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Abstract— Many distributed control algorithms of current
interest can be modeled by linear recursion equations of the
form x(t + 1) = M(t)x(t), t ≥ 1 where each M(t) is a real-
valued “stochastic” or “doubly stochastic” matrix. Convergence
of such recursions often reduces to deciding when the sequence
of matrix products M(1), M(2)M(1), M(3)M(2)M(1), . . . con-
verges. Certain types of stochastic and doubly stochastic matri-
ces have the property that any sequence of products of such ma-
trices of the form S1, S2S1, S3S2S1, . . . converges exponentially
fast. We explicitly characterize the largest classes of stochastic
and doubly stochastic matrices with positive diagonal entries
which have these properties. The main goal of this paper is
to find a “semi-norm” with respect to which matrices from
these “convergability classes” are contractions. For any doubly
stochastic matrix S such a semi-norm is identified and is shown
to coincide with the second largest singular value of S.

I. INTRODUCTION

Many distributed control algorithms of current interest can

be modeled by linear recursion equations of the form

x(t + 1) = M(t)x(t), t ≥ 1 (1)

where each M(t) is a real-valued “stochastic” or “doubly

stochastic” matrix. Among these are consensus and flocking

algorithms [2]–[8], distributed averaging algorithms [9]–[11],

and certain types of gossiping algorithms [12]–[14]. Recur-

sion equations like this have their roots in the literature on

nonhomogeneous Markov chains [15]. While much is known

at this point about conditions on the M(t) for solutions

to converge to a limit point, considerably less is known

about the rates at which such solutions converge. There are

classical concepts such as the coefficient of ergodicity [15]

which are helpful in deriving convergence rates, but these are
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limited to only certain types of processes. The convergence

rate question has been studied recently in [1], [11], [16],

[17]. In [9], [11] convergence rate results are derived for

distributed averaging algorithms. In [12] the question is

addressed for probabilistic gossiping algorithms. A modified

gossiping algorithm intended to speed up convergence is

proposed in [18] without proof of correctness, but with

convincing experimental results. The algorithm has recently

been analyzed in [19]. Recent results concerning convergence

rates appear in [13], [20]–[22] for periodic gossiping and in

[1], [11], [23] for deterministic aperiodic gossiping.

Certain types of stochastic and doubly stochastic matrices

have the property that any sequence of products of such

matrices of the form S1, S2S1, S3S2S1, . . . converges expo-

nentially fast. In Section II we explicitly characterize the

largest classes of stochastic and doubly stochastic matrices

with positive diagonal entries which have these properties.

We call these classes “convergable”. The main goal of this

paper is to find a “semi-norm” with respect to which matrices

from these convergability classes are contractions. The role

played by semi-norms in characterizing convergence rates

is explained in Section III. Three different types of semi-

norms are considered. Each is compared to the well known

coefficient of ergodicity which plays a central role in the

study of convergence rates for nonhomogeneous Markov

chains [15]. Somewhat surprisingly, for doubly stochastic

matrices it turns out that a particular Euclidean semi-norm on

IRn×n has the required property - namely that in this semi-

norm, any doubly stochastic matrix S in the convergability

class of all doubly stochastic matrices is a contraction. This

particular semi-norm turns out to be the second largest

singular value of S.

A. Stochastic and Doubly Stochastic Matrices

The type of matrices typically encountered in a consensus

process [4] modeled by (1) have only nonnegative entries and

row sums all equal one. Matrices with these properties are

called stochastic. Doubly stochastic matrices are stochastic

matrices with the additional property that their column

sums are also all equal to one. Doubly stochastic matrices

are typically encountered when (1) represents a distributed

averaging [9] or gossiping [12] process. It is easy to see

that a nonnegative matrix S is stochastic if and only if

S1 = 1 where 1 ∈ IRn is a column vector whose entries

are all ones. Similarly a nonnegative matrix S is doubly

stochastic if and only if S1 = 1 and S′
1 = 1. Using

these characterizations it is easy to prove that the class of

stochastic matrices in IRn×n is compact and closed under

multiplication as is the class of doubly stochastic matrices
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in IRn×n. It is also true that the class of nonnegative matrices

in IRn×n with positive diagonal entries is closed under

multiplication. Stochastic and doubly stochastic matrices

with positive diagonal entries are commonly encountered in

the study of consensus processes; positive diagonal entries

greatly simplify convergence analysis.

Mathematically, reaching a consensus means that the state

vector x(t) appearing in (1) converges to a limit vector of the

form α1 were α is a number depending on the initial value

of x. This will always be the case if the infinite sequence

of matrix products M(1),M(2)M(1), M(3)M(2)M(1), . . .
converges to a matrix of the form 1c in which case α =
cx(1). It should be clear from what has just been stated

that if the M(t) are all doubly stochastic, then c = 1

n
1
′

which means that in this case α is the average of the

values of the entries in x(1). Thus to study convergence

of the consensus process modeled by (1), it suffices to

study the convergence of infinite sequences of products of

stochastic and doubly stochastic matrices. Such sequences

are closely related to what are called “nonhomogeneous

Markov chains” for which there is a substantial literature

[15]. Notwithstanding this, the following question remains.

What determines the convergence rate of such sequences?

This is the question which will be considered in the sequel.

We begin with a few basic ideas.

B. Graph of a Stochastic Matrix

Many properties of a stochastic matrix can be usefully

described in terms of an associated directed graph determined

by the matrix. The graph of nonnegative matrix M ∈ IRn×n,

written γ(M), is a directed graph on n vertices with an arc

from vertex i to vertex j just in case mji 6= 0; if (i, j) is

such an arc, we say that i is a neighbor of j and that j is

an observer of i. Thus γ(M) is that directed graph whose

adjacency matrix is the transpose of the matrix obtained by

replacing all nonzero entries in M with ones.

C. Connectivity

There are various notions of connectivity which are useful

in the study of the convergence of products of stochastic

matrices. Perhaps the most familiar of these is the idea of

“strong connectivity”. A directed graph is strongly connected

if there is a directed path between each pair of distinct

vertices. A directed graph is weakly connected if there is an

undirected path between each pair of distinct vertices. There

are other notions of connectivity which are also useful in

this context. To define several of them, let us agree to call a

vertex i of a directed graph G, a root of G if for each other

vertex j of G, there is a directed path from i to j. Thus i

is a root of G if it is the root of a directed spanning tree of

G. We will say that G is rooted at i if i is in fact a root.

Thus G is rooted at i just in case each other vertex of G

is reachable from vertex i along a directed path within the

graph. G is strongly rooted at i if each other vertex of G

is reachable from vertex i along a directed path of length 1.

Thus G is strongly rooted at i if i is a neighbor of every other

vertex in the graph. By a rooted graph is meant a directed

graph which possesses at least one root. A strongly rooted

graph is a graph which has at least one vertex at which it is

strongly rooted. Note that a nonnegative matrix M ∈ IRn×n

has a strongly rooted graph if and only if it has a positive

column. Note that every strongly connected graph is rooted

and every rooted graph is weakly connected. The converse

statements are false. In particular there are weakly connected

graphs which are not rooted and rooted graphs which are not

strongly connected.

D. Composition

Since we will be interested in products of stochastic

matrices, we will be interested in graphs of such products and

how they are related to the graphs of the matrices comprising

the products. For this we need the idea of “composition” of

graphs. Let Gp and Gq be two directed graphs with vertex

set V . By the composition of Gp with Gq , written Gq ◦Gp, is

meant the directed graph with vertex set V and arc set defined

in such a way so that (i, j) is an arc of the composition

just in case there is a vertex k such that (i, k) is an arc

of Gp and (k, j) is an arc of Gq . Thus (i, j) is an arc in

Gq ◦ Gp if and only if i has an observer in Gp which is

also a neighbor of j in Gq . Note that composition is an

associative binary operation; because of this, the definition

extends unambiguously to any finite sequence of directed

graphs G1, G2, . . . , Gk with the same vertex set.

Composition and matrix multiplication are closely related.

In particular, the graph of the product of two nonnegative

matrices M1,M2 ∈ IRn×n is equal to the composition of

the graphs of the two matrices comprising the product. In

other words, γ(M2M1) = γ(M2) ◦ γ(M1).
If we focus exclusively on graphs with self-arcs at all

vertices, more can be said. In this case the definition of

composition implies that the arcs of both Gp and Gq are

arcs of Gq ◦ Gp; the converse is false. The definition of

composition also implies that if Gp has a directed path

from i to k and Gq has a directed path from k to j, then

Gq ◦Gp has a directed path from i to j. These implications

are consequences of the requirement that the vertices of the

graphs in question have self-arcs at all vertices. It is worth

emphasizing that the union of the arc sets of a sequence of

graphs G1, G2, . . . , Gk with self-arcs must be contained in

the arc set of their composition. However the converse is

not true in general and it is for this reason that composition

rather than union proves to be the more useful concept for

our purposes.

II. CONVERGABILITY

It is of obvious interest to have a clear understanding of

what kinds of stochastic matrices within an infinite product

guarantee that the infinite product converges. There are many

ways to address this issue and many existing results. Here

we focus on just one issue.

Let S denote the set of all stochastic matrices in IRn×n

with positive diagonal entries. Call a compact subset M ⊂
S convergable if for each infinite sequence of matri-

ces M1, M2,M3, . . . from M, the sequence of products
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M1,M2M1, M3M2M1, . . . converges exponentially fast to

a matrix of the form 1c. Convergability can be characterized

as follows.

Theorem 1: Let R denote the set of all matrices in S with

rooted graphs. Then a compact subset M ⊂ S is convergable

if and only if M ⊂ R.

The theorem implies that R is the largest subset of

n × n stochastic matrices with positive diagonal entries

whose compact subsets are all convergable. R itself is not

convergable because it is not closed and thus not compact.

Proof of Theorem 1: The fact that any compact subset of

R is convergable is more or less well known from the work

reported in [24]; the statement also follows from Proposition

11 of [25]. To prove the converse, suppose that M ⊂ S
is convergable. Then by continuity, every sufficiently long

product of matrices from M must be a matrix with a

positive column. Therefore, the graph of every sufficiently

long product of matrices from M must be strongly rooted.

It follows from Proposition 5 of [25] that M must be a subset

of R.

Although doubly stochastic matrices are stochastic, con-

vergability for classes of doubly stochastic matrices has a

different characterization than it does for classes of stochastic

matrices. Let D denote the set of all doubly stochastic

matrices in S. In the sequel we will prove the following

theorem.

Theorem 2: Let W denote the set of all matrices in D with

strongly connected graphs. Then a compact subset M ⊂ D
is convergable if and only if M ⊂ W .

The theorem implies that W is the largest subset of n ×
n doubly stochastic matrices with positive diagonal entries

whose compact subsets are all convergable. Like R, W is

not convergable because it is not compact. Results which

more or less imply the sufficiency of strong connectivity can

be found in [24] and elsewhere. Note that sufficiency is also

implied by Theorem 1 because doubly stochastic matrices

with strongly connected graphs are stochastic matrices with

rooted graphs. It remains therefore, to prove the necessity of

Theorem 2. This will be done in the sequel.

An interesting set of stochastic matrices in S whose

compact subsets are known to be convergable, is the set of

all “scrambling matrices”. A matrix S ∈ S is scrambling if

for each distinct pair of integers i and j, there is a column

k of S for which sik and sjk are both nonzero [15]. In

graph theoretic terms S is a scrambling matrix just in case

its graph is “neighbor shared” where by neighbor shared we

mean that each distinct pair of vertices in the graph share a

common neighbor [25]. Convergability of compact subsets

of scrambling matrices is tied up with the concept of the

coefficient of ergodicity [15] which for a given stochastic

matrix S ∈ S is defined by the formula

τ(S) =
1

2
max

i,j

n
∑

k=1

|sik − sjk| (2)

It is known that 0 ≤ τ(S) ≤ 1 for all S ∈ S and that

τ(S) < 1 (3)

if and only if S is a scrambling matrix. It is also known that

τ(S2S1) ≤ τ(S2)τ(S1), S1, S2 ∈ S (4)

It can be shown that (3) and (4) are sufficient conditions

to ensure that any compact subset of scrambling matrices is

convergable. But τ(·) has another role. It provides a worst

case convergence rate for any infinite product of scrambling

matrices from a given compact set C ⊂ S . In particular, it can

be easily shown that as i → ∞, any product SiSi−1 · · ·S2S1

of scrambling matrices Si ∈ C converges to a matrix of the

form 1c as fast as λi converges to zero where

λ = max
S∈C

τ(S)

This preceding discussion suggests the following question.

Can analogs of the coefficient of ergodicity satisfying formu-

las like (3) and (4) be found for the set of stochastic matrices

with rooted graphs or perhaps for the set of doubly stochastic

matrices with strongly connected graphs? In the sequel we

will provide a partial answer to this question for the case of

stochastic matrices and a complete answer for the case of

doubly stochastic matrices. Our approach will be to appeal

to certain types of semi-norms of stochastic matrices.

III. SEMI-NORMS

Let || · ||p be the induced p-norm on IRm×n. In this paper

we will be primarily interested in the cases p = 1, 2,∞.

Note that for a nonnegative matrix A

||A||1 = max column sum A

||A||2 =
√

µ(A′A)

||A||∞ = max row sum A

where µ(A′A) is the largest eigenvalue of A′A; that is, the

square of the largest singular value of A. For any integer

p > 0 and matrix M ∈ IRm×n define

|M |p = min
c∈IR1×n

||M − 1c||p

As defined, | · |p is nonnegative and |M |p ≤ ||M ||p; clearly

|µM |p = |µ||M |p for all real numbers µ so |·|p is “positively

homogeneous” [26]. Let M1 and M2 be matrices in IRm×n

and let c0, c1, and c2 denote values of c which minimize

||M1+M2−1c||p, ||M1−1c||p, and ||M2−1c||p respectively.

Note that

|M1 + M2|p = ||M1 + M2 − 1c0||p

≤ ||M1 + M2 − 1(c1 + c2)||p

≤ ||M1 − 1c1||p + ||M2 − 1c2||p

= |M1|p + |M2|p

Thus the triangle inequality holds. These properties mean

that | · |p is a semi-norm. | · |p behaves much like a norm.

For example, if N is a submatrix of M , then |N |p ≤ |M |p.

However | · |p is not a norm because |M |p = 0 does not

imply M = 0; rather it implies that M = 1c for some row

vector c which minimizes ||M−1c||p. For our purposes, | · |p
has a particularly important property:
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Lemma 1: Suppose M is a subset of IRn×n such that

M1 = 1 for all M ∈ M. Then

|M2M1|p ≤ |M2|p|M1|p (5)

Proof of Lemma 1: Let c0, c1, and c2 denote values

of c which minimize ||M2M1 − 1c||p, ||M1 − 1c||p, and

||M2 − 1c||p respectively. Then

|M2M1|p = ||M2M1 − 1c0||p

≤ ||M2M1 − 1(c2M1 + c1 − c21c1)||p

= ||M2M1 − 1c2M1 − M21c1 + 1c21c1)||p

= ||(M2 − 1c2)(M1 − 1c1)||p

≤ ||(M2 − 1c2)||p||(M1 − 1c1)||p

= |M2|p|M1|p

Thus (5) is true.

We say that M ∈ IRn×n is semi-contractive in the p-

norm if |M |p < 1. In view of Lemma 1, the product of

semi-contractive matrices in M is thus semi-contractive. The

importance of these ideas lies in the following fact.

Proposition 1: Suppose M is a subset of IRn×n such that

M1 = 1 for all M ∈ M. Let p be fixed and let M̄ be a

compact set of semi-contractive matrices in M. Let

λ = sup
M̄

|M |p

Then for each infinite sequence of matrices Mi ∈ M̄, i ∈
{1, 2, . . .}, the matrix product MiMi−1 · · ·M1 converges as

i → ∞ as fast as λi converges to zero, to a rank one matrix

of the form 1c̄.

A. The case p = 1

We now consider in more detail the case when p = 1. For

this case it is possible to derive an explicit formula for the

semi-norm |M |1 of a nonnegative matrix M ∈ IRn×n.

Proposition 2: Let q be the unique integer quotient of n

divided by 2. Let M ∈ IRn×n be a nonnegative matrix. Then

|M |1 = max
j∈{1,2,...,n}







∑

i∈Lj

mij −
∑

i∈Sj

mij







where Lj and Sj are respectively the row indices of the q

largest and q smallest entries in the jth column of M .

Consider now the case when M is a doubly stochastic

matrix S, more can be said:

Theorem 3: Let q be the unique integer quotient of n

divided by 2. Let S ∈ IRn×n be a doubly stochastic matrix.

Then |S| ≤ 1. Moreover S is a semi-contraction in the one-

norm if and only if the number of nonzero entries in each

column of S exceeds q.

Note that the doubly stochastic matrix

S =











.5 .125 .125 .125 .125

.5 .125 .125 .125 .125
0 .25 .25 .25 .25
0 .25 .25 .25 .25
0 .25 .25 .25 .25











has a strongly connected graph but is not a semi-contractions

for p = 1. Thus this particular semi-norm is not as useful as

we would like because there are matrices in W which are

not semi-contractions for p = 1.

It is possible to compare this semi-norm with the coeffi-

cient of ergodicity. Observe that while the preceding matrix

is not a semi-contraction it is a scrambling matrix. Thus for

this example, τ(S) < |S|1 = 1. On the other hand there are

also doubly stochastic matrices which are semi-contractions

but which are not scrambling matrices. An example of this

is the matrix

S =















.5 0 0 0 .5 0
0 .5 0 0 0 .5

.125 .125 .25 .25 .125 .125

.125 .125 .25 .25 .125 .125

.125 .125 .25 .25 .125 .125

.125 .125 .25 .25 .125 .125















Thus for this example, |S|1 < τ(S) = 1, which means that

there are situations when it may be more advantageous to

use the semi-norm | · |1 to compute convergence rates than

to appeal to the coefficient of ergodicity.

B. The case p = ∞

Note that in this case |S|∞ ≤ 1 for any stochastic matrix

because |S|∞ ≤ ||S||∞ = 1. Although not at all obvious,

it turns out that |S|∞ equals the coefficient of ergodicity

discussed earlier and defined by (2). This is an immedi-

ate consequence of Proposition 3 which is stated below.

Unfortunately, the last example in the preceding subsection

shows that there are doubly stochastic matrices with strongly

connected graphs which are not scrambling matrices. Thus

this particular semi-norm is also not as useful as we might

hope for.

Proposition 3: Let A ∈ IRn×n be a nonnegative matrix.

Then

|A|∞ =
1

2
max

i,j

n
∑

k=1

|aik − ajk|

C. The case p = 2

For the case when p = 2 it is also possible to derive an

explicit formula for the semi-norm |M |2 of a nonnegative

matrix M ∈ IRn×n. Towards this end note that for any x ∈
IRn, the function g(x, c) = x′(M − 1c)′(M − 1c)x attains

its minimum with respect to c at 1

n
1
′M . This implies that

|M |2 = ||PM ||2 =
√

µ{M ′P ′PM}

where P = I− 1

n
11

′ and, for any symmetric matrix T , µ{T}
is the largest eigenvalue of T . We are led to the following

result.

Proposition 4: Let M ∈ IRn×n be a nonnegative matrix.

Then |M |2 is the largest singular value of the matrix PM

where P is the orthogonal projection on the orthogonal

complement of the span of 1.
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Now suppose that M is a doubly stochastic matrix S. Then

S′S is also doubly stochastic and 1
′S = 1

′. The latter and

Proposition 4 imply that

|S|2 =

√

µ

{

S′S −
1

n
11

′

}

(6)

More can be said:

Lemma 2: If S is doubly stochastic, then µ{S′S− 1

n
11

′}
is the second largest eigenvalue of S′S.

Proof of Lemma 2: Since S′S is symmetric it has

orthogonal eigenvectors one of which is 1. Let 1, x2, . . . , xn

be such a set of eigenvectors with eigenvalues 1, λ2, . . . , λn.

Then S′S1 = 1 and S′Sxi = λixi, i ∈ {2, 3, . . . , n}.

Clearly (S′S− 1

n
11

′)1 = 0 and (S′S− 1

n
11

′)xi = λixi, i ∈
{2, 3, . . . , n}. Since 1 is the largest eigenvalue of S′S it must

therefore be true that the second largest eigenvalue S′S is

the largest eigenvalue of S′S − 1

n
11

′.

We summarize:

Theorem 4: For p = 2 the semi-norm of a doubly stochas-

tic matrix S is the second largest singular value of S.

There is another way to think about what this theorem

implies. Prompted by the work in [9] and [11], suppose one

wants to measure in the sense of a 2-norm || · ||, how much

closer an n-vector x gets to the average vector z = 1

n
11

′x

when it is multiplied by a doubly stochastic matrix S. In

other words how does the norm ||Sx − z|| compare with

||x− z||? To address this question, note first that x− z ∈ O
where O is the orthogonal complement of the span of 1.

Note next that

||Sx − z||2 = ||S(x − z)||2 ≤

(

sup
y∈O

y′S′Sy

y′y

)

||x − z||2

But supy∈O
y′S′Sy

y′y
is the second largest eigenvalue of S′S

which in turn is the square of the second largest singular

value of S. In other words, ||Sx − z|| ≤ |S|2||x − z||. Thus

Sx is always as close to the average vector z as x is and is

even closer if |S|2 is a contraction.

In the light of Theorem 4, we are now in a position to

characterize in graph theoretic terms those doubly stochastic

matrices with positive diagonal entries which are semi-

contractions for p = 2.

Theorem 5: Let S be a doubly stochastic matrix with

positive diagonal entries. Then |S|2 ≤ 1. Moreover S is a

semi-contraction in the 2-norm if and only if the graph of S

is strongly connected.

To prove this theorem we need several concepts and

results. Let G denote a directed graph and write G
′ for that

graph which results when the arcs in G are reversed; i.e.,

the dual graph. Call a graph symmetric if it is equal to its

dual. Note that in the case of a symmetric graph, the three

properties of being rooted, strongly connected, and weakly

connected are equivalent. Note also that if G is the graph of

a nonnegative matrix M with positive diagonal entries, then

G
′ is the graph of M ′ and G

′ ◦ G is the graph of M ′M .

Lemma 3: A directed graph G with self-arcs at all vertices

is weakly connected if and only if G
′ ◦ G is strongly

connected.

Lemma 4: Let T be a stochastic matrix with positive

diagonal entries. If T has a strongly connected graph, then

the magnitude of its second largest eigenvalue is less than

one. If, on the other hand, the magnitude of the second largest

eigenvalue of T is less than one, then the graph of T is

weakly connected.

Lemma 5: The graph G of a doubly stochastic matrix D

is strongly connected if and only if it is weakly connected.1

The proof of Lemma 5 which follows is based on ideas

from [15] and [27]. Let G be a directed graph with vertex

set V = {1, 2, . . . , n}. Call a vertex j is reachable from i if

either j = i or if there is a directed path from i to j. Call

a vertex i essential if i is reachable from all vertices which

are reachable from i.

Lemma 6: Every directed graph has at least one essential

vertex.

To proceed, let us say that vertices i and j are mutu-

ally reachable if each is reachable from the other. Mutual

reachability is clearly an equivalence relation on V which

partitions V into the disjoint union of a finite number of

equivalence classes. Note that if i is an essential vertex of

G, then every vertex in the equivalence class of i is also

essential. Thus every directed graph possesses at least one

mutually reachable equivalence class whose members are all

essential.

Proof of Lemma 5: Strong connectivity clearly implies

weak connectivity. We prove the converse. Suppose G is

weakly connected. In view of the proceeding, G has at

least one mutually reachable equivalence class E whose

members are all essential. If E = V , then G is obviously

strongly connected. Thus to prove the lemma, it is enough

to show that E = V . Suppose the contrary, namely that E =
{i1, i2, . . . , im} is a strictly proper subset of V . Let π be any

permutation map for which π(ij) = j, j ∈ {1, 2, . . . ,m}
and let P be the corresponding permutation matrix. Then

clearly

P ′DP =

[

A B

0 C

]

and P ′DP is doubly stochastic. Since P ′DP is doubly

stochastic, the column sums of A must all equal one as

must the row sums of the submatrix [ A B ]. But the

transformation D 7−→ P ′DP corresponds to a relabeling

of the vertices of G, so the graph of P ′DP must also be

weakly connected. Thus means that B cannot be the zero

matrix. Therefore the sum of the row sums of A must be

less than m. But this contradicts the fact that the sum of the

column sums of A equals m. Therefore E = V .

Proof of Theorem 5: Let S be a doubly stochastic matrix

with positive diagonal entries. Then 1 is the largest singular

value of S because S′S is doubly stochastic. From this and

Theorem 4 it follows that |S|2 ≤ 1.

Suppose S is a semi-contraction. Then in view of Theorem

4, the second largest eigenvalue of S′S is less than 1. Thus

by Lemma 4, the graph of S′S is weakly connected. But

1It is clear that strong connectivity of G implies weak connectivity of G.
The converse was conjectured by John Tsitsiklis in a private communication.
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S′S is symmetric so its graph must be strongly connected.

Therefore by Lemma 3, the graph of S is weakly connected.

In view of Lemma 5, the graph of S is strongly connected.

Now suppose that the graph of S is strongly connected.

Then S is weakly connected so the graph of S′S is strongly

connected because of Lemma 3. Thus by Lemma 4, the

magnitude of the second largest eigenvalue of S′S is less

than 1. From this and Theorem 4 it follows that S is a semi-

contraction.

Proof of Theorem 2: Let M be any compact subset of

W . In view of Theorem 5, each matrix in M is a semi-

contraction in the two-norm. From this and Proposition 1, it

follows that M is convergable.

Now suppose that M is convergable and let S be a matrix

in M. Then Si converges to a matrix of the form 1c as

i → ∞. This means that the second largest eigenvalue of S

must be less than 1 in magnitude. Thus by Lemma 4, S must

have a weakly connected graph. By Lemma 5, the graph of

S must be strongly connected.

The importance of Theorem 5 lies in the fact that the matri-

ces in every convergable set of doubly stochastic matrices are

contractions in the 2-norm. In view of Proposition 1, this en-

ables one to immediately compute a rate of convergence for

any infinite product of matrices from any given convergable

set. The coefficient of ergodicity mentioned earlier does not

have this property. If it did, then every doubly stochastic

matrix with a strongly connected graph would have to be

a scrambling matrix. The following counterexample shows

that this is not the case:

S =















.5 .25 0 0 0 .25
.25 .5 0 0 0 .25
0 0 .5 .5 0 0
0 0 .5 .25 0 .25
0 0 0 0 .875 .125

.25 .25 0 .25 .125 .125















In particular, S is a doubly stochastic matrix with a strongly

connected graph but it is not a scrambling matrix.

IV. CONCLUDING REMARKS

In this paper we have identified the largest “alphabets”

of stochastic and doubly stochastic matrices with positive

diagonal entries whose “words” converge exponentially fast

as word length increases. In the case of double stochastic

matrices, each matrix in the corresponding alphabet is shown

to be a semi-contraction in the two-norm. In the case of

stochastic matrices which are not doubly stochastic, we were

not similarly successful and the problem of discovering a

suitable semi-contraction for this case remains unresolved.
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