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Abstract— A new fundamental solution for a specific class
of infinite dimensional Riccati equations is developed. This
fundamental solution is based on the max-plus dual of the
dynamic programming solution operator (or semigroup) of an
associated control problem. By taking the max-plus dual of this
semigroup operator, the kernel of a dual-space integral operator
may be obtained. This kernel is the dual-space Riccati solution
propagation operator. Specific initial conditions for the Riccati
equation correspond to the associated growth rates of the
control problem terminal payoffs. Propagation of the solution
of the Riccati equation from these initial conditions proceeds in
the dual-space, via a max-plus convolution operation utilizing
the aforementioned Riccati solution propagation operator.

I. INTRODUCTION

The objective in this paper is to generalize the approach

of [5] to a class of infinite dimensional Riccati equations

[2], leading to a new fundamental solution for that class

of equations. As in the finite dimensional case [5], this

fundamental solution is based on the max-plus dual of the

dynamic programming evolution operator (or semigroup) of

an associated control problem. The fundamental solution de-

veloped is for a specific class of infinite dimensional Riccati

equations that was originally motivated by a related problem

concerning the amplification of optical signals in optical

networks [3]. However, it is expected that the principle

demonstrated in this paper can easily be extended to other

infinite dimensional Riccati equations.

The theory yielding the aforementioned fundamental so-

lution proceeds by considering an associated finite horizon,

infinite dimensional, optimal control problem that general-

izes that of [5]. This optimal control problem is constructed

such that the associated value function exhibits quadratic

growth with respect to the state variable, where this growth

is determined by the solution of the Riccati equation in

question. Specifically, the kernel of the integral operator that

generates this quadratic growth is the solution of the Riccati

equation. Hence, by solving the optimal control problem, the

solution of the Riccati equation may be obtained.

In order to solve the constructed infinite dimensional

optimal control problem, dynamic programming is applied.

Specifically, it is noted that the value of the optimal control

problem may be propagated to a longer time horizon by
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the application of a max-plus linear, dynamic programming

evolution operator St, where non-negative t denotes the

increase in the time horizon sought. Taking the max-plus

dual leads to an analogous evolution operator Bt in the

dual space. That is, Bt propagates the dual of the value of

the optimal control problem, and hence the solution of the

Riccati equation, to a horizon increased by t. As Bt is a

max-plus integral operator, this dual space propagation may

be described in terms of the propagation of the kernel Bt
of Bt. An operation on this kernel may be obtained that

very efficiently propagates Bt itself, leading to significant a

reduction in the time required to compute the solution of the

Riccati equation, when compared with standard integration

techniques. The steps involved are as follows:

1) Encode the Riccati equation initial condition in terms of

a quadratic functional;

2) Take the Legendre/Fenchel transform of this quadratic

functional;

3) Propagate this in time by any duration t, by operating on

it with Bt;
4) Take the inverse Legendre/Fenchel transform to obtain

the propagated quadratic functional; and

5) Recover the Riccati solution at t from the functional.

In terms of organization, notation and various preliminar-

ies are provided in Section II, while the specific Riccati

equation to be solved is stated in Section III. Analysis of

a particular solution is presented in Section IV, along with

the development of the dual space operator for propagating

any solution. The nature of this solution propagation is

considered in Section V, followed by a simple example.

Some brief conclusions are provided in Section VI. Proofs

are omitted due to space limitations.

II. PRELIMINARIES

This section provides a summary of notation, definitions

and concepts from functional analysis (for example, [1])

employed in this paper. Readers wishing to proceed directly

to problem formulation may skip to Section III.

A. Function spaces

Given an open subset I of Euclidean space and a Ba-

nach space Z, adopt the notation C (I;Z), C1 (I;Z) and

L2(I;Z) for the spaces of continuous, continuously differ-

entiable and Lebesgue-square integrable functions with the

indicated domain and range spaces, respectively. Also, let

C01 (I;Z)
.
= C

(
I;Z

)
∩ C1 (I;Z). Let Λ

.
= (0, L) ⊂ R≥0

denote a spatial interval, where L ∈ R>0, and Λ0
.
= [0, L)

and ΛL
.
= (0, L]. Symbol ∂ is used to denote spatial
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differentiation of functions of one spatial variable on Λ.

Where two spatial variables are present, ∂1 and ∂2 are used to

represent differentiation with respect to the first and second

variable respectively. For example, for ξ ∈ C1 (Λ; Rn) and

F ∈ C1 (Λ × Λ; Rn×n),

(∂ ξ) (ζ)
.
=
∂ξ

∂ζ
(ζ) ,

(∂1 F ) (η, ζ)
.
=
∂F

∂η
(η, ζ) ,

(∂2 F ) (η, ζ)
.
=
∂F

∂ζ
(η, ζ) .

(1)

Define the spaces

X
.
= L2 (Λ; Rn) ,

Xζ
.
=

{
x ∈ X

∣∣∣∣
x absolutely continuous on Λζ ,

x(ζ) = 0, ∂x ∈ X

}
,

W
.
= L2 (Λ; Rm) , (2)

⋆ [r, t]
.
= L2 ([r, t]; ⋆) , ⋆ ∈ {W ,X0,XL} ,

W0[r, t]
.
=

{
w ∈ W [r, t]

∣∣∣∣
[w(·)](0) ∈ L2 ([r, t]; Rm) ,

∂w ∈ W [r, t]

}
,

in which ζ ∈ {0, L} and [r, t] ⊂ R≥0 is a time interval.

Given x, ξ ∈ X , 〈x, ξ〉X denotes the standard inner prod-

uct on L2 (Λ; Rn), while ‖x‖X denotes the corresponding

norm. BX (x;R) is used to denote a ball of radius R ∈ R≥0,

centre x in X . Given two Banach spaces X and Z ,

L (X ;Z ) denotes the space of bounded linear operators

mapping X to Z . The domain of an operator Π is denoted

by dom (Π). Where X and Z are Hilbert spaces, the adjoint

Π′ ∈ L (Z ;X ) of Π ∈ L (X ;Z ) exists if

〈z, Πx〉Z = 〈Π′ z, x〉X (3)

for all x ∈ dom (Π) ⊂ X , z ∈ dom (Π′) ⊂ Z . By defini-

tion, the spatial differentiation operation ∂ of (1) is bounded

on X0 and XL, but not on X . For convenience, define the

spatial differentiation operator ∇ to be the restriction of ∂
to X0. Then, its adjoint ∇′ exists on XL. Specifically,

∇ : dom (∇) ⊂ X 7→ X ,

{
dom (∇) = X0 ,

[∇ξ](λ) = [∂ξ](λ) .
(4)

∇′ : dom (∇′) ⊂ X 7→ X ,

{
dom (∇′) = XL ,

[∇′ξ](λ) = −[∂ξ](λ) .
(5)

B. Functionals

A functional f : X 7→ R is nonnegative if f(x) ≥ 0 for

all x ∈ X . f is positive if it is nonnegative and f(x) > 0
for all x 6= 0. Given two such functionals f, g : X 7→ R,

f > g means that f − g is positive (respectively, ≥ and

nonnegative). A symbol of the form F is used to denote an

integral operator on X , defined with respect to a kernel F .

Specifically,

F x = (F x) (·) .
=

∫

Λ

F (·, ζ)x(ζ) dζ . (6)

Lemma 1: Let f : X 7→ R denote a quadratic functional

of the form f(x)
.
= 1

2 〈x, F x〉X , in which F denotes a

bounded integral operator of the form (6).

(i) f is closed;

(ii) f is convex if and only if f is nonnegative.

The Fréchet derivative of a functional V ∈ C01 (X ; R)
at x ∈ X in direction h ∈ X is denoted by ∇xV (x)[h] ∈
R. The Gateaux derivative of V ∈ C01 (X ; R) at x ∈ X

is denoted by ∇xV (x) ∈ X . As X is a Hilbert space,

the Riesz-Fréchet representation theorem requires that for

all x, h ∈ X ,

∇xV (x)[h] = lim
ǫ→0+

V (x+ ǫ h) − V (x)

ǫ
= 〈∇xV (x), h〉X .

(7)

C. Integral operators

An operator F of the form (6) satisfies F x = 0 for all

x ∈ X if and only if the functional f : X 7→ R defined

by f(x)
.
= 1

2 〈x, F x〉X is identically zero. Equivalently,

the kernel F of F is identically the zero matrix in R
n×n.

F : X 7→ X is nonnegative (respectively, positive) if

the aforementioned functional f : X 7→ R is nonnegative

(positive). Integral operators of the form (6) may be com-

posed with a constant matrix multiplication operator to yield

another integral operator of the form (6). Specifically, given

a constant matrix A ∈ R
n×n,





(F A)x
.
= F (Ax) =

∫

Λ

[F (·, ζ)A]x(ζ) dζ ,

(A′ F)x
.
= A′ (F x) =

∫

Λ

[A′ F (·, ζ)]x(ζ) dζ ,
(8)

so that the kernels are respectively F A and A′ F . The

composition of integral operators F G is also an integral

operator. For convenience, the kernel of this composition is

denoted by F⊛G. That is, F⊛G : Λ × Λ 7→ R
n×n, where

(F⊛G)(η, ζ)
.
=

∫

Λ

F (η, ρ)G(ρ, ζ) dρ . (9)

The adjoint of F is denoted by F ′ and defined by

F ′x
.
=

∫

Λ

F (ζ, ·)′ x(ζ) dζ . (10)

F is a self-adjoint operator if dom (F) = dom (F ′) and

F x = F ′ x for all x ∈ dom (F). Equivalently, in terms of

the kernel F ,

F (η, ζ) = F (ζ, η)′ , ∀ η, ζ ∈ Λ . (11)

Given a symmetric matrix Σ ∈ R
n×n and a self-adjoint

operator F , note that the kernel of the composed operator

F ΣF is F⊛ (ΣF ) ≡ (F Σ) ⊛F . Operator F ΣF is self-

adjoint by (11).

The spatial differentiation operators ∇ and ∇′ of (4) and

(5) may be formally applied to an integral operator F or its

adjoint F ′, respectively (6) and (10). Note specifically that

(∇′F)x
.
= ∇′ (F x) = −

∫

Λ

∂1F (·, ζ)x(ζ) dζ ,

where F x ∈ dom (∇′). The domain condition on the right-

hand side implies a specific boundary condition for the kernel
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F , in particular, that F (L, ·) = 0n×n if F x ∈ dom (∇′).
Note that by (3), (10) and integration by parts,

(∇′F)′ x = F ′ ∇x =

∫

Λ

F (ζ, ·)′ ∂x(ζ) dζ

= F (L, ·)′ x(L) − F (0, ·)′ x(0) −
∫

Λ

∂1F (ζ, ·)′ x(ζ) dζ .

Where x ∈ X0 and F x ∈ dom (∇′), note that the first two

terms on the right-hand side are zero. Furthermore, if F is

self-adjoint, then ∇′F and (∇′F)′ are of similar form, with




∇′F x =

∫

Λ

[−∂1F (·, ζ)] x(ζ) dζ ,

(∇′F)′ x =

∫

Λ

[−∂2F (·, ζ)] x(ζ) dζ .

Where an integral operator of the form (6) is time indexed,

the time derivative is

Ḟt x .
= lim
ǫ→0

[Ft+ǫ x−Ft x
ǫ

]
=

∫

Λ

Ḟt(·, ζ)x(ζ) dζ , (12)

which is also of the form (6). Finally, boundedness of F
may be inferred via an induced norm on the kernel F . The

details of this are omitted for brevity.

III. PROBLEM STATEMENT

The infinite dimensional Riccati equation of interest is an

integro-differential equation with initial and boundary data.

A solution Pt : Λ × Λ 7→ R
n×n of this equation is a time-

dependent matrix-valued function of two spatial variables,

each defined on Λ. Specifically, a solution Pt of the equations

Ṗt = PtA+A′ Pt + ∂1Pt + ∂2Pt + (Pt σ)⊛ (σ′ Pt) + C ,

P0 = M , 0 = B1Pt = B2Pt , (13)

is sought for all t ∈ [0, T ], for some T ∈ R
+ .

= R>0∪{+∞}
fixed. There, B1,2 denote the boundary value operators

B1P = (B1P ) (·) .
= P (L, ·) ,

B2P = (B2P ) (·) .
= P (·, L) ,

(14)

while the notation ∂1, ∂2, and ⊛ is as per (1) and (9).

Equation (13) represent the kernel form of the Riccati

equation of interest. The corresponding operator form of this

Riccati equation is given by

Ṗt = PtA+A′ Pt −∇′Pt − (∇′Pt)′ + Pt σ σ′ Pt + C ,

subject to the initialization P0 = M. Here, operators Pt,
M, and C are of the form (6), with kernels Pt, M , and C
respectively. For brevity, attention is restricted to the kernel

form (13). There, the initial condition M : Λ × Λ 7→ R
n×n

is restricted according to

M ∈ M , (15)

where

M
.
=



M

∣∣∣∣∣∣

M : Λ × Λ 7→ R
n×n is the kernel of any

self-adjoint and invertible operator M
satisfying (6) and Mx ∈ XL ∀x ∈ X0



 .

Existence and uniqueness of solutions for (13) is invoked via

the following condition on M ∈ M :

Given M ∈ M , there exists a T ∈ R
+ such that (13)

has a unique solution Pt for all t ∈ [0, T ). Furthermore,

Pt defines an integral operator Pt of the form (6) (with

Pt as its kernel) with the following properties:

(i) Pt >M;

(ii)
∥∥M−1 Pt

∥∥ < 1.
(16)

In order to conveniently discuss a particular solution of

(13) that satisfies (16), as parameterized by a specific initial

condition M , define

TM
.
= sup

{
T > 0

∣∣∣∣
(16) holds for

the given M

}
,

Ric(M)
.
= P

∣∣∣∣
Pt satisfies (13) ∀ t ∈ [0, TM ) ,

TM > 0 , M given .

Throughout, it will be assumed that a particular solution

with the appropriate properties discussed above exists. This

is summarized as follows.

Assumption 2: ∃ M ∈ M such that TM > 0.

The objective is to develop an efficient method for computing

a solution Ric(M̃) given a particular solution Ric(M), for

which the condition

M̃ >M (17)

holds. This method will be based on a generalization of the

max-plus approach reported in [5].

IV. THE PARTICULAR SOLUTION

An optimal control problem is posed whose value function

incorporates the particular solution Ric(M) for M as per

Assumption 2. By formulating the dynamic programming

principle for this optimal control problem, a semigroup

evolution operator may be developed for the value function,

and hence the particular solution Ric(M). A dual space

representation for this evolution operator is obtained that is

fundamental to computing both Ric(M) and Ric(M̃).

A. Optimal control problem

The optimal control problem of interest is defined with

respect to the linear infinite dimensional plant dynamics and

initial state given by

ξ̇(t) = Aξ(t) −∇ξ(t) + σ w(t) , ξ(0) = ξ◦ , (18)

for all t ∈ [0, TM ), where M is as per Assumption 2. Here,

ξ(t) and w(t) respectively denote the state and input at time

t (both are functions on Λ for every t), ξ◦ denotes the initial

state, and ∇ denotes the spatial differentiation operator (4).

Symbols A and σ denote fixed real matrices, with A ∈ R
n×n

and σ ∈ R
n×m, that multiply respectively [ξ(t)] (λ) and

[∇ξ(t)] (λ) on the left for every λ ∈ Λ. Solutions to (18)

are further restricted by the requirement that

ξ◦ ∈ X0 , w ∈ W0[0, t] ∀ t ∈ [0, TM ) . (19)
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For convenience, define the operator valued function T by

(Tt ξ) (η) =

{
exp (At) ξ(η − t) if t ∈ [0, η] ,

0 otherwise .

T is of fundamental importance in defining solutions of (18).

In particular, T is a C0-semigroup generated by the operator

A − ∇ in (18). It allows solutions of the abstract Cauchy

problem (18) to be represented in terms of operations on the

initial state and input. The key result of importance here is

that such a solution exists under appropriate conditions, and

resides in a particular space.

Theorem 3: Given any initial state ξ◦ ∈ X0, and any input

w ∈ W0[0, t], the mild solution ξ of the initial value problem

(18) satisfies the following for all t ∈ [0, TM ):

ξ(t) = T (t− r) ξ◦ +

∫ t

r

T (t− s)σ w(s) ds , (20)

ξ(t) ∈ X0 . (21)

An optimal control problem may be defined with respect

to the dynamics of (18) in order to capture the solution of

(13). Specifically, for each z ∈ X0, t ∈ [0, TM ), define

the payoff Jz : [0, t] × X × W0[0, t] 7→ R≥0 and value

W
z

: [0, t] × X 7→ R by

Jz(t, x;w)
.
=

∫ t

0

1
2 〈ξ(s), C ξ(s)〉X − 1

2‖w(s)‖2
W ds

+ ψ(ξ(t), z) , (22)

W
z
(t, x)

.
= sup
w∈W0[0,t]

Jz(t, x;w) , (23)

where ξ(0) = x ∈ X , and ψ : X ×X 7→ R≥0 denotes the

terminal cost given by

ψ(x, z)
.
= 1

2 〈x− z,M (x− z)〉X . (24)

Here, C and M denote self-adjoint integral operators of the

form (6), with the kernel of M satisfying (15) by Assumption

2. By inspection, note that for all x, z ∈ X

W
z
(0, x) = ψ(x, z) . (25)

The value (23) naturally satisfies a dynamic programming

principle, as stated in the following theorem.

Theorem 4 (DPP): Given any z ∈ X0, the value W
z

of

(23) satisfies the dynamic programming principle (DPP)

W
z

= Dτ W
z

(26)

for all τ ∈ [0, t], t ∈ [0, TM ), where Dτ is the evolution

operator defined by

[Dτ φ] (t, x)
.
=

sup
w∈W0[0,τ ]





∫ τ

0

1
2 〈ξ(s), C ξ(s)〉X
− 1

2‖w(s)‖2
W ds

+ φ(t− τ, ξ(τ))

∣∣∣∣∣∣∣∣∣

(18) holds with

ξ(0) = x




.

(27)
A verification theorem for the optimal control problem

(23) is key to demonstrating that an explicit solution exists.

This theorem states that if a solution to a particular partial

differential equation exists, then that solution corresponds to

the value (23) of the control problem.

Theorem 5: Suppose W z ∈ C01 ((0, TM ) × X ; R) satis-

fies

0 = −∂W
z

∂t
(t, x) + 1

2 〈x, C x〉X + 〈∇xW
z(t, x), A x〉X

− 〈∇′∇xW
z(t, x), x〉X + 1

2 ‖σ′ ∇xW
z(t, x)‖2

W

(28)

∇xW
z(t, x) ∈ dom (∇′) = XL (29)

W z(0, x) = ψ(x, z) , (30)

for all t ∈ [0, TM ), x ∈ X0, where z ∈ X0 fixed. Then,

W z(t, x) ≥ Jz(t, x;w) for all x ∈ X0, w ∈ W0[0, t].
Furthermore, if there exists a mild solution ξ∗ as per (20)

corresponding to a distributed input w∗ with feedback char-

acterization

w∗(s)
.
= 1

2σ
′ ∇W z(t− s, ξ∗(s)) , s ∈ [0, t] , (31)

such that ξ∗(s) ∈ X0 for all s ∈ [0, t], then W z(t, x) =
Jz(t, x;w∗), and consequently W z(t, x) = W

z
(t, x).

With a view to applying the verification Theorem 5, for

each z ∈ X0 and t ∈ [0, TM ), explicitly define the functional

Ŵ z : [0, t] × X 7→ R by

Ŵ z(t, x)
.
= 1

2 〈x, Pt x〉X + 〈x, Qt z〉X + 1
2 〈z, Rt z〉X ,

(32)

where Pt, Qt, Rt denote time-indexed integral operators of

the form (6) whose kernels Pt, Qt, Rt satisfy respectively

(13) and



Q̇t = A′Qt + ∂1Qt + (Pt σ)⊛ (σ′Qt) ,

Q0 = −M ,

0 = B1Qt = B2Qt ,

(33)





Ṙt = (Q′
t σ)⊛ (σ′Qt) ,

R0 = M ,

0 = B1Qt = B2Qt ,

(34)

in which Pt, Qt, Rt : Λ × Λ 7→ R
n×n are time-dependent

matrix-valued functions of two independent spatial variables

(both defined on the interval Λ), and M is the kernel of the

self-adjoint operator M of (24) satisfying Assumption 2.

Theorem 6: The explicit functional Ŵ z of (32) satisfies

for all t ∈ [0, TM ), x, z ∈ X0.

Ŵ z(t, x) = W
z
(t, x) = [St ψ(·, z)] (x) , (35)

in which ψ is the terminal cost (24), and St is the evolution

operator defined by

[St φ] (x)
.
=

sup
w∈W0[0,t]





∫ t

0

1
2 〈ξ(s), C ξ(s)〉X
− 1

2‖w(s)‖2
W ds

+ φ(ξ(t))

∣∣∣∣∣∣∣∣∣

(18) holds

with

ξ(0) = x




, (36)

which satisfies the semigroup property

Sτ+t φ = Sτ St φ (37)

for all t ∈ [0, TM ), τ ∈ [0, TM − t).

618



B. Dual-space representation for Ric(M)

The semigroup property of (37) describes how the par-

ticular solution Ric(M) can be propagated forward in time.

By appealing to semiconvex duality, this evolution can be

represented in a dual space. Analysis of this dual space

representation ultimately leads to the definition of a dual

space evolution operator that can be applied to propagate

any solution. That is, it can be used to find another solution

Ric(M̃) corresponding to initial conditions M̃ different from

M . Here, a dual-space representation of the propagated par-

ticular solution is developed. The details of this development

rely on concepts and results from convex analysis.

Semiconvex duality [6] will be introduced using operators

defined with respect to the max-plus algebra (e.g. [4]). This

algebra is a commutative semifield over R
− .

= R ∪ {−∞}
equipped with the addition and multiplication operations ⊕
and ⊖ are defined by a⊕ b

.
= max(a, b) and a⊗ b

.
= a+ b.

The max-plus algebra is an idempotent semifield as ⊕ is

idempotent operation (i.e. a⊕ a = a) with no inverse.

Recall that a functional f : X 7→ R is semiconvex if

there exists a self-adjoint integral operator K of the form (6)

such that f(x) + 1
2 〈x, K x〉X is convex. A space of such

functionals is denoted respectively by S K(X ), where

S
K(X )

.
=

{
f : X 7→ R

n

∣∣∣∣
f(·) + 1

2 〈·, K ·〉X
is convex on X

}
.

It may be shown that S K (X ) is a max-plus vector space.

It is convenient to define a max-plus integral operator Dψ in

which ψ : X ×X 7→ R of (24) plays the role of kernel. In

particular, define the semi-convex dual operator [6]

Dψ φ = [Dψ φ](·) = −
∫ ⊕

X

ψ(x, ·) ⊗ [−φ(x)] dx , (38)

where
∫ ⊕

X
f(z) dz

.
= supz∈X f(z).

Theorem 7: Let φ ∈ S K (X ) be closed, where K is a

self-adjoint integral operator of the form (6) satisfying K <
−M, with M defined by kernel M . Then, for all x, z ∈ X ,

φ(x) = [D−1
ψ a](x) , a(z) = [Dψ φ](z) , (39)

where

D−1
ψ a = [D−1

ψ a](·) .
=

∫ ⊕

X

ψ(·, z) ⊗ a(z) dz , (40)

Theorem 7 may be applied to show that the semiconvex dual

of St ψ(·, z) is well-defined for each z ∈ X0. To this end,

define the operator Kt .= −αPt−(1−α)M, with α ∈ (0, 1)
fixed, where Pt and M are as defined by Ric(M). Then, by

assertion (i) of (16), Pt >M, so that

Pt + Kt = (1 − α) (Pt −M) > 0 ,

−Kt −M = α (Pt −M) > 0 .

Note also that Kt is self-adjoint by definition of Pt and M.

That is,

− Pt < Kt < −M , Kt self-adjoint . (41)

By Theorem 6, i.e. (32) and (35),

[St ψ(·, z)] (x) + 1
2 〈x, Kt x〉X = W̃ z(t, x) + 1

2 〈x, Kt x〉X
= 1

2 〈x, (Pt + Kt) x〉X + 〈x, Qt z〉X + 1
2 〈z, Rt z〉X .

Note that Pt +Kt is positive by (41). Hence, the right-hand

side of the above equation is convex with respect to x ∈ X0

by Lemma 1. That is, for any t ∈ [0, TM ),

[St ψ(·, z)] (·) ∈ S
Kt (X ) , (42)

where Kt < −M is a self-adjoint integral operator. Hence,

by Theorem 7, the semiconvex dual of St ψ(·, z) is well-

defined for any z ∈ X0. This dual is denoted by the

functional Bt(·, z) : X0 7→ R, and is explicitly related to

St ψ(·, z) by (39). That is,

[St ψ(·, z)] (x) = [D−1
ψ Bt(·, z)] (x) , (43)

Bt(x, z) = [Dψ St ψ(·, z)] (x) . (44)

An explicit expression for (44) exists as a consequence of

Theorem 6.

Lemma 8: Bt(y, z) is given explicitly by

Bt(y, z) = 1
2 〈y, MHt y〉X + 〈y, (I + H′

t)Qt z〉X
+ 1

2 〈z, (Rt + Q′
tM−1 (I + H′

t)Qt) z〉X , (45)

for any y, z ∈ X0, where Ht is the well-defined operator

Ht
.
= Nt + NtNt + NtNtNt + . . . , Nt

.
= M−1 Pt .

(46)

This demonstrates that the dual Bt(y, z) is a quadratic

functional in y, z ∈ X0. This functional may be used as

the kernel in the definition of a max-plus integral operator

Bt, given by

[Bt a] (x) .
=

∫ ⊕

X

Bt(x, z) ⊗ a(z) dz . (47)

This operator is instrumental in the construction of the

fundamental solution of the Riccati equation (13) of interest.

V. THE FUNDAMENTAL SOLUTION

By definition, a solution Ric(M̃) corresponding to the

initial condition M̃ ∈ M exists on the the open interval

[0, TfM
). Consequently, both Ric(M) and Ric(M̃) exist on

the interval [0, T̂ ], where

T̂
.
= min

(
TM , TfM

)
∈ R

+ . (48)

Define the functional ψ̃ : X 7→ R by

ψ̃(x)
.
= 1

2 〈x, M̃x〉X . (49)

By replacing the terminal cost ψ of (24) with this functional,

note that Ric(M̃) may be characterized via an optimal

control problem in an analogous way to (35) and (37). That

is, Ric(M̃) is encapsulated via the propagated value St ψ̃ for

all t ∈ [0, TfM
). Furthermore, this propagated value can be

represented in terms of the max-plus integral operator Bt of

(47), as expressed in the following result.
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Theorem 9: Consider an initial condition M̃ ∈ M for

Ric(M̃) such that (17) holds. Let ψ̃ : X 7→ R denote the

functional (49), and T̂ ∈ R
+ as per (48). Then,

St ψ̃ = D−1
ψ BtDψ ψ̃ , (50)

for all t ∈ [0, T̂ ), in which D−1
ψ , Bt and Dψ are the operators

(40), (47), and (38).

Theorem 9 provides a representation for the solution Ric(M̃)
in terms of operators defined with respect to the particular

solution Ric(M). By inspection of (37) and (50),

Sτ+t ψ̃ = Sτ St ψ̃ = D−1
ψ Bτ Dψ D−1

ψ BtDψ ψ̃
= D−1

ψ Bτ BtDψ ψ̃ ,
≡ D−1

ψ Bτ+tDψ ψ̃ .
With a

.
= Dψ ψ̃, the above equivalence requires that

Bτ+t a = Bτ Bt a. As the terminal cost ψ̃ is arbitrary

in the sense that M̃ ∈ M in (49) is arbitrary modulo

(17), this suggests that a semigroup property for Bt holds.

Under appropriate conditions, this is indeed the case. As this

semigroup property can be used to propagate any solution, as

indicated by (50), Bt is referred to as a fundamental solution

semigroup.

Theorem 10: The integral operator (47) satisfies the semi-

group property

Bτ+t a = Bτ Bt a , a
.
= D−1

ψ ψ̃ , (51)

for any ψ̃ as per (49) such that TfM
> 0.

Corollary 11: The kernel Bt of the fundamental solution

semigroup Bt satisfies

Bτ+t(y, z) =

∫ ⊕

X

Bτ (y, ξ) ⊗Bt(ξ, z) dξ (52)

for all t ∈ [0, T̂ ), τ ∈ [0, T̂ − t), y, z ∈ X0.

Theorem 10 implies that the solution Ric(M̃), encapsulated

by St ψ̃ of (50), may be propagated forward in time via

Theorem 9 and Corollary 11. Key to the realization of this

propagation is the computation of the kernel convolution

of (52). Recalling Lemma 8, kernel Bt enjoys an explicit

quadratic form (45). Consequently, if the convolution Bτ+t
of (52) can be shown to retain this form, then the evolution

of Bt can be computed extremely efficiently by conducting

repeated explicit maximizations as per (52). This is indeed

the case, as the operator encapsulating the quadratic ξ de-

pendence in (52) can be shown to remain invertible through

subsequent convolutions. This may be formalized using two

auxiliary time-indexed operators Y and Z given by

Yτ .
= Q′

τ (I + Hτ ) ,

Zτ,t .= Rτ + Q′
τ M−1(I + H′

τ )Qτ + MHt .

Theorem 12: Suppose there exists a τ ∈ [0, T̂ ) such

that Zτ,τ < 0. Then, the kernel convolution of (52) with

t = k τ yields B(k+1) τ of the same form as (45). In

particular, the quadratic dependence on ξ in (52) is given

by 1
2 〈ξ, Zτ,(k+1)τ ξ〉X , where

Zτ,(k+1)τ = Zτ,τ − Y ′
τ Z−1

τ,kτ Yτ k ∈ N , (k + 1)τ < T̂ .

A. Example

A scalar-valued Riccati equation of the form (13) is con-

sidered (i.e. n = 1), in which A = −2, σ = 1/
√

2, C = 1/3.

The spatial interval Λ is defined by L = 2. The Riccati PDE

(13) is solved numerically via a Runge-Kutta method (RK45)

and via the dual-space propagation of Theorems 9, 10 and

12. Approximation errors are computed with respect to a

fine grid RK45 computation. These errors are illustrated in

Figure 1, where a considerable computational advantage of

the dual-space propagation is demonstrated.
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Fig. 1. Approximation error versus computation time for standard (RK45)
and dual-propagation methods.

VI. CONCLUSION

By exploiting connections between a Riccati equation and

a specific optimal control problem, dynamic programming

can be used to develop an evolution operator for propagating

solutions of this equation. By examining this evolution in a

dual space (via semiconvexity and the Legendre / Fenchel

transform), a dual space evolution operator may be defined

that can be applied to any propagate the solution of the

Riccati equation corresponding to any initial condition in

a particular class. A max-plus method based on this prop-

agation leads to a substantial computational performance

improvement in a simple example.
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