
 

 

 

   

Abstract— For Bayesian filtering of two closely spaced linear 

Gaussian targets from Gaussian observations, the paper 

exploits a unique decomposition of the joint conditional density 

into a mixture of a permutation invariant density and a 

permutation strictly variant density. This leads to the 

development of a novel particle filter which performs optimal in 

the sense of either minimizing track swapping or minimizing 

track switching, and which includes estimation of the 

conditional track swap probability. Through Monte Carlo 

simulations, it is shown that minimizing track switching has a 

significant advantage over minimizing track swapping, and that 

the novel particle filter performs remarkably better than a 

standard particle filter. 

 

I. INTRODUCTION 

HE development of the Sampling Importance 

Resampling (SIR) particle filter [20],[14],[11] has 

created a complete novel approach towards approximating 

an exact Bayesian filter arbitrarily close, and has led to the 

development of a large variety of particle filters (e.g. [1], 

[19],[18]) that typically outperform established approaches 

in maintaining single target tracks. This success strongly 

motivated particle filter developments for multiple target 

tracking (e.g. [16],[23],[17]). Nevertheless, particle filtering 

for closely spaced targets still poses unresolved problems, 

e.g. [8],[13],[4],[12],[5].  

The unresolved problems already surface in tracking two 

closely spaced linear Gaussian targets. Assume two such 

targets, starting out well separated and with known identity 

labels, move close to each other and separate again some 

time later. Initially, a joint particle filter evolves two clearly 

separated clouds of sub-particles, one for each target, and 

with clear identity labels per sub-cloud. However, once the 

targets start to move close to each other, then the two clouds 

of sub-particles are mixed in one large particle cloud [13]. 

The mixing itself is not caused by some sub-optimal 

behaviour of the particle filter, though represents the 

behaviour of an exact Bayes filter [5]. However, the SIR 

particle filter approximation of the exact Bayes recursion 

tends to dissolve this exact mixing [8].    

The challenge is to handle the joint particles well when the 

two targets start to move away from each other. This asks for 

solutions to two sub-problems: 1) To handle the mixing of 
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joint particles well; and 2) To provide a useful tracking 

output from the joint particles, including the estimation of 

track swap probability. 

 Regarding the first sub-problem, [6] derives a unique 

decomposition of the joint conditional density into a mixture 

of a permutation invariant and a strictly permutation variant 

density. Subsequently [7] uses this unique decomposition for 

the development of a novel decomposed particle filter. 

Regarding the second sub-problem, it is well known that the 

typical MMSE track output is sensitive to track-coalescence. 

Alternative track output approaches have been developed by 

[17],[12],[5],[15]: [17] applies particle clustering prior to 

Minimum Mean Square Error (MMSE) estimation per 

cluster; [12] and [5] apply Maximum A Posteriori (MAP) 

estimation; and [15] develops an algorithm for Minimum 

Mean OSPA Error (MMOE) estimation [22], where OSPA 

refers to the Optimal Sub-Pattern Assignment metric of [21]. 

Although these approaches avoid track coalescence, they 

suffer from another problem, i.e. the track output typically 

switches in an uncontrolled way between permutation 

options [5]. Moreover, none of these methods estimate track 

swap probability.  

The aim of this paper is to exploit the unique 

decomposition of [6] and the decomposed particle filter 

cycle of [7] for the development of a particle filter for two 

Gaussian targets which estimates track swapping and 

minimizes track swapping and track switching respectively.  

The paper is organized as follows. Section II formulates 

the track maintenance problem for two linear Gaussian 

targets. Section III reviews the unique decomposition results 

of [6]. Section IV reviews the decomposed particle filter 

cycle of [7]. Section V studies track outputs which minimize 

track swapping and track switching. Section VI provides 

simulation results for an example of two closely spaced 

targets. Section VII draws conclusions. 

II. TWO GAUSSIAN TARGETS TRACKING PROBLEM 

We consider two linear Gaussian targets, i.e. 

            , , 1 ,   1 2i t i i t i tx a x w i−= + , = ,  (1) 

where 
,i tx  is the n -vectorial state of the i -th target, 

ia  is an  

( )n n× -matrix and ,{ }i tw  is a sequence of independent 

identically distributed (i.i.d.) zero mean Gaussian variables 

of dimension n′ , with , ,{ } i

T
i t i tE w w W= , { } 0iDet W > , and 

1,{ }tw  and 2,{ }tw  mutually independent, and also 
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independent of 1,0x  and 2,0x .  

We assume that a potential measurement originating from 

target i  is modelled as a linear Gaussian system: 

          , , ,  1,2i t i i t i i tz h x g v i= + , =  (2)  

where 
,i tz  is an m -vector, 

ih  is an ( m n× )-matrix and 
ig  is 

an ( m m′× )-matrix, and 
,{ }i tv  is a sequence of i.i.d. standard 

Gaussian variables of dimension m′  with 
1,{ }tv  and 

2,{ }tv  

mutually independent. Moreover 
,{ }i tv  is independent of  

,0jx   and ,{ }j tw  for all i , j .  

Stacking target states and potential measurements yields: 

            
1t t tx Ax w−= +   (3)  

             
t t tz Hx Gv= +   (4) 

with: 
1, 2.Col{ , }t t tx x x= ,  

1, 2,Col{ , }t t tz z z≜ ,  

         
1, 2,Col{ , }t t tw w w= , 

1, 2,Col{ , }t t tv v v= ,   

         
1 2Diag{ , }A a a= , 

1 2Diag{ , }W W W=  

         
1 2Diag{ , }H h h= ,

1 2Diag{ , }G g g= , 

where 1

1 2

2

Col{ , }
y

y y
y

 
 
 
≜  and 1

1 2

2

0
Diag{ , }

0

y
y y

y

 
 
 
≜ . 

At moment 1, 2,..,t T= , a vector observation ty  is made 

of the two targets. The relation between 
ty  and 

tx  satisfies: 

                     t t t tt
y z Hx Gvχ = = +   (5) 

where 
tt

Iχ χ ⊗≜ , with I  a unit-matrix (of size m ), ⊗  

Kronecker product, and }{ tχ  a sequence of i.i.d. 2 2×  

permutation matrices, which is independent of { , , }t t tx v w . 

For two targets, 
tχ  either is the 2 2× unity matrix I , or its 

permutation 
0 1

1 0

 
Π  

 
≜ .  

The multi-target track maintenance problem considered is 

to estimate tx  in a recursive way from observations 

{ ;0 }t sY y s t≤ ≤≜ , where 
0 {}y = . In spite of all linear 

Gaussian assumptions, the permutation matrix process { }tχ  

in (5) makes this is a non-linear filtering problem. A 

recursive characterization of the exact conditional density is 

given in [3] for a more general problem setting.  

III. UNIQUE DECOMPOSITION 

This section presents the unique decomposition of [6].  

 

Definition 1:  

We say that the conditional density of the joint two-target 

state is permutation invariant at moment t  if for all 2n
x ∈R    

                 | |( ) ( )
t t t tx Y x Yp x p x= Π   (6) 

 

The standard way of working in target tracking is to use 

the (global) MMSE state estimation for the target tracking 

output, which satisfies: 

         
|

ˆ ( )
t t

Mn

MMSE

t x Yx xp x dx= ∫
R

        (7) 

If two targets have a permutation invariant joint 

conditional density then (6) applies, and together with (7) 

this yields: 

          
| |

ˆ ( ) ( ) / 2

ˆ ˆ         / 2  

t t t t

Mn

MMSE

t x Y x Y

MMSE MMSE

t t

x x p x p x dx

x x

 = + Π 

 = + Π 

∫
R  (8) 

which implies ˆ ˆMMSE MMSE

t tx x= Π . This proofs that when two 

targets have a permutation invariant joint conditional 

density, they also have equal MMSE estimated states.  

When there is an 2n
x ∈R  for which 

               | |( ) ( )
t t t tx Y x Yp x p x≠ Π   (9) 

then we know from Definition 1 that for this x ,  
|

( )
t tx Y

p x  is 

not permutation invariant. In order to capture a total lack of 

permutation invariance for all 2n
x ∈R , [6] introduces the 

following definition. 

 

Definition 2:  

We say that the conditional density |t tx Yp  of the joint two-

target state is strictly permutation variant if for all 2nx ∈R :  

            | |( ). ( ) 0
t t t tx Y x Yp x p xΠ =  (10) 

 

Theorem 1 ([6], Theorem 2)  

|
( )

t tx Y
p x  admits a unique decomposition in a weighted 

sum of a permutation invariant density 
|

( )
t tx Y

p xχ  and a 

strictly permutation variant density | ( )
t tx Yp x
χ

, i.e. for all 

2n
x ∈R : 

             | | |( ) ( ) (1 ) ( )
t t t t t tx Y t x Y t x Yp x p x p x

χχα α= + −  (11) 

             
| |

( ) ( )
t t t tx Y x Y

p x p x
χ χ= Π   (12) 

             | |( ). ( ) 0
t t t tx Y x Yp x p x
χ χ

Π =  (13) 

 

[6] also characterizes the terms appearing in the unique 

decomposition of the joint conditional density as follows. 

 

Theorem 2 ([6], Theorem 3) 

In the unique decomposition of Theorem 1, the weight 
tα  

and the permutation invariant density 
|

( )
t tx Y

p x
χ

satisfy: 

2

| |min{ ( ), ( )}
t t t t

n

t x Y x Yp x p x dxα = Π∫
R

 (14) 

| | |
( ) min{ ( ), ( )}/

t t t t t tx Y x Y x Y t
p x p x p x

χ α= Π , if 0tα >  (15) 

| | |( ) ( ) ( ) /(1 )
t t t t t tx Y x Y t x Y t

p x p x p x
χ χα α = − −  , if 1tα <  (16) 

 

In [7], this unique decomposition is exploited to develop a 

decomposed particle filter for two Gaussian targets.  
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IV. DECOMPOSED PARTICLE FILTER 

Following [7], we assume that the joint conditional density 

1 1| ( )
t tx Yp x
− −

 of the two targets in Section II,  is an empirical 

density which is spanned by pN  decomposed particles:  

{ }2
1 1 1, , [0,1]; 1,...,

jj n j
pt t tx j N

χχµ µ− − −∈ ∈ =R , such that for all 

{1,..., },pj N∈ 1 1 1/
jj

pt t N
χχµ µ− −+ = , and 11 1

j i j
tt tx x x−− −≠ ≠ Π  

almost surely in probability for all . i j≠ With this the  

empirical density satisfies: 

   
1 1

,
| 1 1

1

ˆ ( ) ( )

p

t t

N

j j
x Y t t

j

p x x x
χ

µ δ
− − − −

=

= −∑  

                     ,1
1 1 12

1

[ ( ) ( )]

pN

j j j
t t t

j

x x x x
χµ δ δ− − −

=

+ − + − Π∑        (17) 

Starting from (17), in ([7], section 4) the following 

characterization of 
|

( )
t tx Y

p x  is derived: 

      
,

|

1

ˆ ˆ( ) ( ) { ; ( ), }

p

t t

N

j j
x Y t t

j

p x N x x P
χ

χ

β χ χ
=

=∑∑  

             ,1
2

' 1

ˆ( ) { ; ' ( ), }

pN

j j
t t

j

N x x P
χ

χ χ

β χ χ χ
=

+∑∑∑       (18) 

     
,, ,
1( ) { ; , }/

jj j
t t t tt N y Hx Q c

χχβ χ µ χ−=                  (19a) 

     , , ,
1( ) { ; , }/j j j

t t t tt N y Hx Q c
χ χβ χ µ χ−=                            (19b) 

        ˆ ( ) ( )j j j
t t t tx x K y Hxχ χ= + −                       (20) 

with:         1T
K WH Q

−=  

                 T T
Q HWH GG= +  

                P W KHW= −  

and ,
tc  such that: 

, ,

1

[ ( ) ( )] 1

pN

j j
t t

j

χ χ

χ

β χ β χ
=

+ =∑∑  

Equations (17)-(20) show that by starting with an 

empirical density 
1 1|ˆ ( )

t tx Yp x
− −

 which is spanned by pN  

decomposed particles (17), we get |ˆ ( )
t tx Yp x  in (18) which is 

a mixture of 4 pN  Gaussians of same covariance P .  

The steps of the novel decomposed particle filter are 

specified in Table 1. The evolution and correction steps are 

based on equations (18)-(20). In order to arrive at the other 

steps in Table 1, the key issue is how to resample pN  new 

decomposed particles from |ˆ ( )
t tx Yp x  in (18), and at the same 

time perform the Bayesian update step of the particle 

weights. Straightforward application of the unique 

decomposition characterization of Theorem 2 to the 

Gaussian mixture in (18) would lead to a very complicated 

exercise. Therefore [7] performs this characterization such 

that the unique decomposition applies at the locations of the 

newly sampled particles, and subsequently identifies the 

novel decomposed particles and evaluates their novel 

weights. This leads to the following Resampling and Unique 

decomposition approaches.  

 

Resampling: First, we independently draw pN  times a 

pointer ( ),i i
t tκ χ  to one of the 4 pN  Gaussians. Subsequently 

we draw i
tx  from  ˆ{ ; ( ), }

i
t i

t tN x x P
κ χ  for 1,.., .Pi N=  Because 

{ } 0Det W >  we have { } 0Det P > , which implies that almost 

surely  j i j
t t tx x x≠ ≠ Π  for all  ,  , 1,.., .pi j i j N≠ =  

 

Unique decomposition: The next step is to perform the 

characterization of Theorem 2, which means that the weight 

1/ pN  is decomposed in the permutation invariant and 

strictly variant weights , 1i i
t t pN
χµ ρ −=  and 

, 1
(1 )

i i
t t pN
χ

µ ρ −= −  respectively. Following ([7], Appendix), 

this yields the permutation invariant fraction i
tρ  in Table 1.  

 

Table 1. Cycle of Decomposed Particle Filter  

      
1 1| |ˆ ˆ

t t t tx Y x Yp p
− −

→  

Particles { }2
1 1 1, , [0,1]; 1,...,

jj n j
pt t tx j N

χχµ µ− − −∈ ∈ =R  

At 1 0t − =  the weight values and samples are: 

        

0 0

1 1

|1

0 and 1/

( )

jj
pt t

j
x Yt

N

x p x

χχµ µ− −

−

= =

∼
 

For 1,..., pj N= : 

Evolution:       1
j j

t tx Ax −=  

Correction: 

    { },, ,
1( ) ; , /

jj j
t t t tt N y Hx Q c

χχ
β χ µ χ−=  

    { }, , ,
1( ) ; , /j j j

t t t tt N y Hx Q c
χ χβ χ µ χ−=  

with T T
Q HWH GG= + and ,

tc  such that 

    
, ,

1

( ) ( ) 1

pN

j j
t t

j

χ χ

χ

β χ β χ
=

+ =∑∑  

Resampling:  

For 1,..., pi N= , draw samples, with replacement: 

     ( ) , ,
, |ˆ, ~ ( , ) ( ) ( )

t t t

ji i j
t t Y t tp j

χ χ
κ χκ χ χ β χ β χ+≜  

     ˆ~ { ; ( ), }
i
ti i

t t tx N x x P
κ χ  

with:     ˆ ( ) ( )j j j
t t t tx x K y Hxχ χ= + −  

            1T
K WH Q

−=  

            P W KHW= −  

The new decomposed weights become: 

        ,
/

i i
t t pN
χµ ρ=  
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,

(1 ) /
i i

t t pN
χ

µ ρ= −  

with:  
( ) min{ ( ), ( )}

( ) ( )

i i i
i t t t t t t
t i i

t t t t

x x x

x x

χ χχ

χχ

σ σ σ
ρ

σ σ

+ Π
=

+
 

         
,

' 1

ˆ( ) ( ') { ; ( '), }

pN

j j
t t t

j

x N x x P
χ χ

χ χ

σ β χ χ χ
=

=∑∑∑  

         
,

' 1

ˆ( ) ( ') { ; ( '), }

pN

j j
t t t

j

x N x x P
χ χ

χ

σ β χ χ
=

=∑∑  

The new decomposed particles are: 

       { },2 ,, , [0,1],;  1,...,
ii n i

t t t px i N
χχµ µ∈ ∈ =R  

These particles span the empirical density: 

        
,

|

1

ˆ ( ) ( )

p

t t

N

j j
x Y t t

j

p x x x
χ

µ δ
=

= −∑  

                    ,1
2

1

[ ( ) ( )]

pN

j j j
t t t

j

x x x x
χµ δ δ

=

+ − + − Π∑  

The permutation invariant fraction of the unique 

decomposition equals 

               
,

1

ˆ
pN

j
t t

j

χα µ
=

=∑  

• Produce track output, and 

• Perform next Decomposed PF cycle. 

 

V. MINIMIZING TRACK SWAP AND TRACK SWITCHING 

For the Decomposed Particle Filter, the MMSE track output 

satisfies: 

, ,1
2

1

ˆ [ ( ) ]

pN

i i i i
t t t t t

i

x x I x
χ χµ µ

=

= + +Π∑        (21) 

This characterization clearly shows that particles having a 

total weight of ,i
t
χµ  are used to cause track coalescence 

behavior. In order to avoid this, in the sequel we consider 

track output which avoids track coalescence, i.e. for each of 

the particles only one permutation version is used in the 

track output. The latter is accomplished by considering 

estimated track output which is of the following form:  

, , , ,

1 1

1
ˆ ˆˆ ( )

p pN N

iO i O i i O i i
t t t t t t t

pi i

x x x
N

χ χµ µ χ χ
= =

= + =∑ ∑         (22) 

where 
, ,{ , , ; 1,.., }
ii i

t t t px i N
χ χµ µ =  is the set of decomposed 

particles at moment t and ,ˆ O i
tχ  is some optimal permutation 

for the i-th particle. In this section we consider the 

minimization of track swapping and track switching 

respectively, both within the setting of track coalescence 

avoiding eq. (22).  

Under track output (22), the track swap probability 

becomes: 

 ,
,

1

ˆ ˆ ˆ[1( ) ({ })

p

t t

N

O O i i
Swap t t x Y t

i

P I p xχ |

=

= = Π∑  

,ˆ ˆ1( ) ({ })]
t t

O i i
t x Y tp xχ |+ = Π          (23) 

where ˆ ({ })
t tx Yp a|  denotes the total mass of the empirical 

density ˆ (.)
t tx Yp |  at { }a . Evaluation of equation (23) yields: 

,
, ˆ

1

ˆ ˆ ˆ[1( ) ( )

p

i
t t

N

O O i
Swap t t Y

i

P I p
χ

χ
|

=

= = Π∑ ,

ˆ
ˆ ˆ1( ) ( )]i

t t

O i
t Y

p I
χ

χ
|

+ = Π  

  
,, , , ,1 1

2 2

1

ˆ ˆ[1( ) 1( )( )]

pN

iO i i O i i
t t t t t

i

I
χχ χχ µ χ µ µ

=

= = + = Π +∑  

,, ,1
2

1

ˆ[ 1( ) ]

pN

ii O i
t t t

i

χχµ χ µ
=

= + = Π∑            (24) 

The latter implies that minimization of ,
ˆO
Swap tP  is 

accomplished when  ,ˆO i
t Iχ =  for all i. This leads to the track 

swap minimization track output equations in Table 2. The 

Minimum Track Swap (MTS) probability is determined by 

the 1
2

ˆtα  value, i.e. half the weight of the permutation 

invariant part of the unique decomposition.  

 

Table 2. Decomposed Particle Filter MTS Output 

Track swap probability is minimized by the track output: 

        

1

1
ˆ

pN

MTS i
t t

pi

x x
N

=

=∑  

        

1

1ˆ ˆ ˆ( )( )

pN

MTS i MTS i MTS T
t t t t t

pi

R x x x x
N

=

= − −∑   

The corresponding probability of track swap equals: 

      ,1 1
, 2 2

1

ˆ ˆ
pN

S i
Swap t t t

i

P
χµ α

=

= =∑  

 

In order to minimize track switching we define the Track 

Continuity Assignment (TCA) ,ˆTCA i
tχ  for the i-th particle 

through the following minimization of jumps in track 

output
1
: 

    ,
1ˆ ˆ ˆmin ( )TCA i i TCA

t t tArg H x Ax
χ

χ χ −−≜ � �                      (25) 

The corresponding TCA based track state output ˆTCA
tx  is: 

        ,

1

1
ˆˆ

pN

TCA TCA i i
t t t

pi

x x
N

χ
=

=∑             (26) 

In order to avoid singularities, we assume ,ˆTCA i
t Iχ =  if 

ˆ ˆi i
t tx x= Π  or 1 1ˆ ˆTCA TCA

t tx x− −= Π .  

Using (24), the probability of track swap under TCA 

 
1 Within the context of Multiple Hypothesis Tracking (MHT), [9] 

develops a related approach in minimizing Mahalanobis distances. 
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output becomes: 

  
,, ,1

, 2

1

ˆ ˆ[ 1( ) ]

pN

iTCA i TCA i
Swap t t t t

i

P
χχµ χ µ

=

= + = Π∑   

,,1
2

1

ˆ ˆ1( )

pN

iTCA i
t t t

i

χ
α χ µ

=

= + = Π∑          (27) 

which implies  , ,
ˆ ˆTCA MTS
Swap t Swap tP P≥ . Application of the above  

approach yields the TCA track output equations in Table 3.  

 

Table 3. Decomposed Particle Filter TCA Output  

Track Continuity Assignment (TCA) track state output: 

     ,

1

1
ˆˆ

pN

TCA TCA i i
t t t

Pi

x x
N

χ
=

=∑  

     , ,

1

1ˆ ˆ ˆˆ ˆ( )( )

pN

TCA TCA i i TCA TCA i i TCA T
t t t t t t t

pi

R x x x x
N

χ χ
=

= − −∑  

with ,ˆTCA i
tχ  the TCA based permutation for particle i:  

     ,
1ˆ ˆmin ( )TCA i i TCA

t t tArg H x Ax
χ

χ χ −= −� �   

The probability of track swap under TCA equals: 

      
,, ,1

, 2

1

ˆ ˆ[ 1( ) ]

pN

iTCA i TCA i
Swap t t t t

i

P
χχµ χ µ

=

= + = Π∑  

 

VI. MONTE CARLO SIMULATION 

We consider a two target scenario from [3]. Two initially 

separated targets move towards each other, each with 

constant initial velocity 75m/s. At some moment in time both 

objects start decelerating at -50m/s
2
 until they both have zero 

velocity. The deceleration starts at a moment such that the 

minimum distance between the two targets equals d = 100m. 

After spending a significant number of scans with zero 

velocity, both objects start accelerating at 50m/s
2
 away from 

each other until their velocity equals the opposite of their 

initial velocity. From that moment on the velocity of both 

objects remains constant again.  

For this scenario, Monte Carlo simulations containing 100 

runs are performed for the novel decomposed particle filter 

using 100pN =  joint particles. The initial track estimates 

are accurate. The target and observation model used by this 

particle filter evolves according to discretized continuous 

white-noise acceleration [2], and target position is observed 

in noise, i.e. for the coefficients in (1)-(2) holds: 

1

0 1

s

i

T
a

 
=  
 

, 

3 21 1
3 2

21
2

s s

i a

s s

T T
W

T T
σ

 
=  

 
, [ ]1 0ih = , 

i mg σ=  

with 
aσ  the standard deviation of acceleration noise and 

mσ  

the standard deviation of measurement error. The scenario 

parameter values are Vinitial = 75m/s, Ts = 1s, σm  = 30m and  σ 

a = 50m/s
2
.  

 

 
 

Monte Carlo simulation results are presented in Figures 1-

6. Figure 1 shows typical results for one run by the novel 

decomposed particle filter and TCA track output (Table 3). 

The optimal TCA track position output stays remarkably 

close to the true targets (Figure 1a), in spite of significant 
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1a. Measurements ( • ) and TCA estimated positions (x and +) 
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1b. Track swap probability estimated by decomposed PF with TCA 

 

Figure 1. Track output of decomposed PF with TCA (Table 3). 
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Figure 2 Mean, maximum and minimum track swap probability 

estimated over 100 MC runs for decomposed PF with TCA (Table 3).  
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track swap probability (Figure 1b). The peak in TCA Swap 

probability in Figure 1b indicates that ,ˆTCA i
tχ  often favours 

permutated contributions to the track output as soon as the 

two tracks start to move close to each other.  

Figure 2 shows that the optimal TCA track state output 

approach leads to a very dynamic kind of behaviour by the 

novel decomposed particle filter in the estimated Track Swap 

probabilities.  

Figure 3 shows typical results for one run by the novel 

decomposed particle filter (Table 1) and MTS track output 

(Table 2). The track swap probability behaves much 

smoother (Figure 3b) than in Figure 1b, though at the cost of 

less good position output (Figure 3a versus Figure 1a).  

Figure 4 shows that MMSE track output from the 

decomposed particle filter ends with 100% track 

coalescence. Figure 5 shows that for a SIR PF this track 

coalescence partially dissolves, which phenomenon is in line 

with the theory of [8]. 
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Figure 4. Measurements ( • ) and Decomposed PF with MMSE 

estimated positions (x and +). This shows the full track coalescence 

announced by equation (8). 
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Figure 5. Measurements ( • ) and SIR PF MMSE estimated positions 

(x and +). This shows slowly dissolving track coalescence, in line 

with the theory [8].  
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Figure 6 RMS of OSPA position errors for the decomposed particle 

filter with TCA, MTS and MMSE outputs, and for a SIR particle 

filter with MMSE output. 
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3a. Measurements ( • ) and Decomposed PF with MTS estimated 

positions (x and +). This shows some improved performance over IPS 

with MMSE output. 
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Figure 3. Track output of decomposed PF with MTS (Table 2). 
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Figure 6 shows the RMS of OSPA errors [21] in position 

for the novel decomposed particle filter with TCA output, 

with Minimum Track Swap (MTS) output, with MMSE 

output, and a normal SIR Particle Filter (using ten thousand 

particles) with MMSE output. This shows that the 

remarkable smooth behaviour of optimal TCA track output 

in Fig. 1a is typical behaviour. The decomposed particle 

filter with TCA track output has superior performance over 

the three other track outputs. Moreover, the position RMS of 

the OSPA errors in the TCA track output is almost constant 

over the simulated period.  

VII.  CONCLUDING REMARKS 

For the problem of maintaining tracks of two Gaussian 

targets from unassociated Gaussian observations, this paper 

studied minimization of track swapping and track switching.  

Explicit use has been made of the unique decomposition by 

[6] and the decomposed particle filter of [7]. For this 

decomposed particle filter, two specific track outputs have 

been studied: 

• Minimizing track swapping 

• Minimizing track switching 

Thanks to the decomposed particle filter framework, both 

track outputs come with an estimation of the conditional  

probability that the track outputs are swapped relative to the 

true target locations.  

The decomposed particle filter with different track outputs 

have been compared to each other and to a standard SIR 

particle filter with MMSE track output. This comparison is 

accomplished through running MC simulations for an 

example of two Gaussian targets that start well separated, 

then fly towards each other, and then separate again. The 

simulation results obtained show that the decomposed 

particle filter with minimal track switching performs much 

better than the one with minimal track swapping, and also 

much better than a standard SIR particle filter with MMSE 

track output. The decomposed particle filter with minimal 

track switching output has two unique capabilities: 

• It provides track output that behaves continuous 

and stays remarkably close to the true target 

locations;  

• It provides an estimate of the conditional 

probability that the presented tracks are swapped 

regarding the true target locations. 

Directions for follow up research are to extend the novel 

decomposed particle filter for covering missed detections 

and false measurements, to extend it to hybrid and non-linear 

targets, to cover limited sensor resolution, and to cover more 

than two targets. A start of the latter is in [10]. 
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