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Abstract— We propose algorithms to automatically deploy a
group of mobile robots to provide coverage of a non-convex
environment with communication limitations. In settings such
as hilly terrain or for underwater ocean gliders, peer-to-peer
communication can be impossible and frequent communication
to a central base station may be impractical. This paper instead
explores how to perform coverage control when each robot has
only asynchronous and sporadic communication with a base
station or, alternatively, with the rest of the team. Our approach
evolves overlapping territories and provably converges to a
centroidal Voronoi partition at equilibrium. We also describe
how the use of overlapping territories allows our algorithm to
smoothly handle dynamic changes to the robot team.

I. INTRODUCTION

In applications such as environmental monitoring [1] or

warehouse logistics [2] a team of robots is asked to per-

form tasks over a large space. The distributed environment

partitioning problem consists of designing control and com-

munication laws for individual robots such that the team

divides a space into regions in order to optimize the quality

of service provided. Coverage control additionally optimizes

the positioning of robots inside of a region.

Many existing coverage control algorithms assume that

robots can communicate peer-to-peer [3], [4], but in some

environments this is impractical. For example, underwater

acoustic communication between ocean gliders is very low

bandwidth and hilly or urban terrain can block radio com-

munication. Instead, we present a coverage control algorithm

for a team of robots who each have occasional contact with a

central base station. This one-to-base-station communication

model can represent ocean gliders surfacing to communicate

with a tower [5], UAV data mules that periodically visit

ground robots [6], or cost-mindful use of satellite or cellular

communication. In addition, our algorithm optimizes the

response time of the team to service requests in a non-convex

environment represented by a graph, with optimality defined

by a relevant “multi-center” cost function for overlapping

territories. While the algorithm is given for one-to-base-

station communication, it also works if each robot can

occasionally broadcast a message directly to the whole team.

A broad discussion of partitioning and coverage control

is presented in [7] which builds on the classic work of
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Lloyd [8] on algorithms for optimal quantizer design through

“centering and partitioning.” The Lloyd-type approach was

first adapted for distributed coverage control in [3] and has

since seen many variations, including non-convex environ-

ments [9] and “gossip” peer-to-peer communication [10].

The discretized non-convex domain considered here also ap-

peared in [4] which looked at iterative optimal 2-partitioning.

Coverage control and territory partitioning have applica-

tions in many fields. In cyber-physical systems, applications

include automated environmental monitoring [1], fetching

and delivery [2], and other vehicle routing scenarios [11].

Coverage of discrete sets is closely related to the literature

on data clustering and k-means [12], as well as the facility

location or k-center problem [13].

There are three main contributions of this paper. First,

we present the first coverage control algorithm for an asyn-

chronous one-to-base-station communication model. This

model is realistic and relevant for a variety of application

domains, and the time delay between when robots com-

municate with the base station requires overlapping regions

instead of a partition. Second, we prove that the algorithm

converges to a centroidal Voronoi partition in finite time.

Our Lyapunov argument is based on an adaptation of the

standard partition-based coverage cost function. Overlapping

regions also dictate changes to when to perform the classic

Lloyd steps of centering versus territory exchange. Third,

we describe how the algorithm can seamlessly handle the

unscheduled arrival or departure of robots from the team.

This feature leverages overlapping regions, and also eases

integration of coverage control with task servicing.

In our notation, R≥0 denotes the set of non-negative real

numbers and Z≥0 the set of non-negative integers. Given a

set A, |A| denotes the number of elements in A. Given sets

A,B, their difference is A \ B = {a ∈ A | a /∈ B}. A

set-valued map, denoted by T : A ⇉ B, associates to an

element of A a subset of B.

II. PRELIMINARIES

In this Section we translate concepts used in partitioning

of continuous environments to coverings on graphs. The one-

to-base-station communication model in this paper requires

overlapping coverings, instead of a partition.

A. Graph Distances

Let finite set Q be a set of points in a continuous envi-

ronment. These points can represent small areas of interest,

and are assumed to be connected by weighted edges. Let

G(Q) = (Q,E,w) be an (undirected) weighted graph with

edge set E ⊂ Q×Q and weight map w : E → R>0; we let
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we > 0 be the weight of edge e. We assume that G(Q) is

connected and think of the edge weights as travel distances

between nearby points.

In any weighted graph G(Q) there is a standard notion of

distance between vertices defined as follows. A path in G
is an ordered sequence of vertices such that any consecutive

pair of vertices is an edge of G. The weight of a path is the

sum of the weights of the edges in the path. Given vertices h
and k in G, the distance between h and k, denoted dG(h, k),
is the weight of the lowest weight path between them, or

+∞ if there is no path. If G is connected, then the distance

between any two vertices is finite. By convention, dG(h, k) =
0 if h = k. Note that dG(h, k) = dG(k, h), for any h, k ∈ Q.

B. Coverings of Graphs

We will be covering Q with n subsets or regions which

will each be owned by an individual agent.

Definition II.1 (n-Covering) Given the graph G(Q) =
(Q,E,w), we define a n−covering of Q as a collection

P = {Pi}
n
i=1 of subsets of Q such that:

(i)
⋃n

i=1 Pi = Q;

(ii) Pi 6= ∅ for all i ∈ {1, . . . , n};

Let Covn(Q) to be the set of n−coverings of Q.

Note that a vertex in Q may belong to multiple subsets in P ,

i.e., a vertex may be covered by multiple agents. This fact

is an important change from prior work [4].

We also have use for the concept of a partition of Q.

Definition II.2 (n-Partition) A n-partition is a n-covering

with the additional property that:

(iii) if i 6= j, then Pi ∩Pj = ∅.

Let Partn(Q) to be the set of n−partitions of Q.

Among the ways of covering Q, there is one which is

worth special attention. Given a vector of distinct points c ∈
Qn, the partition P ∈ Partn(Q) is said to be a Voronoi

partition of Q generated by c if, for each Pi and all k ∈ Pi,

we have ci ∈ Pi and dG(k, ci) ≤ dG(k, cj), ∀j 6= i. The

elements of c are said to be the generators of the Voronoi

partition. Note that the Voronoi partition generated by c is

not unique since how to assign tied vertices is unspecified.

C. Cost Functions

Let weight function φ : Q → R>0 be a bounded positive

function which assigns a relative weight to each element of

Q. The one-center function H1 gives the cost for a robot to

cover a subset A ⊂ Q from a vertex h ∈ A with relative

prioritization set by φ:

H1(h;A) =
∑

k∈A

dG(h, k)φ(k).

A technical assumption is needed to define the generalized

centroid of a subset. We assume from now on that a total

order relation, <, is defined on Q: hence, we can denote Q =
{1, . . . , |Q|}. With this assumption we can deterministically

pick a centroid in Pi which minimizes H1 as follows.

Definition II.3 (Centroid) Let Q be a totally ordered set,

and let A ⊂ Q. We define the set of generalized centroids of

A as the set of vertices in A which minimize H1, i.e.,

C(A) := argmin
h∈A

H1(h;A).

Furthermore, we define the map Cd : 2Q → Q such that

Cd(A) := min{c ∈ C(A)}. We call Cd(A) the generalized

centroid of A.

In subsequent use we drop the word “generalized” for

brevity. Note that with this definition the centroid is well-

defined, and also that the centroid of a set always belongs

to the set. With a slight notational abuse, we define Cd :
Covn(Q) → Qn as the map which associates to a covering

the vector of the centroids of its elements.

With these notions we can define the multi-center function

Hmax : Qn × Covn(Q) → R≥0 to measure the cost for n
robots to cover a n-covering P from the vertex set c ∈ Qn:

Hmax(c, P ) =
1

|Q|

∑

k∈Q

max
i

{dG(ci, k) | k ∈ Pi}φ(k)

We aim to minimize the performance function Hmax with

respect to both the covering P and the vertices c. In the

motivational scenario we are considering, each robot will

periodically be asked to perform a task somewhere in its

region with tasks located according to distribution φ. When

idle, the robots would position themselves at the vertices

c. By minimizing Hmax, the robot team would minimize the

expected distance between a task and the furthest robot which

can service the task.

Proposition II.4 (Properties of Hmax) Let P ∈ Covn(Q),
P ′ ∈ Partn(Q), and c ∈ Qn such that ci ∈ P ′

i ⊆ Pi ∀ i.
Let c′ ∈ Qn such that c′i ∈ C(P ′

i ) ∀ i. Then the following

statements hold:

Hmax(c, P
′) ≤ Hmax(c, P ), and

Hmax(c
′, P ′) ≤ Hmax(c, P

′).

The second inequality is strict if any ci /∈ C(P ′
i ).

Proof: The first statement is a straightforward con-

sequence of the restriction that P ′
i ⊆ Pi and that Hmax

uses the maximum cost over i. The second statement is a

result of the fact that, since P ′ is a partition, Hmax(c, P
′) =

1
|Q|

∑

i H1(ci;P
′
i ).

Proposition II.4 motivates the following definition.

Definition II.5 (Centroidal Voronoi Partition)

P ∈ Partn(Q) is a centroidal Voronoi partition of Q
if there exists a c ∈ Qn such that P is a Voronoi partition

generated by c and ci ∈ C(Pi) ∀ i.

For a given environment Q, a pair made of a centroidal

Voronoi partition and the corresponding vector of centroids

is locally optimal in the following sense: Hmax cannot be

reduced by changing either P or c independently. Therefore,

if the team of robots position themselves at the centroids of

a centroidal Voronoi partition, then they (locally) optimize

their coverage of Q as measured by Hmax.
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III. MODEL, PROBLEM, AND PROPOSED SOLUTION

A. One-to-Base-Station Robotic Network Model

We are given a team of n robotic agents and a central

base station. Each agent i ∈ {1, . . . , n} is required to have

the following basic computation capabilities:

(C1) agent i can identify itself to the base station; and

(C2) agent i has a processor with the ability to store Si ⊂
G(Q) and a center si ∈ Si.

Each agent i ∈ {1, . . . , n} is assumed to communicate with

the base station according to the asynchronous one-to-base-

station communication model described as follows:

(C3) there exists a finite upper bound ∆ on the time between

communications between i and the base station. For

simplicity, we assume no two agents communicate with

the base station at the same time.

The base station must have the following capabilities:

(C4) it can store an arbitrary n-covering of Q, P = {Pi}
n
i=1

and a list of centroids c ∈ Qn; and

(C5) it can perform computations on subgraphs of G(Q).

B. Problem Statement

Assume that, for all t ∈ R≥0, each agent i ∈ {1, . . . , n}
maintains in memory a subset Si(t) of environment Q and

a vertex si(t) ∈ Si(t). Our goal is to iteratively update

the covering S(t) = {Si(t)}
n
i=1 and the centers s(t) =

{si(t)}
n
i=1 while solving the optimization problem:

min
s∈Qn

min
S∈Covn(Q)

Hmax(s, S), (1)

subject to the constraints imposed by the robot network

model with asynchronous one-to-base-station communica-

tion from Section III-A.

C. The One-to-Base Coverage Algorithm

To solve the minimization problem (1), we introduce the

following One-to-Base Coverage Algorithm.

One-to-Base Coverage Algorithm

The base station maintains in memory an n-covering P =
{Pi}

n
i=1 and a vector c = (ci)

n
i=1, while each robot maintains

in memory a set Si and a vertex si. At t = 0, let P (0) ∈
Covn(Q), S(0) = P (0), and let all ci(0)’s be distinct.

Assume that at time t ∈ R>0, robot i communicates with the

base station. Let P+, c+, S+
i , and s+

i be the values after the

communication. Then the base station executes the following

actions while communicating with i:

1: if H1(Cd(Pi);Pi) < H1(ci;Pi) and Cd(Pi) 6= cj for

every j 6= i then

2: update c+
i := Cd(Pi)

3: else

4: c+
i := ci

5: tell agent i to set S+
i := Pi and s+

i := c+
i

6: for each agent j 6= i do

7: compute the sets

Pi→j :=
{

x ∈ Pi : dG(x, cj) < dG(x, c+
i )

}

P ∗
j→i :=

{

x ∈ Pj ∩Pi : dG(x, cj) ≥ dG(x, c+
i )

}

8: P+
j :=

(

Pj \ P ∗
j→i

)

∪ Pi→j

Observe that Pi→j contains the cells of Pi which are closer

to cj , whereas P ∗
j→i contains only the cells in both Pi and

Pj which are either closer to c+
i or tied. Also, only the

centroid of robot i is updated. Finally, note that the algorithm

is independent of robot positions, so the robots are free to

move or perform tasks in their regions.

Remark III.1 The One-to-Base algorithm can be adapted

to the scenario where each robot can occasionally broadcast

a message to the team. Robot i would update its centroid

and broadcast s+
i and Si, then every other robot j would

update Sj following lines 7 and 8 above. Those robots for

which Si∪Sj is connected must receive the broadcast for the

convergence property to hold, the others are not required.

D. Convergence Property

In this subsection we characterize the convergence of the

One-to-Base Coverage Algorithm.

Theorem III.2 (Convergence Property) Consider a net-

work consisting of n robots endowed with computation

capacities (C1), (C2) and communication capacity (C3), and

a base station with capacities (C4) and (C5). Assume the

network implements the One-to-Base Coverage Algorithm.

Then the resulting evolution (s, S) : R≥0 → Qn ×Covn(Q)
converges in finite time to a pair (s∗, S∗) composed of a

centroidal Voronoi partition S∗ generated by s∗.

Remark III.3 The fact that at least one centroidal Voronoi

partition exists for any graph is an additional consequence

of Theorem III.2.

IV. CONVERGENCE PROOFS

This section is devoted to proving Theorem III.2. The

convergence proof is based on applying Lemma A.1 to the

evolution given by the One-to-Base Coverage Algorithm. To

do so, we must describe the algorithm using a set valued-map

and find a Lyapunov function.

A. Set-valued Map

With the definitions of a set of centroids and of the One-

to-Base Coverage Algorithm, we have that the algorithm is

well-posed in the following sense.

Proposition IV.1 (Well-posedness) Let P ∈ Covn(Q) and

c ∈ Qn such that ci ∈ Pi and ci 6= cj for all i and all j 6= i.
Then, P+ and c+ produced by the One-to-Base Coverage

Algorithm meet the same criteria.

With this result, we can state the One-to-Base Coverage

Algorithm as a set valued map. For any i ∈ {1, . . . , n}, we

define the map Ti : Qn × Covn(Q) → Qn × Covn(Q) by

Ti(c, P ) =
{

{c1, . . . , c
+
i , . . . , cn}, {P

+
1 , . . . , Pi, . . . , P

+
n }

}

,

where c+
i and P+ are defined per the algorithm when i is

the communicating robot. Then, we can define the set-valued

map T : Qn × Covn(Q) ⇉ Qn × Covn(Q) by

T (c, P ) = {T1(c, P ), . . . , Tn(c, P )} .
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Thus, the dynamical system defined by the application of the

algorithm is described by {c+, P+} ∈ T (c, P ).

B. Lyapunov Function

For our Lyapunov argument we need the following defini-

tions. Let M(P ) be the set of vertices which are owned by

multiple agents. Let Hmin be a cost function defined similarly

to Hmax but sum minimum coverage costs over all agents:

Hmin(c, P ) =
1

|Q|

∑

k∈Q

min
i

{dG(ci, k) | k ∈ Pi}φ(k).

Proposition IV.2 (Decreasing Functions) Let P be a n-

covering of Q and c be a set of centroids for P . Let

(c+, P+) ∈ T (c, P ). If c+ 6= c or P+ 6= P , then one of

these conditions holds:

(i) Hmax(c
+, P+) < Hmax(c, P );

(ii) Hmax(c
+, P+) = Hmax(c, P ) and Hmin(c

+, P+) <
Hmin(c, P ); or

(iii) Hmax(c
+, P+) = Hmax(c, P ), Hmin(c

+, P+) =
Hmin(c, P ), and |M(P+)| < |M(P )|.

Proof: Consider the situation where there are just two

agents i and j. Without loss of generality, assume that agent

i contacts the base station at time t.
We start with the case where c+

i = ci. First, consider

when the change to P includes the addition of cells in Pi→j

to Pj . Such a change necessarily decreases Hmin while Hmax

is unchanged. Next, if the change to P occurs because of

the removal of cells in P ∗
j→i from Pj , then Hmax does not

increase, Hmin is unchanged, and |M | necessarily decreases.

Next, we show that if c+
i 6= ci, then Hmax(c

+, P+) <
Hmax(c, P ). First, given a P ∈ Covn(Q), let Pmax =
{Pi,max}

n
i=1 be a partition of Q such that for all i:

Pi,max =
{

v ∈ Pi

∣

∣

∣

∣

v /∈ Pj ∀ j 6= i, or

i = min
{

argmaxj{dG(cj , v) | v ∈ Pj}
}

}

.

Note that Pi,max is a function of Pi, Pj , ci, and cj .

With the Pmax definition, we can rewrite Hmax as:

Hmax(c, P ) =
1

|Q|

∑

i

H1(ci, Pi,max)

Using this new form, the initial cost to cover Q by i and j
is given by (ignoring 1

|Q| for simplicity):

Hmax(c, P ) =H1(ci, Pi,max) + H1(cj , Pj,max \ Pi)

+ H1(cj , Pj,max ∩ Pi).

During the update ci and Pj change, meaning that:

Hmax(c
+, P+) =H1(c

+
i , P+

i,max) + H1(cj , P
+
j,max \ Pi)

+ H1(cj , P
+
j,max ∩ Pi).

The algorithm T ensures that if c+
i 6= ci, then:

H1(c
+
i , Pi) < H1(ci, Pi). (2)

However, it is possible that the relevant cost for i has

increased, i.e., that H1(c
+
i , P+

i,max) > H1(ci, Pi,max). We

will show that any such increase is necessarily smaller in

magnitude than the decrease in the cost to cover for j.

Two observations: First, P+
j,max ∩ Pi = ∅ by how we

choose P+
j , meaning that H1(cj , P

+
j,max∩Pi) is zero. Second,

the set of vertices owned by j but not by i has not changed,

meaning that H1(cj , P
+
j,max\Pi) = H1(cj , Pj,max\Pi). This

leaves us wanting to show that:

H1(c
+
i , P+

i,max) < H1(ci, Pi,max) + H1(cj , Pj,max ∩ Pi).

We can write set Pi as:

Pi = Pi,max ∪ (Pj,max ∩ Pi)

= P+
i,max ∪ (P+

j,max ∩ Pi) = P+
i,max.

Using these equivalences, we can rewrite (2) as:

H1(c
+
i , P+

i,max) < H1(ci, Pi,max) + H1(ci, Pj,max ∩ Pi).

Then, using the definition of Pj,max we conclude that:

H1(c
+
i , P+

i,max) < H1(ci, Pi,max) + H1(ci, Pj,max ∩ Pi)

< H1(ci, Pi,max) + H1(cj , Pj,max ∩ Pi).

Nothing in this analysis is exclusive to the two agent

scenario. Following the same logic, it can be shown that:

H1(c
+
i , P+

i,max)−H1(ci, Pi,max) <
∑

j 6=i

H1(cj , Pj,max ∩Pi),

meaning that any increase in the cost to cover for agent i
from a centroid update is more than offset by decreases to

the cost to cover from the territory updates of those agents

who owned cells in Pi.

We can form a Lyapunov function using Proposition IV.2

as follows. Since Q is a finite set, there exist only a finite

number of possible values for Hmax, Hmin, and |M |. Let ǫx

and ǫn be the magnitude of the smallest possible difference

between two values of Hmax and Hmin, respectively. Let αn

and αM be larger than twice the maximum possible values of

Hmin and |M |, respectively. Consider the following function

U : Qn × Covn(Q) → R≥0:

U(c, P ) = Hmax(c, P ) +
ǫx

αn

Hmin(c, P ) +
ǫx

αn

ǫn

αM

|M(P )|.

With this scaling of Hmin and |M |, when Hmax decreases

then U necessarily also decreases, and similarly if Hmax is

constant but Hmin decreases. We further have the following

bound on changes to U .

Proposition IV.3 (Lyapunov Function) Let (c′, P ′) ∈
T (c, P ). Then, either (c′, P ′) = (c, P ) or U(c′, P ′) ≤
U(c, P ) − ǫxǫn

αnαM

.

C. Characterization of Fixed Points

One consequence of Proposition IV.3 is that the maps Ti

have at least one common fixed point. The following Propo-

sition characterizes the fixed points for T (c, P ), defined1 as

the pairs (c, P ) where {(c, P )} = T (c, P ) or, equivalently,

as the pairs which are a fixed point of every map Ti.

1The standard definition of fixed point for a set-valued map (which we
do not use in this paper) consists in the weaker condition (c, P ) ∈ T (c, P ).
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Proposition IV.4 (Fixed Points) Let (c, P ) ∈ Qn ×
Covn(Q) be a fixed point of T . Then, P is a centroidal

Voronoi partition of Q generated by c. Moreover, every such

centroidal Voronoi partition is a fixed point for T .

Proof: If P is not a partition, then P ∗
j→i 6= ∅ for some

i 6= j. If P is a partition but not a Voronoi partition generated

by c, then Pi→j 6= ∅ for some i 6= j. Finally, if P is a Voronoi

partition generated by c but ci /∈ C(Pi) for any i, then ci

will change when i communicates with the base station.

Next, we show that every centroidal Voronoi partition is a

fixed point. If ci ∈ C(Pi) for all i, then c+
i = ci for all Ti.

If P is a Voronoi partition generated by c, then Pi→j = ∅,

P ∗
j→i = ∅, and thus P+ = P for all Ti.

D. Convergence of P (t)

The proof continues with the application of Lemma A.1

in Appendix A to (c(t), P (t)). Since the algorithm T :
Qn × Covn(Q) ⇉ Qn × Covn(Q) is well-posed, we have

that Qn × Covn(Q) is strongly positively invariant. This

fact implies that assumption (i) of Lemma A.1 is satisfied.

Invoking Proposition IV.3, we conclude that U(c, P ) fulfills

assumption (ii). Finally, the communication model (C3)

assures that assumption (iii) is met.

Hence, we are in the position to apply Lemma A.1 and

conclude the following result.

Proposition IV.5 (Convergence of P (t)) The evolution of

the One-to-Base Coverage Algorithm (c(t), P (t)), generated

by the map T , converges in finite time to the intersection of

the equilibria of the maps Ti, which is the set of pairs (c, P )
where P is a centroidal Voronoi partition generated by c.

In particular, P (t) converges in finite time to one centroidal

Voronoi partition.

E. Convergence of Robot Covering

So far we have discussed the properties of the covering P
held by the base station. Here we extend these arguments to

the covering S held by the robots. First, we show that S is

indeed a covering of Q.

Proposition IV.6 (Well-posedness of S) Let S be a n-

covering of Q. Then, S+ produced by the One-to-Base

Coverage Algorithm is also a n-covering.

Proof: Let s ∈ Q. If there exist times t1 < t2 such

that q ∈ Si(t1) and q 6∈ Si(t2), then there exists a t̃ ∈
[t1, t2) such that q 6∈ Pi(t̃

+). By how the update of P (t)
is defined, this implies that some agent j 6= i with q ∈
Pj(t̃) communicates to the base station at time t̃. But since

Sj(t̃
+) = Pj(t̃), we have that q ∈ Sj(t̃

+). Therefore, q must

belong to some region of S(t) for all t.

We are now ready to conclude our convergence proof.

Proof: [of Theorem III.2]. The definition of the One-to-

Base Coverage Algorithm implies that if there exists τ ∈ N

such that P (t) = P̄ ∈ Covn(Q) for t ≥ τ , then S(t) = P̄
for t ≥ τ +∆. As an immediate consequence of this fact, the

convergence properties of P (t), stated in Proposition IV.5,

are inherited by S(t).

V. DYNAMIC CHANGES TO TEAM

Evolving overlapping coverings enables simple handling

of dynamic arrivals, departures, and even the disappearance

of robots. While departure or disappearance can increase

Hmax, such an increase is only a transient and, with the

following additions, the system will converge to a centroidal

Voronoi partition in finite steps after such an event.

Arrival: When a new robot i communicates with the base

station, it can be assigned any initial Pi desired. Possibilities

include adding all vertices within a set distance of its initial

position or assigning it just the single vertex which has the

highest coverage cost in Q.

Departure: A robot i might announce to the base station

that it is departing, perhaps to recharge its batteries or to

perform some other task. In this situation, the base station

can simply add Pi to the territory of the next robot it talks

to before executing the normal steps of the algorithm.

Disappearance: The disappearance or failure of a robot

i can be detected if it does not communicate with the base

station for longer than ∆. If this occurs, then the departure

procedure above can be triggered. Should i reappear later, it

can be handled as a new arrival or given its old territory.

VI. NUMERICAL RESULTS

To demonstrate the utility of the One-to-Base Cover-

age Algorithm, we implemented it using the open-source

Player/Stage robot control system and the Boost Graph

Library (BGL). All results presented here were generated

using Player 2.1.1, Stage 2.1.1, and BGL 1.34.1.

One illustrative example is shown in Figure 1. The envi-

ronment contains three obstacles drawn in black and four

robots tasked with providing coverage of the free space

around the obstacles. This free space is modeled using an

occupancy grid with a 0.6m resolution which was chosen

so that the robots could fit inside of a grid cell. The grid

is converted into a graph by making each free cell a vertex

and connecting edges between cells which border each other.

To compute distances in this uniform edge weight graph we

extended the BGL breadth-first search routine with a distance

recorder event visitor.

For this example we chose a random robot to communicate

with the base station at each iteration, while ensuring that

no robot went unselected for more than 8 rounds. In the

covering shown in the second panel of Figure 1, the light blue

robot on the top left and the dark blue robot on the middle

left both own some vertices also claimed by the circled

orange robot. The third panel shows the result after the

orange robot communicates with the base station: the orange

robot’s centroid has been updated and both blue robots have

relinquished their claim to vertices closer to orange.

The final centroidal Voronoi partition in the fourth panel

is reached after 25 iterations. The final coverage cost was

1.82m, an improvement of 59%. Since each robot initially

covers the entire environment, this also represents the im-

provement from using four robots instead of one to provide

coverage in this environment.
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Fig. 1. Simulation of four robots partitioning an environment with three black obstacles. The free space of the environment is modeled using the indicated
occupancy grid where each cell is a vertex in the resulting graph. On the left, each robot starts owning the entire environment and positioned at its initial
unique centroid. The middle frames show an intermediate state of the covering P and the result of an update when the circled robot contacts the base
station. The centroids are marked with an X and the boundary of each robot’s territory drawn in its color. Some cells are on the boundary of multiple
territories and for these we draw superimposed robot colors. The final partition is shown at right.

VII. DISCUSSION & CONCLUSION

We have described the One-to-Base Coverage Algorithm

which can drive territory ownership among a team of robots

in a non-convex environment to a centroidal Voronoi partition

in finite time given only occasional contact between each

robot and a central base station. Here we have focused on

dividing territory, but the algorithm can easily be combined

with methods to provide a service over Q, as in [11].

In practical use, between the times that a robot commu-

nicates with the base station it could take sample measure-

ments, pick up packages, or perform other tasks. When a

robot communicates to the base station, it could transmit any

information it has gathered about the environment and then

receive its updated territory and a list of tasks to perform.

When idle, a robot would position itself at the centroid of

its territory. If tasks appear according to the distribution φ
(which could evolve over time), then by minimizing cost

function Hmax the algorithm also minimizes the the expected

distance between a task and the furthest idle robot which

might be assigned the task.

APPENDIX A

For completeness we present a convergence result for

set-valued algorithms on finite state spaces, which can be

recovered as a direct consequence of [10, Theorem 4.3].

Given a set X , a set-valued map T : X ⇉ X is a map

which associates to an element x ∈ X a subset Z ⊂ X.
A set-valued map is non-empty if T (x) 6= ∅ for all x ∈
X . A set W ⊂ X is strongly positively invariant for T if

T (w) ⊂ W for all w ∈ W . Given a non-empty set-valued

map T , an evolution of the dynamical system associated to

T is a sequence {xn}n∈Z≥0
⊂ X with the property that

xn+1 ∈ T (xn) for all n ∈ Z≥0.

Lemma A.1 (Convergence under persistent switches)

Let (X, d) be a finite metric space. Given a collection of

maps T1, . . . , Tm : X → X , define the set-valued map

T : X ⇉ X by T (x) = {T1(x), . . . , Tm(x)} and let

{xn}n∈Z≥0
be an evolution of T . Assume that:

(i) there exists W ⊆ X that is strongly positively invariant

for T ;

(ii) there exists a function U : W → R such that U(w′) <
U(w), for all w ∈ W and w′ ∈ T (w) \ {w}; and

(iii) for all i ∈ {1, . . . ,m}, there exists an increasing

sequence of times {nk | k ∈ Z≥0} such that xnk+1 =
Ti(xnk

) and (nk+1 − nk) is bounded.

If x0 ∈ W , there exists c ∈ R and N ∈ N such that for all

n ≥ N , the evolution xn = x̄ where x̄ belongs to the set

(F1 ∩ · · · ∩Fm), where Fi = {w ∈ W | Ti(w) = w} is the

set of fixed points of Ti in W , i ∈ {1, . . . ,m}.
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