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Abstract—This paper presents a novel state and output 
feedback control law for the tracking control of a class of 
multi-input-multi-output (MIMO) continuous time nonlinear 
systems with unknown dynamics and disturbance input. First 
the state feedback based control law is designed which consists 
of the robust integral of a neural network (NN) output plus the 
sign of the tracking error signal multiplied with an adaptive 
gain. The two-layer NN learns the system dynamics in an online 
manner while the NN residual reconstruction errors and the 
bounded system disturbances are overcome by the error sign 
signal. Both of the NN output and error sign signal are included 
into the integral to ensure the control input is a smooth function. 
Since certain states are not available in practice, subsequently, a 
high-gain observer is utilized to estimate the unmeasurable 
system states and output feedback based controller is designed. 
A semi-global asymptotic tracking performance is guaranteed 
in the case of state feedback while boundedness in the case of 
output feedback and the NN weights and all other signals are 
shown to be bounded by using the Lyapunov method. Finally, 
theoretical results are verified in the simulation environment. 

I. INTRODUCTION 
The tracking control of nonlinear systems with unknown 

dynamics has attracted a great deal of interest within the 
control community. Various approaches have been designed 
for the control of several important classes of uncertain 
nonlinear systems [1-3]. In the recent years, due to their 
universal approximation properties [13-14], neural network 
(NN) techniques have been utilized [9-12] extensively in 
order to parameterize the unknown plant nonlinearities. 

However, NN based control methodologies typically 
deliver uniformly ultimately bounded (UUB) stability results 
due to NN functional reconstruction errors and unknown 
disturbances [15]. In the recent literature, a significant effort 
is in place to achieve asymptotic stability. Among them, a 
robust term of sign function is typically used [16] to constrain 
the tracking error into a bounded set which could be made 
arbitrarily small by increasing the controller’s adaptive rate. 
An innovative neuro-adaptive control framework is proposed 
in [17] to guarantee asymptotic stability with an assumption 
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that the approximation errors of uncertain system 
nonlinearities lie in a bounded conic sector. On the other hand, 
a novel robust design to guarantee asymptotic convergence of 
discrete-time systems is discussed in [6]. 

Recently, the robust integral of the sign of the error (RISE) 
term originating in [18] is blended with a multilayer NN in 
[19] to yield semi-global asymptotic tracking performance 
which also generates a continuous-time control signal. 
Therefore, it waives the requirement of infinite bandwidth 
and chattering [19]. However, certain bounds on the 
disturbance and NN reconstruction errors have to be known 
for control parameter selection while the use of projection 
algorithm [21] demands the selection of a predefined convex 
set so as to force the target NN weights [20] to lie within the 
set which is a challenge. Moreover, only the desired system 
state trajectory is taken as the NN input, which may result in 
large control gains to compensate for the unmeasurable 
auxiliary terms. 

In contrast, in this work, the weaknesses of the traditional 
RISE controller are relaxed. A two-layer NN structure is 
utilized where the NN input vector includes the tracking error 
and the control input signals so that the auxiliary terms are 
always bounded in an arbitrarily large compact set as long as 
the number of neurons is chosen sufficiently large. As a 
consequence, the region of attraction can be made arbitrarily 
large to include any initial conditions without reconfiguring 
the controller. Next, the derivative of the control signal is 
designed instead of the control input to guarantee its 
continuity. Meanwhile, the gain of the robust term is varied 
adaptively through an updating rule which in turn helps to 
relax the bounds of the unknown system disturbances and the 
NN reconstruction errors along with their derivatives. Further, 
a novel NN weight tuning law is developed instead of the 
projection algorithm to eliminate the need for the convex set.  

Finally, with only outputs measurable in many practical 
environments, a high-gain observer is employed to estimate 
the unmeasurable system states, so that an output feedback 
control law is developed. It is shown that a semi-global 
asymptotic tracking performance is achieved when the states 
are measurable and semi-globally uniformly ultimately 
boundedness in the presence of a high-gain observer. The 
boundedness of the NN weights and other signals in the 
closed-loop system are also shown by using Lyapunov 
analysis. The separation principle is relaxed by considering 
the observer errors in the same Lyapunov candidate. 
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II. PRELIMINARIES 

A. Problem statement 
Consider a class of multi-input-multi-output (MIMO) 

continuous-time affine nonlinear systems described by 
( ) ( ) ( ) ( )nx f X g X u d t
y x

= + +
=

 (1) 

where
2

( ) : n nf ⋅ →\ \  and 2

( ) : n n ng ×⋅ →\ \  are uncertain 
nonlinear smooth functions, ( )( ) ( )i t⋅  denotes the ith derivative 
with respect to time. ( ) nx t ∈\  is the system state vector, 

( ) nu t ∈\  is the control input vector, and ( ) ny t ∈\  is the 
output. 2( 1)( ) ( ) ( ) ( )

TT T n T nX t x t x t x t−⎡ ⎤≡ ∈⎣ ⎦� … \  is the 

vector of all states and their derivatives, and ( ) nd t ∈\  
represents the unknown bounded disturbance vector. The 
control objective is to drive the system output ( )y t  track a 

2n+^  reference trajectory ( ) n
dy t ∈\ , such that ( ) ( )i

dy t L∞∈  
for 0,1,..., 2i n= + . 

Assumption 1: Since ( )g ⋅  is a 1^  smooth nonlinear 
function, without loss of generality, let ( )g X  be a positive 

definite matrix for all 2nX ∈\  with ming R+∈  and 

maxg R+∈  representing the minimum and maximum singular 
value of the matrix ( )g X  respectively with min max0 g g< ≤ . 

Assumption 2: The disturbance ( )d t  and its derivatives are 
bounded above such that

0( ) md t d≤ , 
1( ) md t d≤� , and 

2( ) md t d≤�� , where 0 1 2, ,m m md d d +∈\  are unknown positive 

constants with i  denoting the standard Euclidean norm. 

Assumptions 1 and 2 are commonly found in the control 
literature [18]. It also has to be noted that the bounds of the 
disturbance and its derivative are not required to be known. 

B. Two-layer neural networks 
In our controller architecture, a NN having two layers is 

considered. The NN output is 3ˆ ( ) ( ) NT TM A W V Aφ= ∈\ , 

where 1NA∈\  is the NN input, 1 2N NV ×∈\  and 
2 3N NW ×∈\  denote the hidden and output layer weights 

respectively. 2 2( ) : N Nφ ⋅ →\ \  is the activation function in the 
hidden layer which is selected as the hyperbolic tangent 
function in this work, and the number of hidden layer nodes is 
denoted as 2N . Therefore, the activation function is bounded 
by known positive value such that ( ) mφ φ⋅ ≤ , where 

mφ +∈\ . 

The NN universal approximation property states that any 
smooth function ( )M A  can be written as [10] 

( ) ( ) ( )T TM A W V A Aφ ε= +  (2) 
for some target weights W , V , with ( )Aε  being a NN 
functional reconstruction error vector. It is demonstrated [23] 
that if the hidden layer weights, V , are chosen initially at 

random and held fixed, while 
2N  is sufficiently large, the NN 

reconstruction error ε  can be made arbitrarily small for all 
input A S∈  in an arbitrary compact set 1NS ⊂ \ . 

III. CONTROLLER METHODOLOGY 

A. Dynamics of filtered tracking error 
The tracking error ( ) ne t ∈\  between the actual and 

desired system state is firstly defined as 

de x x= −  (3) 
Thereafter, define the filtered tracking error as 

1
( 1) ( 2) ( )

1 2 0
0

n
n n i

n n i
i

r e e e eλ λ λ λ
−

− −
− −

=

= + + + = ∑"  (4) 

where 0 1, , nλ λ −…  are appropriately chosen constants such 

that 1 2
1 2 0

n n
n ns sλ λ λ− −

− −+ + +"  is Hurwitz. As a 
consequence, 0e →  exponentially when 0r → . Without 
loss of generality, take 1 1nλ − = . 

Taking the derivative of (4) and using (1) yields 
1 1

( 1) ( 1)

0 0

2
( 1) ( )

0

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n
i i

i i d
i i

n
i n

i d d
i

r e x x

x x f X g X u t d t x

F X g X u t d t

λ λ

λ

− −
+ +

= =

−
+

=

= = −

= − + + + −

= + +

∑ ∑

∑

�

 (5) 

where 2(0) ( 1) (0) ( ) 2T T T T T
n n n n

d dX x x x x− +⎡ ⎤≡ ∈⎣ ⎦… … \  and  

2
( 1) ( )

0
( ) ( ) ( )

n
i n

i d d
i

F X x x f X xλ
−

+

=

= − + −∑  (6) 

Define (0) ( 2) (0) ( 1)
1

T T T T T
n n

n d dX x x x x− −
−

⎡ ⎤= ⎣ ⎦… … . Then, by 

using standard matrix calculus [7], differentiating (6) gives 

[ ]

( )
1 ( 1)

1

1 ( 1)
1

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

n
n n

n

n n
n

F X F XF X X x
X x

F X F XX f X g X u t d t
X x

− −
−

− −
−

∂ ∂
= +

∂ ∂

∂ ∂
= + + +

∂ ∂

��

�
 (7) 

Denote 1( ) ( )G X g X−≡ , which is also a 1^  smooth function 
with max1 g  and min1 g  being the minimum and maximum 
singular value respectively by recalling Assumption 1. 
Similarly, define (0) ( 2)

1

T T T
n

nX x x −
−

⎡ ⎤= ⎣ ⎦…  and rewrite 

[ ]

( )
1 ( 1)

1

1 ( 1)
1

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

n
n n

n

n n
n

G X G XG X X x
X x

G X G XX f X g X u t d t
X x

− −
−

− −
−

∂ ∂
= +

∂ ∂

∂ ∂
= + + +

∂ ∂

� �

�

 (8) 

where 2( ) 1

1

( ) n n n n

n

G X
X

× × − ×

−

∂
∈

∂
\ , 1

( 1)

( ) n n n
n

G X
x

× × ×
−

∂
∈

∂
\ are quartixes 

(fourth-order tensor) [7]. 
Remark 1: Since ( )nx  is unavailable, taking the time 

derivative of ( )F X  and ( )g X  renders their derivatives to 
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be expressed as functions of measurable signals X , u , and 
the bounded disturbance d . 

Therefore, differentiating (5) gives 

( ) ( ) ( ) ( ) ( ) ( )r F X g X u t g X u t d t= + + + ���� � �  (9) 

Further, define r r rα= +�  with α +∈\  being a positive 
constant, and by utilizing (9) one has 

( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( )
2
1 ( ) ( ) ( ) ( )
2 2
( ) ( ) ( ) ( ) ( ) ( )

G X r G X r r

G X F X g X u t g X u t d t

G X F X g X u t d t

G X r r u t G X d t G X d t

G X r G X r r G X F X

G X g X u t G X F X u t

α

α

α

α

α α

= +

⎡ ⎤= + + +⎣ ⎦
⎡ ⎤+ + +⎣ ⎦

= − − + + +

⎡+ + + +⎢⎣
⎤+ + + ⎦

� �� �
�� � �

�� �

� � ��

�

 (10) 

After substituting (5), (7), and (8) into (10) and combining 
similar terms, the following expression can be obtained 

1( ) ( ) ( ) ( ) ( )
2

G X r G X r r u t N Y D t= − − + + +�� �  (11) 

where the auxiliary function is defined as 

( )

( )

( )

1 ( 1)
1

1 ( 1)
1

( ) ( )( ) ( ) ( ) ( ) ( )

1 ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( )

n n
n

n n
n

F X F XN Y G X X G X f X g X u
X x

G X G XX f X g X u
X x

F X g X u r r G X F X uα α α

− −
−

− −
−

∂ ∂
= + +

∂ ∂

⎛ ⎞∂ ∂
+ + +⎜ ⎟∂ ∂⎝ ⎠
× + + + + +

�

�

 (12) 
and 

( )

( )

( 1)

( 1)

1 ( 1)
1

( )( ) ( ) ( ) ( )

1 ( ) ( ) ( )
2

1 ( ) ( ) ( ) ( )
2

n

n

n n
n

F XD t G X d G X d G X d
x

G X d F X g X u r
x

G X G XX f X g X u d d
X x

α

α

−

−

− −
−

∂
= + +

∂
∂⎛ ⎞+ − +⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ∂
+ + + +⎜ ⎟∂ ∂⎝ ⎠

�

�

 (13) 

with 
2 ( 1)TT T n nY X u +⎡ ⎤≡ ∈⎣ ⎦ \  (14) 

B. NN approximation 
Notice that the expression (12) is an unknown smooth 

nonlinear function. Therefore, given an arbitrary compact set 
2 ( 1)n n+Ω ⊂ \ , for all Y ∈ Ω , the auxiliary function can be 

represented by a two-layer NN as 
( ) ( ) ( ) ( ) ( )T T TN Y W V Y Y W Y Yφ ε φ ε= + = +  (15) 

The hidden layer weights V  are omitted for convenience. 
The universal approximation property of NNs [10] shows 
that the constant target weight matrix nN nW ×∈\  satisfies 

mW W≤  with nN  being the number of hidden neurons, ε  

being NN reconstruction error satisfying 0mε ε≤  and 

1mε ε≤� . 

Remark 2: The NN reconstruction error bounds 0 1,  m mε ε  
are considered to be unknown as opposed to [19-20]. 
Furthermore, due to Assumption 1 and the smoothness of the 
NN activation function ( )φ ⋅ , it can be readily shown that ε�  is 
bounded above on Ω . 

Remark 3: The control signal ( )u t  is also used as an input 
to the NN to approximate the auxiliary function ( )N Y . 

Remark 4: Due to Assumption 1, ( )D t  is continuously 
differentiable. Therefore, with the help of Assumption 2, the 
Mean Value Theorem [22] can be used to show that, given an 
arbitrary compact set Ω , the function ( )D t and ( )D t�  are 
bounded above such that 

0( ) mD t D≤ , 
1( ) mD t D≤� , where 

0mD  and 1mD  are determined by 0md , 1md , 2md  and Ω . 
By utilizing (15), the system dynamics in (11) can be 

rewritten as 
1( ) ( ) ( ) ( ) ( ) ( )
2

TG X r G X r r u t W Y D t Yφ ε= − − + + + +�� �  (16) 

Since the target weights of the NN are unknown, the NN 
approximation of ( )N Y  is now defined as 

ˆ ˆ( ) ( )TN Y W Yφ=  (17) 

where ˆ nN nW ×∈\  is the NN estimate of the target weight 
matrix W  with the input vector Y defined in (14). 

C. State feedback controller development 
In this subsection, the system state vector ( )X t  is 

considered to be measurable to design a state feedback 
control law. Based on the system dynamics in (16), the 
control law is now designed as 

ˆ( ) ( 1) ( ) ( ) ( 1) ( ) ( )sgn( ( ))T
s su t k r t W Y k r t t r tφ α β= − + − + + +� �

 (18) 
which in turn renders the control input with zero initial value 

0

( ) ( 1) ( ) ( 1) (0)

ˆ ( ( )) ( 1) ( ) ( )sgn( ( ))

s s

t T
s

u t k r t k r

W Y k r r dφ τ α τ β τ τ τ

= − + + +

⎡ ⎤− + + +⎣ ⎦∫
 (19) 

where sk +∈\  is positive constant control gain, ( )tβ ∈\  is 
an adaptive term which will be given later, and sgn( )i  is the 
signum function. It has to be noted that actually a first order 
dynamic system in terms of the control input is built in (19). 
Therefore, the control signal can be fed to the NN as an input. 

Substituting (18) into (16) generates the closed-loop 
tracking error system dynamics as 

1( ) ( ) ( ) ( 1) sgn( ) ( )
2

T
sG X r G X r r W Y k r r D tφ α β= − − − − + − +� ��

 (20) 
where D D ε≡ + , and ˆW W W≡ −�  is the NN weight 
estimation error. It is not difficult to see that 

0 0 0( ) m m mD t D D ε≤ ≡ +  and 
1 1 1( ) m m mD t D D ε≤ ≡ +� . 

Finally, the NN weight tuning law is designed as 

0
ˆ ( ) ( (0)) (0) ( ( )) ( )

tT T T
n n nW k Y r k Y r k Y r dφ φ α φ τ τ τ= − + ∫ (21) 
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where nk +∈\  is a positive user design parameter. Further, 
the adaptive term β  can be written as 

0
( ) (0) ( )

t
r t r r dβ α τ τ= − + ∫  (22) 

where i  stands for 
1
i . The adaptive term β  is updated to 

approach a constant value
0 1d m mD Dβ α= + , and the 

approximation error is defined as dβ β β= −� . 
Remark 5: Since the projection algorithm is not used, the 

challenge of selecting the predefined convex set is avoided. 
Remark 6: The control gain β  is designed as a function of 

time and not as a constant as in [19] or a function depending 
on the NN reconstruction error and disturbance bounds [20]. 

D. Stability analysis 
Lemma 1: Given an auxiliary function defined as 

( ) ( sgn( ))T
dL t r D rβ≡ −  (23) 

where
0 1

1
d m mD Dβ

α
+≡ + ∈\  is an unknown positive 

constant, the following inequality is satisfied 

0
( ) (0) (0) (0)

t T
dL d r r Dτ τ β≤ −∫  (24) 

Proof: The proof can be readily obtained by expanding and 
integrating (23) [8]. 

 
We now state the stability result for the proposed state 

feedback controller. 
Theorem 1: Consider the uncertain nonlinear system given 

by (1) with all states available and the Assumptions 1 and 2 
hold. The control law (18), NN weight update law (21) and 
adaptive parameter tuning law (22) ensure that all signals are 
bounded and the tracking error converges to zero 
asymptotically, i.e, ( ) 0e t →  as t → ∞ . 

Proof: The proof is similar to [8] and thus omitted due to 
space limit. 

E. Output Feedback Control Design 
In practical applications, when only the output is available, 

the output feedback control needs to be considered. First of 
all, a high gain observer is designed as 

1 2

1

1 1 1 2 2 1 ( )
n n

n n n nb b b y t

εξ ξ

εξ ξ

εξ ξ ξ ξ ξ
+

+ +

=

=

= − − − − − +

�

#
�
� "

 (25) 

where ε  is any small positive constant, and the positive 
parameters 1, , nb b"  are chosen such that the polynomial 

1
1

n n
ns b s b+ + + +"  is Hurwitz.  

Lemma 2: Consider the system (1) and the observer (25). 
There exist positive constants , 2,3, , 1kh k n= +… , and t∗  

such that for all t t∗> , we have 

( ) ( 1)
1

( )
1 1

     1,...,

         1,...,

k k k
k

k k
k k

y k n

y D k n

ξ ε εϕ

ξ ε ε

+
+

+ +

− = − =

− ≤ =

�

�
 (26) 

where 1 1 1n n nb bϕ ξ ξ ξ+= + + +"  and ( )k
kDϕ ≤ . 

Proof: The proof is similar to [4] and thus omitted. 
It has to be noted that a n+1th order observer is constructed 

in order to achieve an estimate of ( )ny , which is assumed to 
be not measurable even in the state feedback version. 

Having observer (25), following variables are defined 

( )

( ) ( )

1
1 2 2

1
( )

0
1

( ) ( )
1

1 0

(0) ( )
1

ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆˆ

T T

T TT T T T T T n
n n

n
i

i i d
i

n n
i i

i i d i i d
i i

T
T T n

n d d

T
T T

X x x x x

r x x

r r r x x x x

X x x x x

Y X u

ξ ε ξ ε

λ

α λ α λ

−

−

=

−

−
= =

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

= −

= + = − + −

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦

∑

∑ ∑

" "

�

… …

 (27) 

Further, the neural network with target weights in (15) is 
redefined as 

1 1ˆ ˆ( ) ( ) ( ) ( ) ( )
2 2

TW Y Y N Y G X r r G X r rφ ε+ = + + − −� �  (28) 

where ˆˆ
T

T TY Y X⎡ ⎤= ⎢ ⎥⎣ ⎦
 and (16) can be now rephrased as 

1 ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
2

TG X r G X r r u t W Y D t Yφ ε= − − + + + +�� �  (29) 

Since Y  is not completely measurable, the target NN is 
defined virtually for proof purpose and its input is expanded 
to include X̂ . Also let the unknown target output layer 
weights be upper bounded by mW W +≤ ∈\ . 

Therefore, the output feedback version of the proposed 
controller is obtained by replacing the state ( )X t  with ˆ ( )X t , 
which is provided by (25). In other words, the control input is 
now selected as 

0

ˆ ˆ( ) ( 1) ( ) ( 1) (0)

ˆ ˆ ˆ ˆ( ( )) ( 1) ( ) ( ) sgn( ( ))

s s

t T
s

u t k r t k r

W Y k r r dφ τ α τ β τ τ τ

= − + + +

⎡ ⎤− + + +⎣ ⎦∫
 (30) 
The updating laws for NN and β  are also changed to  

0
ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( (0)) (0) ( ( )) ( )

tT T T
n n nW k Y r k Y r k Y r dφ φ α φ τ τ τ= − + ∫  (31) 

0
ˆ ˆ ˆ( ) (0) ( )

t
r t r r dβ α τ τ= − + ∫  (32) 

The actual NN has the same number of neurons within the 
hidden layer as the ideal NN. Hence, due to boundedness of 
the activation function, we have 

ˆ( ) ( ) ( ) 2 mY Y Yφ φ φ φ≡ − =�  (33) 

Hence, following theorem is presented. 
Theorem 2: Consider the uncertain nonlinear system (1) 

with only output available and the high-gain observer (25). 
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The output feedback controller is given in (30) along with the 
updating laws (31) and (32). Let Assumptions 1 and 2 hold. 
Then, the tracking error, e , is semi globally uniformly 
ultimately bounded (SGUUB). Meanwhile, the other signals 
of the closed-loop system are also bounded.  

Proof: Due to Lemma 2 and (26), one has 

( )
1 1

( ) ( 1)

0 0

ˆ ˆ
n n

i i
i i i

i i

r r x yλ λ εϕ
− −

+

= =

− = − = −∑ ∑  (34) 

( ) ( )
1 1

( 1) ( )
1

0 0

1 1
( 2) ( 1)

0 0

ˆ ˆ ˆ
n n

i i
i i i i

i i

n n
i i

i i
i i

r r x y x yλ α λ

λ εϕ α λ εϕ

− −
+

+
= =

− −
+ +

= =

− = − + −

= − −

∑ ∑

∑ ∑
 (35) 

Meanwhile, Lemma 1 can be utilized to give 

0
ˆ ˆ ˆ( ) (0) (0) (0)

t T
dL d r r Dτ τ β≤ −∫  (36) 

where 
ˆ ˆ ˆ( ) ( sgn( ))T

dL t r D rβ≡ −  (37) 
Thereafter, a Lyapunov candidate is built as 

21 1 1ˆˆ ˆˆ ˆ ( )
2 2 2

T TV r r r G X r P Q β≡ + + + + �  (38) 

with the auxiliary function ˆ( )P t ∈\  is defined as 

0
ˆ ˆ( ) (0) (0) (0) ( )

tT
dP t r r D L dβ τ τ≡ − − ∫  (39) 

Hence, the derivative of (35) is derived as 

( )

( )

( )
1 1

( 2) ( 1)

0 0

1 1ˆ ˆ ˆ ˆˆ ˆ ( ) ( )
2

ˆˆ ˆ( sgn( ))
1 ˆˆ ˆ ˆ ˆˆ ˆ ( ) ( ) ( )
2
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Define a compact set 

{ }ˆˆ ˆ ˆ( ) : 2r srr t r D kαΘ ≡ ≤  (42) 

V�  is negative as long as ˆ( )r t  is outside it. Hence, r  and r̂  

are bounded by definition and Lemma 2. Since 
1 2

1 2 0
n n

n ns sλ λ λ− −
− −+ + +"  is Hurwitz, the actual tracking 

error ( )e t  is also asymptotically bounded. According to the 
standard Lyapunov extension theorem [15], the 
aforementioned analysis implies that the closed-loop system 
is SGUUB. In addition, because 1 sk  and ε  can be made 
arbitrarily small to achieve arbitrarily small tracking error. 

IV. SIMULATION 
In this section, the proposed output feedback control 

design is used to control a planar two-link arm [5] with 
dynamics as 
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where 2

1 1 2 1( )m m aη = + , 2
2 2 2m aη = , 3 2 1 2m a aη = , 1 1e g a= . 

29.8 /g m s=  is the gravity acceleration. 1m , 2m  represent 

point mass of the links at distal end while 1a , 2a  are the 

length of the links. The rotational angle of the joints 1q , 2q  

is the system state, and the torque applied on the joints 1τ , 

2τ  is the control inputs. In the simulation, only 1q  and 2q  
are measurable. Therefore, an observer is constructed as 
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TABLE 1 

SUMMARY OF PARAMETERS USED IN SIMULATION OF 2-LINK ROBOT ARM 

Parameter 1m
 2m

 1a
 2a

 1α  0λ  

Value 0.8 2.3 1 1 2 diag(4,2) 

Parameter sk  nk  α  nN  2α  ε  

Value 10 1 4 30 1 0.0001 

 
To be more realistic, a bounded disturbance 

[ ] [ ]1 2 0.1sin10 0.1cos10T Td d d t t= = −  is added. The initial 

states of the system are selected as 1 2(0) (0) 10q q= = D . Our 
goal is to manipulate the robot arm back to track a desired 
trajectory 1 sindq t= , 2 cosdq t= . Other parameters used in 
this simulation are given in Table 1. 

A typical system response using the proposed output 
feedback controller is shown in Fig. 1 including the system 
trajectories and control signals. Fig. 2 shows the performance 
of the high-gain observer. With the presence of bounded 
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disturbance and NN reconstruction error, the actual joint 
angles can still track the desired values with asymptotical 
performance. The norm of NN weights and the adaptive 
term β  are also demonstrated in Fig. 3. The simulation results 
demonstrate that the design is capable of attaining 
satisfactory tracking performance while all other signals 
bounded. 
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Fig. 1. Response of the output feedback controller. Top: Actual and desired 
joint angles. Bottom: Control inputs. 
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Fig. 2. The unavailable 

1 2,q q� �   and their estimates.  
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Fig. 3. Top: Norm of NN weights. Bottom: adaptive term β . 

V. CONCLUSIONS 
In this paper, a novel output feedback-based controller 

design is proposed by incorporating the integral of the neural 
network and robust term for a class of MIMO high-order 
uncertain nonlinear systems with bounded disturbances. 
Semi-global asymptotic tracking performance is obtained 
when all system states are available. When certain states are 

not measurable, a high-gain observer is utilized to estimate 
them. The output feedback controller can recover the 
performance of the proposed state feedback counterpart by 
increasing the observer gain. 
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