

admissible sequence. This is a key point that distinguishes

systems under dwell-time consideration and under arbitrary

switching. Following the same reasoning, Sτ (t) for t < τ is

also not an admissible sequence.

System (1) is also assumed to satisfy the following

assumptions: (A1) The spectral radius of each individual

subsystem Ai, i ∈ IN is less than 1; (A2) The constraint set

X is a non-empty polytope represented by X = {x : Rx ≤
1} for some appropriate matrix R ∈ Rq×n; (A3) (Ai, R) are

observable for all i ∈ IN . (A4) A value of τ ≥ 1 has been

identified such that the disturbance-free system (1a) with

dwell-time τ is asymptotically stable. (A5) W is a polytope

and contains 0 in its interior.

Assumption (A1) defines the family of systems considered

in this work and is a common requirement in past works

of similar nature. The polyhedral assumptions of (A2) and

(A5) are made to facilitate numerical computations described

in sections IV and V. They are not needed for the theo-

retical development of section III. If (A3) is not satisfied,

then system (1) can be reformulated to consider only the

observable subsystem of Ai. Assumption (A4) poses minimal

restriction as procedure for obtaining a minimal dwell-time

for a disturbance-free system is known [8].

III. MAIN RESULTS

This section begins with definitions of Disturbance-Dwell-

Time-invariant (DDT-invariant) set and Constraint Admis-

sible Disturbance Dwell-Time-invariant (CADDT-invariant)

set for system (1a) with admissible input sequences.

Definition 2: A set Ω ⊂ Rn is said to be DDT-invariant

w.r.t. (1a) with dwell-time τ , if x(0) ∈ Ω implies x(t) ∈ Ω
for every admissible sequence Sτ (t) and for every allowable

disturbance sequence {w(0), · · · , w(t− 1)} ∈ Wt.

Definition 3: A set Ω ⊂ Rn is said to be CADDT-

invariant w.r.t. (1a) with dwell-time τ , if it is DDT-invariant

and x(t) ∈ X for all t ∈ Z+.

The definition of DDT-invariant is closely related to the

definition of an admissible sequence. Using the example of

Remark 1 and assuming that x(0) ∈ Ω, Sa
3 (6) will result in

x(6) ∈ Ω but Sb
3(6) may not result in x(6) ∈ Ω. Similarly,

x(7) ∈ Ω if Sb
3(7) is obtained from Sb

3(6) with σ(6) = 1.

While stating the requirements of DDT-invariance and

CADDT-invariance, the above definitions are of limited

practical usefulness since the reachable set of system (1)

for all admissible switching input and disturbance sequences

of length t have to be considered. Clearly, such an approach

is not computationally tractable. This difficulty can be cir-

cumvented using a useful characterization of Dwell-Time

invariance from the work of [8]. They consider system (1)

without disturbance and show that any admissible sequence

of the form

Sτ (t) = {{im}km , · · · , {i1}
k1 , {i0}

k0} (2)

with ij ∈ IN , kj ≥ τ for all j = 0, · · · ,m and
∑m

j=0 kj = t
can be written as a unique ordering of a finite number of

subsequences as

Sτ (t) = {{im}qmτ , {im}rm , · · · , {i0}
q0τ , {i0}

r0} (3)

where, for all j = 0, · · · ,m, qj = ⌊kj−τ

τ
⌋ is the remainder

of kj − τ when divided by τ and rj ∈ T with

T := {τ, τ + 1, · · · , 2τ − 1}. (4)

Motivated by this result, a parameterization of all admissible

sequences can be obtained using an alternative representation

of (2). This takes the form of

Sτ (t) = { {jp−1}
ℓp−1 , · · · , {j1}

ℓ1 , {j0}
ℓ0} (5)

for some appropriate integers ℓ0, ℓ1, · · · ℓp−1 with
∑p−1

i=0 ℓi =
t where each ℓi ∈ T, ji ∈ IN for i = 0, · · · , p−1. This form

shows that an admissible sequence is a concatenation of p-

stage subsequences (as opposed to a m-mode subsequences

of (2)): the first stage is in mode j0 for ℓ0 steps, the second

in mode j1 for ℓ1 steps and so on with the possibility that

ji = ji+1. Such a representation facilitates the representation

of all admissible sequences up till time t. For this purpose,

several operations are introduced. They are slight modifica-

tions of well-known one-step forward (backward) operator

for standard linear system.

Given a set Ω ⊂ Rn, let P̂ (Ω, A,W ) := {Ax + w : x ∈
Ω, w ∈ W} = AΩ ⊕ W be the set of reachable states in

one time step from Ω with respect to system x(t + 1) =
Ax(t) + w(t) driven by disturbance w(·) ∈ W . Repeating

this operation ℓ times lead to the ℓ-step reachable set of Ω
given by

P̂ℓ(Ω, A,W ) = P̂ · · · P̂ (Ω, A,W )

= {Aℓ x+Aℓ−1w + · · ·+Aw + w : x ∈ Ω, w ∈ W}

= AℓΩ⊕Aℓ−1W ⊕ · · · ⊕AW ⊕W (6)

In the case of (5), mode ji can be any index of IN and ℓi
is any element in T. This motivates the definition of

P (Ω,W ) :=
⋃

ℓ∈T

{

⋃

i∈IN

P̂ℓ(Ω, Ai,W )
}

=
⋃

ℓ∈T,i∈IN

P̂ℓ(Ω, Ai,W ) (7)
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and it characterizes the reachable set of one stage

based on the representation given by (5). This means

that x(ℓ0) ∈ P ({0},W ) and x(ℓ1 + ℓ0) ∈
⋃

ℓ∈T,i∈IN

P̂ℓ(P ({0},W ), Ai,W )=P (P ({0},W ),W )=P2({0},W ).
This continues till the p-th stage where

x(ℓp−1 + · · ·+ ℓ0) ∈
⋃

ℓ∈T,i∈IN

P̂ℓ

(

Pp−1({0},W ), Ai,W
)

= Pp({0},W ). (8)

Another interpretation of the above is that the family of all
admissible sequences up to time p(2τ − 1) is

⋃

ℓ0∈T,··· ,ℓp−1∈T

(

⋃

j0∈IN ,··· ,jp−1∈IN

{ {jp−1}
ℓp−1 , · · · , {j0}

ℓ0}
)

(9)

The above analysis is based on the forward operation of

P̂ (·, ·, ·). Another operation needed in the sequel is that given

by the one-step backward operator. Formally, this one-step

and ℓ-step backward sets of a given non-empty Ω ⊂ Rn w.r.t.

system x(t + 1) = Ax(t) + w(t) are known respectively to

be Q̂(Ω, A,W ) = {x : Ax + w ∈ Ω, w ∈ W} = {x : Ax ∈
(Ω⊖W )} and

Q̂ℓ(Ω, A,W ) = Q̂ · · · Q̂(Ω, A,W )

= {x : Aℓx+ · · ·+Aw + w ∈ Ω, w ∈ W}

=
{

x : Aℓx ∈
(

Ω⊖W ⊖ · · · ⊖Aℓ−1W
) }

(10)

In the characterization of (5), the first stage consists of ℓ0
time steps where ℓ0 can be any element in T while j0 can

be any element of IN . Hence, the set of state that can be

brought into Ω for one stage of an admissible sequence is

Q(Ω,W ) :=
⋂

ℓ∈T

{

⋂

i∈IN

Q̂ℓ(Ω, Ai,W )
}

=
⋂

ℓ∈T,i∈IN

Q̂ℓ(Ω, Ai,W ) (11)

and it is the backward set for one stage in an admissible

sequence.

Theorem 1: Suppose (A1), (A4) and (A5) are satisfied

and a non-empty set Ω is given. Let P (·, ·) and Q(·, ·)
be as defined by (7) and (11) respectively. The following

statements are equivalent:

(i) A set Ω ⊂ Rn is DDT-invariant for system (1a);

(ii) P (Ω,W ) ⊆ Ω;

(iii) Ω ⊆ Q(Ω,W ).
Proof: (i) ⇒ (ii): This proof is by contradiction.

Suppose Ω is DDT-invariant but (ii) is not satisfied. This

means there exists an ℓ ∈ {τ, τ +1, · · · , 2τ −1} and i ∈ IN
such that P̂ℓ(Ω, Ai,W ) * Ω. However, {i}ℓ = {i, i, · · · , i}
is an admissible switching sequence and for any x(0) ∈ Ω
it follows that x(t) ∈ P̂ℓ(Ω, Ai,W ) * Ω. This implies

x(t) /∈ Ω for some admissible switching sequence, which

contradicts the DDT-invariance of Ω.

(ii) ⇒ (iii): With (7), condition (ii) holds means

P̂ℓ(Ω, Ai,W ) ⊆ Ω for all ℓ ∈ T and for all i ∈ IN . Applying

Q̂t(·) operator on both sides of the above inclusion yields

Q̂ℓ

(

P̂ℓ(Ω, Ai,W ), Ai,W
)

⊆ Q̂ℓ(Ω, Ai,W ),

∀ℓ ∈ T, ∀i ∈ IN (12)

because Q̂t(Ω1, A,W ) ⊆ Q̂t(Ω2, A,W ) for any Ω1 and

Ω2 such that Ω1 ⊆ Ω2. The left-hand side of (12) is

Q̂ℓ

(

P̂ℓ(Ω, Ai,W ), Ai,W
)

= Ω and taking the intersection

of Q̂ℓ(Ω, Ai,W ) over all ℓ ∈ T and i ∈ IN leads to

Ω ⊆ Q(Ω,W ).
(iii) ⇒ (i): Let x(0) ∈ Ω, this implies x(0) ∈ Q(Ω,W )

by (iii). Consider all admissible sequence, Sτ (t) of the form

(5). It follows that x(ℓ0) = Aℓ0
j0
Ω + Aℓ0−1

j0
w0 + · · · +

Aj0wℓ0−2 + wℓ0−1 ∈ Ω for any j0 ∈ IN and any ℓ0 ∈ T.

Repeating this for all stages until the last stage of ℓp − 1
shows that x(t) ∈ Ω. This shows that Ω is DDT-invariant.

Theorem 1 requires that x(t) ∈ Ω for all t ∈ T, but

no mention is made of the constraints x(t) ∈ X stipulated

in (1b). Clearly, the constraint admissibility requires more

condition than Ω ⊆ X . Imposing x(t) ∈ X for t =
0, 1, · · · , τ − 1 ensures that Ω is CADDT-invariant. This

result is therefore stated without a proof.

Theorem 2: Suppose (A1), (A4) and (A5) are satisfied and

a non-empty set Ω is given. Let P̂ℓ(·, ·, ·) and Q̂ℓ(·, ·, ·) be

as defined by (6) and (10) respectively. A DDT-invariant set

Ω ⊆ X is CADDT-invariant for system (1) with dwell-time

τ , if and only if

(i) P̂ℓ(Ω, Ai,W ) ⊆ X , ∀ ℓ ∈ {0, 1, · · · , τ − 1} , ∀ i ∈ IN

or

(ii) Ω ⊆ Q̂ℓ(X , Ai,W ), ∀ ℓ ∈ {0, 1, · · · , τ − 1}, ∀ i ∈ IN

IV. MINIMAL DDT-INVARIANT SET AND ITS

COMPUTATION

The solution of (1a) is

x(t) = Aσ(t−1)Aσ(t−2) · · ·Aσ(1)Aσ(0)x(0)+

Aσ(t−1) · · ·Aσ(1)w(0) +Aσ(t−1) · · ·Aσ(2)w(1)

+ · · ·+Aσ(t−1)w(t− 2) + w(t− 1). (13)

The first term on the righthand side of (13) approaches

zero as t approaches infinity for any admissible switching

sequence under (A4). The sum of the rest of the terms on the

righthand side of (13) characterizes the asymptotic behavior

of switching system (1a) in the presence of disturbance

sequences. Let Ft(A,W, τ) be the set of states that can

be reached in t steps from the origin for all admissible

sequences with dwell-time τ and all disturbance sequences

of length t. Using (13) with x(0) = 0, it follows that

Ft(A,W, τ) :=
⋃

σ(·)∈Sτ (t)

(

Aσ(t−1) · · ·Aσ(1)W ⊕ · · ·

⊕Aσ(t−1)W ⊕W
)

(14)

with F0(A,W, τ) := {0}. For notational simplicity, the

dependence of Ft and other derived sets on (A,W, τ) will be
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dropped unless warranted by context. The limiting condition

of (14), existence of which is shown in Theorem 3, becomes

F∞ = lim
t→∞

Ft (15)

Hence, F∞ characterizes the asymptotical behavior of (1)

and, typically, a small F∞ set is desirable. The computa-

tion of Ft based on the elapsed time t for system (1) is

difficult because it has no clear structure. A more useful

representation is that given by (5) which characterizes the

reachable states by stages instead of time. Let Fk be the

set of reachable states at the k-th stage. Using the same

reasoning in Section III leading to equation (9), define

Fk := P (Fk−1,W ) =
⋃

ℓ∈T,i∈IN

P̂ℓ(Fk−1, Ai,W ) (16)

with F0 = {0}. Since the above union operation is taken

over all ℓ ∈ T and all i ∈ IN , (16) captures all admissible

sequences of length k(2τ−1) and hence, Fk = Fk(2τ−1) for

all k ∈ Z+. Taking the limit as k → ∞, F∞ = limt→∞ Ft =
limk→∞ Fk(2τ−1) = limk→∞ Fk = F∞.

The union operation of (16) remains problematic compu-

tationally as it does not preserve convexity. This problem

can be circumvented by computing a convex outer-bound

of Fk, denoted by Fk in the form of Fk := co{Fk}.

Similarly, F∞ := limk→∞ Fk. Conceptually, the procedure

of computing F∞ is to first compute Fk based on (16) at

every stage k and then compute its convex hull, starting from

k = 0. The algorithmic computation of F∞ is given below.

Algorithm 1 Computation of F∞

Input: A , τ and W .

(a) k = 0, and initialize F0 = {0}.

(b) Compute P̂ℓ (Fk, Ai,W ) for ℓ = τ, τ + 1, · · · , 2τ − 1
and for all Ai ∈ A and let

Fk+1 = cot∈T,Ai∈A

{

P̂ℓ (Fk, Ai,W )
}

(c) If Fk+1 ≡ Fk set F∞ = Fk and stop, else set k = k+1
and goto step (b).

Step (b) of Algorithm 1 computes

Fk+1 = co{P (Fk,W )}

= co{P̂ℓ (Fk, Ai,W ) : ℓ ∈ T and i ∈ IN}. (17)

This step can be computed when W is a polytope under

(A5). Properties of the F∞ set obtained from Algorithm 1

are stated next.

Theorem 3: Suppose system (1) satisfies assumptions

(A1), (A4), (A5) and Fk is generated based on Algorithm

1. Then:

(i) Fk ≡ co{Fk} for all k.

(ii) 0 ∈ Fk and Fk ⊆ Fk+1 for all k.

(iii) Fk ⊇ Fk = Fk(2τ−1) for all k.

(iv) F∞ := limk→∞ Fk exists and it is bounded.

(v) F∞ := limk→∞ Fk exists and the set sequence {Fk :
k ∈ Z+} of Algorithm 1 converges to F∞, in the sense that

H(F∞,Fk) → 0 as k → ∞.

(vi) F∞ = co{F∞}.

(vii) F∞ is DDT-invariant.

(viii) F∞ is the minimal convex DDT-invariant set.

(ix) The state of system (1a) starting from any x(0) converges

to F∞ for every admissible sequence in the sense that

d(x(t), F∞) → 0 as t → ∞.

V. MAXIMAL CONSTRAINT ADMISSIBLE DDT-

INVARIANT SET

This section deals with the characterization and computa-

tion of the maximal constraint admissible DDT-invariant set,

O∞(A,X ,W, τ), for system (1). This set defines the largest

region starting from which system (1) remains constraint ad-

missible for all admissible switching sequences. A necessary

assumption for the existence of such a set is that (A6) F∞

should be CADDT-invariant, which implies that X ⊃ F∞.

Clearly, this means that the effect of disturbance should not

lead to the state exceeding the constraint set.

Let O1(A,X ,W, τ) be the set of states that can be brought

into constraint set X in one stage for system (1) under an

appropriate Sτ (t). This means that x(t) ∈ X if x(0) ∈
O1(A,X ,W, τ) for all appropriate t for one stage. Using

(5), x(0) belongs to the set O1(A,X ,W, τ) := Q(X ,W ) =
⋂

ℓ∈T,i∈IN
Q̂ℓ(X , Ai,W ) since (j0,ℓ0) of (5) can be any

element of T × IN and x(t) ∈ X has to be satisfied for

all such sequences. Using the above recursively leads to

Ok(A,X ,W, τ) := Q(Ok−1(A,X ,W, τ),W )

=
⋂

ℓ∈T,i∈IN

Q̂ℓ(Ok−1(A,X ,W, τ), Ai,W )

(18)

with O0 := X
⋂

i∈IN ,ℓ=1,2,···τ−1 Q̂ℓ(X , Ai,W ). The de-

tailed algorithmic computation of O∞ is given below. Here-

after, the dependence of Ok on (A,X ,W, τ) is dropped for

notational convenience unless needed.

Algorithm 2 Computation of maximal CADDT-invariant set

Input: A, X , W and τ .

(a) Set k = 0 and let

O0 := X
⋂

1≤t≤τ−1,Ai∈A

Q̂t(X , Ai,W )

(b) Compute Q̂t(Ok, Ai,W ) for t = τ, τ + 1, · · · , 2τ − 1
and for all Ai ∈ A. Then, let

Ok+1 = Ok

⋂

ℓ∈T,Ai∈A

Q̂ℓ(Ok, Ai,W )

(c) If Ok+1 ≡ Ok set O∞ = Ok then stop, else set k =
k + 1 and goto step (b).

Step (a) of Algorithm 2 imposes the constraints for the

first τ −1 steps to ensure the constraint admissibility of O∞

according to Theorem 2. Similarly, step (b) imposes (18) and

captures all possible admissible switching sequences.
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When X and W are polytopes under assumptions (A2) and

(A5), so is Ok. The corresponding numerical operations for

each step of Algorithm 2 are also straight forward, including

the computation of Q̂(X , A,W ) (see [14]). More exactly,

Q̂(X , A,W ) =
{

x : R(Ax + w) ≤ 1, ∀w ∈ W
}

=
{

x :
RAx ≤ 1−maxw∈W Rw

}

. Hence,

Q̂ℓ(X , Ai,W ) =
{

x : RAℓ
ix ≤ 1− max

w∈W
Rw−

max
w∈W

RAiw − · · · − max
w∈W

RAℓ−1
i w

}

. (19)

If
(

1 − maxw∈W RjAiw − · · · − maxw∈W RjA
r−1
i w

)

of

(19) is negative for any of its rows, Algorithm 2 terminates

with O∞ = ∅. While not stated in Algorithm 2, fewer

computations results if redundant inequalities are removed

from Ok+1 at the end of step (2). Properties of the O∞

obtained from Algorithm 2 are stated next.

Theorem 4: Suppose system (1) satisfies assumptions

(A1)-(A5) and Ok is generated based on Algorithm 2, such

that Ok 6= ∅ for all k. Then:

(i) Ok ⊂ X and Ok+1 ⊆ Ok for all k.

(ii) O∞ := limk→∞ Ok exists, contains the origin in its

interior and is finitely determined.

(iii) O∞ is the largest CADDT-invariant set contained in X .

(iv) For every x(0) ∈ O∞, x(t) converges to F∞ for

every admissible switching sequence in the sense that

d(x(t), F∞) → 0 as t → ∞.

Remark 2: Suppose system (1) satisfies assumptions

(A1)-(A5) and O∞ 6= ∅. Then, minimality of F∞ implies

that F∞ ⊂ O∞ ⊂ X . Conversely, (A6) implies the existence

of at least one CADDT-invariant set in X . Thus, O∞ 6= ∅ if

and only if (A6) is satisfied.

Remark 3: It is important to highlight the precise meaning

of result (iii) of the preceding theorem. As mentioned in

Remark 1 and Definition 1, a sequence that violates the

t − tlast ≥ τ condition is not admissible, yet it may

be a truncated subsequence of an admissible sequence. As

Algorithm 2 is for system (1) under all admissible sequences,

the presence of such inadmissible sequences results in O∞

being CADDT-invariant and not robustly positive invariant in

the conventional sense. This means that x(0) ∈ O∞ implies

x(τ) ∈ O∞ and x(t) ∈ X for all t. There is no requirement

that x(t) ∈ O∞ when t = 1, · · · , τ − 1. A set with such

property is also known as a constraint admissible returnable

set.

Remark 4: Setting τ = 1 in algorithms 1 and 2 retrieves,

respectively, the algorithms presented in [9] and [12] for

computation of minimal and maximal disturbance invariant

sets for arbitrary switching systems. Hence, algorithms 1

and 2 can be seen as a generalization of those obtained for

arbitrary switching systems.

VI. NUMERICAL EXAMPLE

The numerical example is on a switching system with

A = {A1, A2}, A1 =
[

0.7 1

0 0.2

]

, A2 =
[

0.8 0

0.4 0.6

]

, τ = 2, The

constraint and disturbance sets are X = {x ∈ R2 : ||x||∞ ≤
1} and W = {w ∈ R2 : ||w||∞ ≤ 0.01} respectively. It can

be verified that the disturbance-free system is asymptotically

stable with any dwell-time τ ≥ 2. Equivalently, this means

that the system is unstable under arbitrary switching and

existing computational techniques [9], [11], [12] for arbitrary

switched systems cannot be used. With τ = 2, both the

minimal and maximal CADDT-invariant sets are computed

for this system and are shown in Figure 1. Two state trajec-

tories of this system starting from x(0) = ±(0.794 , 0.434)
are also shown. The input sequence used is periodic with

tsk+1
− tsk = 2 for all k ≥ 0 while the disturbance sequence

is generated from a random uniform distribution over W .

That the state moves out of O∞ is clear but it comes back in 2

steps, however x(t) ∈ X for all times as described in Remark

3. It is also evident that the state trajectories converge to F∞,

as claimed in property (iv) of Theorem 4.
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0
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0.4

0.6

0.8

1

 

 

 O
∞

F
∞

X

Fig. 1. Illustration of maximal and minimal CADDT-invariant sets

Computational results for this example are presented in

Table 1. These results include the computational (wall-clock)

time1 in seconds, a measure of spectral radius of the system

ρmax := max{ρ(Aτ
i ) : i ∈ IN}, number of inequalities (#)

that represents O∞/F∞ and the iteration (it) at which the

algorithms converge.

O∞ F∞

τ ρmax time # it time # it

2 0.2621 0.60 8 3 8.980 18 128

TABLE I

COMPUTATIONAL RESULTS

Characteristics of the complexity of Algorithm 2 are

similar to that used for computing the maximal invariant set

for standard linear system [14]. For example, much of the

computational load is on the verification of Ok+1 ≡ Ok;

computational load increases when the dimension of the

problem increases. Of course, the complexity also increases

when ρmax approaches 1, N increases, or τ increases.

1All the algorithms of this paper are implemented in Matlab 7 using
multi-parametric programming toolbox solvers [15] and the computations
are performed on a dual-core CPU with 3.2 GHz processor.
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The computational effort for F∞ is much higher than that

for O∞, due to the Minkowski sum and the convex-hull

operations of (6) and (17) needed by Algorithm 1. Of course,

the complexity also increases rapidly with the dimension

of the system. This complexity issue is likely to remain

unless significant improvement is made to the Minkowski

sum and convex hull operations. For the time being, it may be

desirable to develop efficient outer-approximation algorithms

for F∞ like those given by [16] and [11].

VII. CONCLUSIONS

Definitions of a DDT-invariant set and a CADDT-invariant

set are given for discrete-time switching systems un-

der dwell-time switching. The characterization of a DDT-

invariant set with dwell-time τ corresponds to the satisfaction

of t-step reachable/backward sets for t = τ, · · · , 2τ − 1.

This characterization allows for numerical algorithms for

the computation of the minimal/maximal convex CADDT-

invariant set.
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