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Abstract— Computational fluid dynamics (CFD) has been a
powerful simulation tool to gain insight and understanding of
fluid dynamic systems. However, it is also extremely compu-
tationally intensive and thus unsuitable for control design and
iteration. Various model reduction schemes have been proposed
in the past to approximate the Navier-Stokes equation with a
low-dimensional model. There are essentially two approaches:
input/output model identification and proper orthogonal de-
composition (POD). The former captures mostly the local
behavior near a steady state and the latter is highly dependent
on the snapshots of the flow state used to extract the projection.
This paper presents a hybrid model reduction approach that
attempts to combine the best features of the two approaches.
We first identify an input/output linear model by using the
subspace identification method. We next project the difference
between CFD response and the identified model response onto
a set of POD basis. This trajectory is then fit to a nonlinear
dynamical model to augment the input/output linear model. The
resulting hybrid model is then used for control design with the
controller evaluated with CFD. The proposed methodology has
been applied to a 2D compressible flow passing a contraction
geometry. The result indicates that near the steady state used
for linear system identification, the linear system based design
works well. However, far away from the steady state, the hybrid
system shows much better performance.

I. INTRODUCTION

Efficient numerical techniques are now commonly used

to efficiently simulate physical systems governed by partial

differential equations, such as fluid, thermal, and structural

systems. Due to the high dimensionality of such systems, the

simulation is computationally expensive and time consum-

ing. For system analysis and control design, low-dimensional

models that can capture key attributes of the high order

systems are needed.

A commonly used tool for complex nonlinear system

model reduction is the method of proper orthogonal decom-

position (POD) and Galerkin projection [1]–[3]. It provides

a systematic way to develop reduced order models from

a series of “snapshots” of experimental or computational

data. Through an orthogonalization procedure, characteristic

information of the system is extracted from the solution

snapshots and used to construct a reduced basis set. A low-

dimensional approximation is obtained by projecting the full

nonlinear system to this reduced basis. The attraction of

the POD/Galerkin method is that it can capture nonlinear

behavior of the system (if appropriate snapshots are used),

but may lose key system properties such as stability near

a stable equilibrium [4]. Some extended approaches have
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been proposed based on the POD method. [5] establish a

connection between POD and balanced truncation theory.

The method of snapshots is used to obtain low-rank ap-

proximations to the system controllability and observability

grammians, which are then used to develop a balanced

reduced order model. A trust-region POD (TRPOD) method

is proposed in [6]. By embedding the POD based reduced

order modeling technique into a trust-region framework, this

approach updates the reduced order models to represent the

flow dynamics during an optimization process.

For linear time invariant systems, a rich set of tools exist,

mostly based on the singular value decomposition (SVD)

of some input/output map. In particular, if only input/output

data are available, such tools, e.g., subspace algorithm, may

be used to construct a low order dynamical model [7]–

[9]. This type of tool is attractive as it usually preserves

system stability and has explicit error bounds. Furthermore,

it does not require the knowledge of the governing equation.

However, it is unable to predict the nonlinear behavior of the

system nor provide insight into the flow field.

One way of modeling the dynamics of a nonlinear system

based on input/output data is the nonlinear autoregressive

moving average model with exogenous inputs (NARMAX)

method. In [10], NARMAX is employed to develop a non-

linear model representing the coupling between jet actuation

and measured pressure for a boundary layer flow separation

control problem. However, this method only generates an

input/output model, thus providing no information about the

internal system dynamics.

This paper presents a reduced order modeling technique

we refer to as hybrid method, which combines ideas from

subspace-based system identification and POD method. It

first identifies a stable linear dynamical model. Then it

represents the difference between the full flow field and the

identified model by a POD expansion. Thus, the full system

is decomposed into a dominant linear subsystem and a small-

scale nonlinear subsystem. The dynamics of the nonlinear

subsystem can be obtained by projecting the difference

between linear model and CFD data onto the POD modes.

We apply the hybrid approach to a 2D compressible flow

that passes a contraction geometry and compare it with three

other modeling methods. Computation fluid dynamics (CFD)

results suggest that the hybrid model accurately predicts the

nonlinear behavior of the system. It also performs the best

in terms of feedback control and learning control.
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II. CONTRACTION SECTION EXAMPLE

Fig. 1 shows the geometry of the contraction section in

a subsonic wind tunnel facility that motivated this research

[11]. The contraction, with boundary shaped by a fifth order

polynomial curvature, settles the flow transitions from the

settling chamber and feeds uniform flow to the test section.

In computational simulations, throat Mach number is attained

to precisely match the experimental setup by adjusting the

mass flux rate at the inlet. The adjustment can be formulated

as a classical control problem: first model the dynamics from

the inlet mass flux to the throat Mach number, then design

control strategies to achieve a desired output.

Fig. 1. Contraction geometry

The current work uses PHASTA, a numerical CFD code,

to simulate the flow dynamics on a multiprocessor UNIX

cluster. Flow computations are performed using the Stream-

line Upwind Petrov-Galerkin (SUPG) stabilized finite ele-

ment method [12], which has been proven stable and higher

order accurate. The numerical simulation uses a 2D slab

geometry which approximates the flow in a 40mm slice along

the span of the contraction. Full flow field data are collected

at a sampling rate of 5×10−4s, based on a fine 2D mesh.

III. MODEL REDUCTION

A. POD and Galerkin Projection

The essential idea of POD is to generate a set of basis

that “optimally ” spans a given sample set of data. Consider a

Hilbert space H with an inner product 〈·, ·〉. The goal of POD

is, given an ensemble of data y(t) ∈ H, to find an optimal

subspace S, such that the averaged error of the projection

E(‖y−PSy‖) is minimized. Here ‖ · ‖ denotes the norm on

H, PS denotes the projection onto the subspace S, and E is

an average operator over t. Let {ϕ j ∈ H| j = 1, · · · ,n} be an

orthogonal basis for S, then the projection of y(t) onto S is

PSy(t) =
n

∑
j=1

〈y(t),ϕ j〉ϕ j. (1)

The basis functions ϕ can be obtained directly from the SVD

of the snapshot matrix [y(t1), · · · ,y(tN)].
Suppose the dynamics of a system are described by a high

order ODE (or PDE) of the form:

ẏ = Dx(y), (2)

where Dx is a nonlinear differential operator depending on

some parameter x. We may approximate solutions to (2) by

projecting the equations onto a finite-dimensional subspace

such as the one spanned by POD modes. Inserting the POD

expansion

y(t) =
n

∑
j=1

α j(t)ϕ j, (3)

into (2) and taking the inner product with ϕk yield a set of

ODEs for αk:

α̇k = 〈Dx(y),ϕk〉, k = 1, · · · ,n. (4)

B. Hybrid Model Reduction Method

The first step is to use the input/output CFD data (in the

contraction section example, inlet mass flux is the input uk,

throat Mach number is the output zk) to identify a linear

time invariant system (e.g., using the subspace identification

method).

xk+1 = A11xk +B1uk

zk = C1xk. (5)

We next try to relate the state xk of this (typically low order)

system to the full flow field. Denote the kth snapshot of the

full flow field by Yk. A mapping Φ from the reduced state

xk to the full state Yk may be obtained by a least-squares fit:

Φ
[

x1 . . . xN

]

=
[

Y1 . . . YN

]

. (6)

The linear model can approximate well the local behavior

(near the steady state), but has increasing error far away

from the steady state. To capture the nonlinear behavior, we

approximate the difference between Yk and Φxk as a linear

combination of POD modes Ψ:

Yk = Φxk +Ψak =
n1

∑
i=1

ϕix
i
k +

n2

∑
j=1

ψ j a
j

k, (7)

where Ψ is obtained from the SVD of the difference snapshot

matrix [Y1 −Φx1, · · · ,YN −ΦxN ].

Traditional POD/Galerkin method finds the dynamics of

ak by projecting the governing equation onto the POD basis.

The projection is computational expensive when there is

a large number of sampling points. Moreover, the result

is highly dependent on the choice of inner product for

projection. One needs to take care of different units of flow

variables (pressure, velocity, temperature, etc.), as well as

the weighting ratio of each point if the mesh is nonuniform.

Therefore, instead of projecting the governing equation, we

directly compute ak by projecting the linear system error

onto the POD basis:

ak = ΨT (Yk −Φxk). (8)

Then we use [a1, · · · ,aN ] as a “training” data set to fit a

nonlinear discrete dynamical system

ak+1 = fa(xk,ak,uk) (9)
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to approximate the dynamics of ak. Combining (5), (7) and

(9), we have a hybrid dynamical model:

xk+1 = A11xk +B1uk

ak+1 = fa(xk,ak,uk)

zk = g(Yk) = g(Φxk +Ψak) := h(xk,ak) (10)

where g(·) represents a nonlinear output function.

C. Application to Contraction Section Example

We have applied the hybrid model reduction method de-

scribed above to the flow modeling of the contraction section.

Using the input/output data, a second-order linear model of

the form (5) is identified by using the subspace algorithm. As

shown in Fig. 2, it captures well the input/output relationship

for the training data set. The linear model is also validated

by a different data set, where the input range is much larger

than the training data. We shall see later that when the input

level is far from the training set, the linear model yields a

poor prediction of the throat Mach number.
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Fig. 2. Output response comparison of the training set between CFD and
linear model (input range: [0.7, 0.8])

We next use the POD expansion to represent the difference

between CFD data and the linear model. Fig. 3 plots the

energy captured by the first 10 POD modes. In the expansion

we use the first 4 modes, which capture more than 99% of

the total energy.
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Fig. 3. Energy captured by the first 10 POD modes

We denote the ith power of a vector yk by (yk)
i =

[yi
k,1, · · · ,y

i
k,n]

T , where yk, j, j = 1, · · · ,n is the jth element of

yk. The dynamics of ak is fit to a nonlinear function of the

form:

ak+1 ≈ f̂a(xk,ak,uk)

=
m1

∑
i=1

Γi(xk)
i +

m2

∑
i=1

Λi(ak)
i +

m3

∑
i=1

βi(uk)
i. (11)

(a) pressure component (b) x velocity component

(c) y velocity component (d) temperature component

Fig. 4. First POD mode

Let na,nx denote the dimension of xk, ak, respectively.

Then Γi is a na ×nx matrix and Λi is a na ×na matrix. Here

βk is a na ×1 vector since uk is a scalar. If f̂a(·) has a large

number of terms that increases the computational cost of the

approximation, one can extract dominant basis by performing

SVD of
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. (12)

Fig. 5 shows a good approximation of fa(xk,ak,uk) with

m1 = 4, m2 = 1, m3 = 1, which yields a hybrid model with

state nonlinearity and output nonlinearity:

xk+1 = A11xk +B1uk

ak+1 = A21xk +A22ak +B2uk +
m1

∑
i=2

Γi(xk)
i

zk = h(xk,ak). (13)

The hybrid model accurately predicts the throat Mach num-

ber (Fig. 6) for a wide input range.

IV. CONTROL DESIGN FOR OUTPUT REGULATION

The goal of obtaining a reduced model is to use it for

control design. In this section, we design LQG control and

learning control for the inlet mass flux to regulate the output

throat Mach number based on the hybrid model and compare

its performance with three other reduced order models:

1) Identified linear model (5).
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Fig. 5. Comparison between projected ak (solid) and propagated ak (dash)
using f̂a(xk,ak,uk)
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Fig. 6. Comparison of linear and hybrid models (input range: [0.7, 1.5])

2) Semilinear model with input nonlinearity [13]:

xk+1 = Axk +B f (uk)

zk = Cxk. (14)

3) Purely nonlinear model (in the rest of the paper, we call

it “nonlinear model” for simplicity): expand Yk = Ψbk

and approximate the dynamics of bk by a nonlinear

function fb(·)

bk+1 = fb(bk,uk)

zk = g(Yk) = g(Ψbk) := p(bk). (15)

This method is very similar to POD method, except

that it directly fits the dynamics of bk to a nonlin-

ear function, instead of projecting the Navier-Stokes

equations to propagate bk. This is also the same as the

identification of the ak dynamics without combining it

with the linear time invariant system.

A. LQG Control

LQG regulator is a combination of a Kalman filter with

an Linear-Quadratic-Regulator (LQR). It uses state estimate

from the Kalman filter and optimized LQR state-feedback

gain to generate the control signal. To eliminate steady-

state error, an integrator is added to the LQG regulator. The

extended state space realization of a linear system with an

error integrator is given by

ẋ = Ax+Bu

y = Cx+Du

ė = r− y = r−Cx−Du (16)

Let ∆x = x− x∗, ∆u = u− u∗, ∆y = y− y∗, (x∗,y∗,u∗ are

steady state values), then (16) is rewritten as

ẋe =

[

∆ẋ

ė

]

=

[

A 0

−C 0

][

∆x

e

]

+

[

B

−D

]

∆u

ye =

[

∆y

e

]

=

[

C 0

0 I

][

∆x

e

]

+

[

D

0

]

∆u. (17)

The full control input is

u = u∗ +∆u = u∗−Kex̂e = u∗− [K|Ki]

[

x̂

e

]

, (18)

where x̂ represents the state estimate from a Kalman filter, Ke

is computed by solving the Riccati differential equation. Ke

can be further tuned to improve the system transient response

by adjusting the weights on input, output and state.
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Fig. 7. MATLAB and CFD simulation results (targe Mach number=0.6)

We designed an LQG regulator based on each model (lin-

ear, semilinear, hybrid, nonlinear) and tune Ke in MATLAB

such that they have similar settling time. For semilinear,

hybrid and nonlinear models, the control design uses lin-

earization of the model and the state estimate x̂ is generated

by an extended Kalman filter. The Kalman filter and LQG

controller are then implemented in CFD simulations.

Fig. 7 and 8 show the performances of four LQG con-

trollers which are designed to drive the throat Mach number

to 0.6. Controllers based on linear, hybrid and nonlinear

models generate a similar output to MATLAB simulation,
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Fig. 8. Comparison of four models (targe Mach number=0.6)
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Fig. 9. MATLAB and CFD simulation results (targe Mach number=0.9)

while the semilinear model yields a very oscillatory output.

We also test the four controllers with a larger target Mach

number of 0.9. Although MATLAB simulations (Fig. 10 (a))

suggest that they have similar performances (linear-model-

based controller performs even better), only hybrid-model-

based controller settles the output within a reasonable time

of 0.1115s. The other three controllers have a much longer

settling time of more than 0.27s.

To sum up, when the input is small, linear model is good

enough to predict the output as well as to guide feedback

control design. However, it shows inaccuracy at high input

level. Semilinear model can not provide a reasonable pre-

diction of the output in both cases. Hybrid model is shown

to be the most accurate and reliable model for a wide input

range.

B. Iterative POD Approach

As can be seen from Fig. 7 and 9, there is still a discrep-

ancy between MATLAB and CFD trajectories. This suggests

an iterative POD approach to correct the discrepancy, based

on CFD closed loop simulation results. Take the nonlinear

model in Fig. 9 (d) for example, we extract POD basis from

the CFD closed loop response (red line) and compute a new
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Fig. 10. Comparison of four models (targe Mach number=0.9)

set of b̂k by projecting the full flow field onto the basis. We

re-fit a nonlinear function that approximates the dynamics

of b̂k and use the new nonlinear model for Kalman filter

and control design. Fig. 11 (a) and (b) show the result of

using one POD iteration to improve the nonlinear model.

We test two different LQG gains corresponding to a slow

trajectory and a fast trajectory, respectively. Note that the

LQG gains used here are re-tuned and different from that

in Fig. 9 (d). It can be seen that the new model based on

one POD iteration predicts the slow trajectory very well. It

also shows improvement on the fast trajectory, though there

is still a small discrepancy requiring further POD iteration.

Fig. 11 (c) shows that through a second POD iteration, we

obtain a nonlinear model that matches the CFD output very

well.
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(b) fast trajectory (first iteration)
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Fig. 11. Iterative POD approach applied to the nonlinear model

An alternative and more efficient way of performing

iterative POD method is to augment existing POD basis

based on predicted error, instead of regenerating a new set

of POD basis in each iteration. Then the full flow state

Yk = Φxk +
nℓ

∑
ℓ=1

Ψℓaℓ
k. (19)
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In ℓth iteration, Ψℓ is generated from SVD of YCFD −Φxk −

∑ℓ−1
i=1 Ψiai

k, where YCFD is the true flow state from CFD

simulation. This gives us a cascade system

xk+1 = A11xk +B1uk

a1
k+1 = f1(xk,a

1
k ,uk)

...

aℓ
k+1 = fℓ(xk,a

1
k , · · · ,a

ℓ
k,uk). (20)

Based on the performance of the hybrid model, a well fitting

nonlinear function fa can significantly improve the linear

model. Therefore, as long as we can find f1, ..., fℓ that fit the

dynamics of a1, · · · ,aℓ reasonably well, the process should

be able to decrease the predicted error in each iteration.

C. Learning Control

Iterative learning control (ILC) has gained great success

in motion tracking control [14]. We consider the gradient

approach which propagates the output trajectory error to the

input using the gradient map which is just the linearized

system [15]:

1) Set u = u0, apply u to the physical system and obtain

the output sequence y;

2) Update u by adding a corrective term

∆u = −αG∗(y− ydes) (21)

where G∗ is the adjoint of G, the linearized system

about u, and α may be set as a sufficiently small

constant or found by a line search;

3) Iterate until ‖y− ydes‖ of ‖∆u‖ is sufficiently small.

Fig. 12 shows the responses of learning control based

on linear model and hybrid model, respectively. Since the

control design uses linearization of the hybrid model, two

models generate similar gradient and, thus, have similar

performances.
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Fig. 12. Comparison of learning control and LQG control

V. CONCLUSION

This paper presents a new model reduction approach that

combines ideas from subspace-based system identification

and POD method. It first identifies a reasonable linear model

using N4SID, and then introduces nonlinearity to the model

by projecting the difference between CFD data and identified

model onto a set of POD basis. The hybrid model is used

for control design and shown to have consistently good

performances, compared to linear, semilinear and nonlinear

models.

Future directions include using system trajectories that

contain richer frequency components for model training

and applying the hybrid approach to a more complex case

(e.g., an inlet duct with settling chamber, contraction and

downstream diffuser), which has a lot more sampling points

and parallel computing issue.
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