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Abstract— A novel adaptive-gain twist sliding mode controller 
is proposed. The disturbance term is assumed to be bounded 
with unknown bounds. The proposed Lyapunov-based 
approach consists in using dynamically adaptive control gains 
that ensure the establishment, in finite time, of a real second 
order sliding mode. Also the adaptation algorithm doesn’t 
overestimate the values of the control gain. A numerical 
example confirms the efficacy of the proposed adaptive-gain 
twisting control. 

I. INTRODUCTION 
LIDING mode control is a very popular choice when it 
comes to dealing with matched disturbances and  

uncertainties.. The approach is based on keeping a suitably 
chosen constraint by ‘brute force’, i.e. by responding 
immediately to any deviation of the system from the 
constraint by steering it back by a sufficiently energetic 
effort [1]-[5], [10]. However in-spite of it being very robust 
and accurate, the standard sliding mode can be implemented 
only if the relative degree of the sliding variable is equal to 
one. On the other hand, Higher order sliding mode control 
([6-8]) can be applied to systems with arbitrary relative 
degree. Also while the standard sliding mode precision is 
proportional to the time interval between measurements, the 
r-sliding mode realization can provide up to the order of 
sliding precision with respect to the switching delay [5]. 

thr

 A powerful second order sliding mode control (2-SMC) 
algorithm is the twisting control law [9], [14] that handles a 
relative degree equal to two. The state variable and its 
derivative is driven to zero in finite time by means of  
discontinuous control in the presence of smooth matched 
disturbances with bounded gradient, when this boundary is 
known. Hence the boundary of the disturbance gradient is 
required to be known which is a serious drawback, since in 
many practical cases, the bound cannot be easily estimated 
[11].  

Contribution. In this work, we propose the novel adaptive 
gain Twist control law that continuously drives the state 
variable and its derivative to a bounded domain (or zero if 

the adaptive gains are allowed to be overestimated) in finite 
time in the presence of the bounded disturbance with the 
unknown boundary. The derivation and the proof is based 
on the recently proposed Lyapunov function for twisting 
controller [13] as well as on the adaptation technique 
developed for the derivation and the proof of adaptive 
Supertwist control in [12]. The structure of this paper is as 
follows. The problem is formulated in Section II, and the 
control structure is discussed in Section III. The derivation 
and the proof of the proposed adaptive twist 2-SMC 
algorithm are presented in Section IV. Section V contains a 
simulation example. The conclusions can be found in 
Section VI. 
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II. PROBLEM FORMULATION 
The closed loop system is described by 

(1)
( , , )

x y
y u t x yδ

= ⎫
⎬= + ⎭

 

where ,x y ∈  are scalar state variables, ( , , )t x yδ  is a 
bounded disturbance, whose finite boundary  

( , , ) 0t x y Dδ ≤ >              (2) 
exists but is not known. 

In this work we are looking for an adaptive-gain Twisting 
algorithm that is able to address this problem via generating 
a control function, whose gains are adapted to the unknown 
perturbation with the unknown boundary. 

III. CONTROL STRUCTURE 
The following Twisting control algorithm [6] is considered. 

( )sgn( ) 0.5sgn( )u xα= − + y ,          (3) 
where the adaptive  gain 

( , , )t x yα α=               (4) 
is to be defined. 

The adaptation process consists of dynamically increasing 
the control gain ( )tα such that the variable x  and its 
derivative  converge to the equilibrium point y 0x y= =  in 
the 2-sliding mode (2-SMC) in finite time in the presence of 
the bounded perturbation with the unknown bound. 
Thereafter the gain ( )tα starts to reduce. This gain reduction 
gets reversed as soon as the system trajectories again start 
deviating from the equilibrium. In order to avoid the control 
gain ( )tα  from being over- estimated, a detector that reveals 
the beginning of the destruction of the 2-SMC is constructed 
and incorporated in the Adaptive Twist control law. This 
detection mechanism is designed by introducing a domain 
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{ }: , : ( , )M x y N x y μ≤ , where 
22

( , )
yxN N x y

a b
= = +  is 

an ellipse, so that as soon as this domain is reached, the gain 
( )tα  starts dynamically reducing. However, as soon as the 

system trajectories leave the domain, the control gain 
( )tα starts increasing in order to force the trajectories back 

to the domain in finite time. In the case when a b= , the 
domain is represented by a circle of radius r aμ= . 

IV. MAIN RESULTS 
 The main result of the paper is formulated in the 
following theorem. 
Theorem 1. Consider system (1), where the perturbation 

( , , )t x yδ  satisfies (2) for some unknown constant . 
Then for any initial conditions  a real 2-sliding 
mode is established in the domain 

0>D
(0), (0),x y

{: , : ( , )M x y N x y } ,η η μ>≤  in finite time via Twist 
control (3) with the adaptive gain 

minα

min

1
2 1 sgn( ( , ) ),2 221

31 *

,

N x y if
x x y

ω

γ
μ α

α
γ

α α

χ α α

− ≥
+

−

−

<

α

⎧
⎪
⎪
⎪⎪= ⎨
⎪
⎪
⎪
⎪⎩

( )

      (5) 

with the establishment of the following conditions 

2a Dα > and 
4 2

( ) 0 (0.5 )
3

b Dγ α α< < −  

where min, , , ,1 1γ ω μ χ α
*

 are arbitrary positive constants, 

and α  is a sufficiently large constant. 
Proof. Consider the following Lyapunov function [12-13]. 

( )41 *( , , ) ( , )0 4 1
V x y V x yα

γ
= + −α α           (6) 

where 
13/22 2 2 4y( ,0V x ) sgn( )
4

y x x x y x yα γ α= + + + ,   (7) 

and ( , , )t x yα α=  is the adaptive gain, while  is a 
large value and 

* 0α
0γ > . 

The proof is split into two steps. In the first step, we show 
that  is finite time convergent, for which the 
function has to be simplified as follows. 

( , )0V x y
( ,0V x )y

13/22 2 2 4

}

y

y

+

+

( ,0V x ) sgn( )
4
11/22 2{ sgn( )
4

1 4
4

y x x x y x y

x x x x y y

Tx z Az y

α γ α

α γ α

= + +

= + +

= +

4 (8)

 

where 1/2[ gn( ) ]Tz x s x y= and 

2
2

2

A

γα

γ α

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

For the matrix A to be positive definite, 

3/2
min2γ α<                (9) 

Since { } { }2 2
maxmin

TA z z Az A zλ λ≤ ≤ , we can 
write 

{ } 12 4( , ) max0 4
V x y x A z yλ≤ + .    (9a) 

Let  

2,1
T

k x y⎡ ⎤= ⎢ ⎥⎣ ⎦
.                (10) 

Therefore  

1
2 2 4 1/ 2 4(k x y x y= + ≤ + ) .       (11) 

Hence, 
12 2 4( , ) ( ){ }max0 114

TV x y A x x y y k P kλ≤ + + ≤ 1 (12) 

where  
( )max( )max 2

1 ( ) 1max
2 4

A
A

P
A

λ
λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Since  

{ } { }2 2
max1 1 1 1 1 1min 1

TP k k P k P kλ λ≤ ≤     (13) 

then equation (12) can be rewritten using (11) and (13) as 

{ } { }2 1/2 4( , ) ( )max max0 1 1 1V x y P k P x yλ λ≤ ≤ +    (14) 

Now in order to show that is finite time convergent, 
we determine its derivative as 

( , )0V x y

33/2 1/22( , ) 2 sgn( )0 2
2 3sgn( ) 2

V x y xx x x y x xy

x x y x yy y y

α γ γ

α α

= + +

+ + +
    (15) 

Equation (15) is expanded using system’s equations (1)-
(3): 

23 1/2 3/2 32( , ) 0.50 2
3/23 sgn( ) 2

3/20.5 sgn( ) sgn( )

V x y x y x x y y

y x x x y

x x y

γ αγ α

δ δ γ α δ

αγ

= − − −

+ + +

−

α

 (16) 

2

1/2 3/2

3

3 1/2 3/2 332( , ) 0.50 2
3/2 3/22 0.5

3 {0.5 } 2 {0.5 }
2

{0.5 }

V x y x y x x y y y

x x y x

x x x y

y

γ αγ α α δ

δγ α δ αγ

γ γ α δ α α δ

α δ

≤ − − − ++

+ + +

≤ − − − −

− −

   (16a) 
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Also equation (16a) can be expressed as 
3/2 1/2 32( , ) { }0

31/2{ }3

V x y K x x y x y y

K x y

≤ − + + +

≤ − +
        (17) 

where 
3min [ , {0.5 }, 2 {0.5 },{0.5 }]
2

K γ γ α δ α α δ α δ= − − − .   (18) 

Equation (16a) can be further simplified as 
3/2( , ) {0.5 }0

TV x y x y B PBγ α δ≤ − − −  

where 1/2[ TB x y= ] , and hence the matrix  is  P

3
2 (0.5 )

4
3

0.5
4

P
α α δ γ

γ α δ

− −
=

− −

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

D

         (19) 

If the following conditions hold: 
 
( ) 2a α >               (20a) 

4 2
( ) 0 (0.5 )

3
b γ α α< < − D        (20b) 

then the matrix  is positive definite and  is 
negative definite. 

P ( , )0V x y

 It can be observed that in view of (14), eq. (17) can be 
modified as  

3 31/2( , ) { } ( , )0 03/43 3 ( )max 1

K KV x y x y V x y
Pλ

= − + ≤ − / 4   (21) 

For the second step of the proof to prove the finite time 
convergence, we compute the derivative of the entire 
Lyapunov function candidate presented in (6) for the system 
given by (1) - (3). 

( )31 *( , , ) ( , , )0
1

V x y V x yα α α α
γ

= + − α        (22) 

Note that in the previous calculation of  in eq. (21) it was 
assumed (implicitly) that 

0V
α  was constant. However α is a 

time dependent, and so the true derivative of  is 
calculated as  

0V

( )3/ 4
0

2 2( , , ) ( , , ) 20 3/ 43 ( )max 1

KV x y V x y x x y
P

α α α
λ

≤ − + + α  (23) 

Let 
3 / 43 (max 1

KR
Pλ

=
)

, and therefore (22) becomes 

( )
( )

3 / 4 2 2( , , ) ( , , ) 20

31 *

1

V x y RV x y x x yα α α

α α α
γ

≤ − + +

+ −

On adding and subtracting the term 
3*1

2 1

ω
α α

γ
−  in eq. 

(24) we get 

( ) ( )

33/4 *1( , , ) ( , , )0 2 1
3312 2 * *12

21 1

V x y RV x y

x x y

ω
α α α α

γ

ω
α α α α α α

γ γ

≤− − −

+ + + − + −α

      (25) 

Applying Jensen’s inequality 

( ) ( )
1/ 4, 1

3

qq qx y x y q+ ≤ + = >   

we obtain 
3

4 4 4
3 3 3 3*40

3
4 4 3 3* *40 0

V

V V

α α

α α α α

⎡ ⎤
⎛ ⎞ ⎛ ⎞⎢ ⎥+ − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
+ − ≤ + −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (26) 

and in consequence (25) becomes 

( )
( )

3/4 2 2( , , ) ( , , ) 2

331 * *1
21 1

V x y rV x y x x yα α α

ω
α α α α α

γ γ

≤ − + + +

+ − + −

α

   (27) 

where 
1

1min ,
2

r R
ω

γ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

Let there exist a positive constant *α (very large in value) 
such that *( ) 0tα α− <  , assuming that the 
adaptation law given by eq. (5) makes the adaptive gain 

0t∀ ≥

( )tα  bounded (this assumption will be proven later),  

( )3/4 2 2( , , ) ( , , ) 2

3 1* 1
21 1

V x y rV x y x x yα α α

ω
α α α

γ γ

≤ − + +

⎛ ⎞
⎜ ⎟− − −
⎜ ⎟
⎝ ⎠

α

           (28) 

  
Thus in view of the above assumption, eq. (28) can be 
reduced to the following: 

[ ]3/4( , , ) ( , , )

2 23 21* 1
3 21 * 1

V x y r V x y

x x y

α α

α ω
α α α

γ γ
α α

≤ − −

⎛ ⎞⎧ ⎫
⎜ ⎟⎪ ⎪+⎪ ⎪⎜ ⎟− − −⎨ ⎬⎜ ⎟⎪ ⎪−⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

      (29) 

α

   (24) 
[ ]3/4( , , ) ( , , )V x y V x yα η α ξ⇒ ≤ − +        (29a) 

where 
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2 23 21* 1
3 21 * 1

x x yα ω
ξ α α α

γ γ
α α

⎛ ⎧ ⎫
⎜ ⎪ ⎪+⎪ ⎪⎜= − − − −⎨ ⎬⎜ ⎪ ⎪−⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

⎞
⎟
⎟
⎟

    (30) 

 
Next, we consider the following two cases. 
 
Case 1. Suppose that ( , )N x y μ> . Then in view of (5), 

1
2 1
221

3*1

2x x y

ω
γ

α
α

γ
α α

=
+

−
−

              (31) 

In order to avoid singularity in the adaptation law (31), the 
gain 1γ  must be selected to satisfy inequality  

(b) 
( )

3*
0 1 22 2 2max 2

,

3*

2x x yx x y
x y

α α α α
γ

αα

− −
< = <

++
∈Ω

    (32) 

where Ω  is a bounded set.  
Condition (32) is equivalent to the requirement 0α ≥ . It 

is worth noting that in view of (32), the derived adaptive-
gain Twist control algorithm is semi-global. 

Thus, the gain ( )tα  increases in accordance with eq. (31) 
until eq. (20a) is met i.e. 1( )t D t tα > ∀ ≥ . It means that the 
matrix  in eq. (19) becomes positive definite in finite time 

, and hence

P

1t 0ξ = and . 
This guarantees finite time convergence to the domain 

[ ]3/4( , , , )V x y α β( , , , )V x y rα β ≤ −

( ,N x )y μ≤ . However the  time instant  cannot be exactly 
identified since the value of 

1t
D  is not known.  

Case 2. Next, suppose that ( , )N x y μ≤ .  

The following 2 situations might arise. 

(a) min( )tα α≥  
( )tα decreases in accordance with (5) that takes a form 

1
2 1
221

3*1

2x x y

ω
γ

α
α

γ
α α

= −
+

−
−

          (33) 

                
and the term ξ  becomes positive. Hence, in view of (29), 
the derivative of the Lyapunov function candidate becomes 
sign indefinite and the states x  and  may diverge away. 
As soon as  becomes greater than 

y
( ,N x y) μ  (in finite time), 

the condition that defines Case 1 holds so that the system’s 

(1) trajectory is reversed due to (31) and the states x and  
reaches the domain 

y
( , )N x y μ≤  in finite time, and this 

continues all over again.  
(b) min( )tα α<  

We can see from eq. (5), that as soon as the argument 
inside the sign function becomes negative, 0α < and 

( )tα starts decreasing. At the time instant 1tt = , when 

min( )tα α< and attains the value 
min

α − , 0α > in accordance 

with the second part of the eq. (5), and thus ( )tα again starts 

increasing in this fashion 
mi

( )
n

t tα α χ−=

( )t

+ .  

However the moment minα α≥  , 0α < , and 
( )tα again starts decreasing. This zigzag switching 

continues till  ( ,N x )y μ> , and the condition that defines 
Case 1 holds. Thus the value of the adaptive gain ( )tα never 
goes below min , ( min 0)α α > for any time. 

Thus, during this adaptation process, the state variables x  
and  reach the domain y ( ,N x y) μ≤  in finite time, and 
may again exit this domain for some finite time interval. 
Since there is no finite time escape, it is guaranteed that the 
state variables always stay in a larger domain 

( ,N x y) ,η η μ≤ >  in a real sliding mode.  
The size of this larger domain can be estimated as 

follows. Let’s assume that at  the state vector leaves 
the domain 

2tt =
)( ,N x y μ≤ . Then, after the control gain 

( )tα has increased enough in accordance with (31), the state 
vector enters this domain at . Upper state boundaries 
are estimated while the states are outside the domain 

3t t=

( ,N x )y μ≤ .  Therefore at 

2t t= , ( )( )2 2, ( )y t 2 2( ),N x t y t( )x t μ→ = , and in 
accordance with eqs. (1)-(3), and (31)  

( )
3 3

2 3 3

( )

( ) ( )

t D

t t 3 2

( )

( ) ( )

y t

y y t D t t

α β

11α β η

≤ +

≤ + + − =

+ →

+
   (34) 

Also 
11

2 11 3 2( )t t 21( )

x y

x x t

η

η η

= ≤ →

≤ + − =

N N=

         (35) 

Substituting (34), (35) into  we obtain  ( , )x y

( ) ( )11 21,N η η≤

12 22), ( , )N N

2 2( ), ( )N x t y t          (36) 
Continuing this analysis, we compute a size of the domain of 
convergence of real 2-sliding mode as  

( ), ...11 21 1 2

( , )
max ( , , ..., ( , )k k

N x y
N

η
η η η ηη η η

≤

=
   (37) 

It is worth noting that eq. (37) proves only the existence 
of the real sliding mode domain, since the value η  exist but 
is not known due to its dependence on the boundary  of 
the disturbance 

D
δ  which is unknown. The Theorem 1 is 

proven. 
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It is worth noting that the gain-adaptation law in eq. (5) of 
the twist 2-SMC algorithm depends on the unknown upper 
boundary *α  of the gain α  which may not be desirable. 
Assuming this boundary to be arbitrary large, the gain 
adaptation law (5) can be reduced to  

1 sgn( ( , ) )1 2
N x y

γ
α ω μ= −            (38) 

since  

*

2 22
lim 03*

x x y

α

α

α α→∞

+
=

−

 

while , ,x yα  are bounded. 
Theorem 2. The adaptive gain ( )tα  is bounded. 
Proof.  A solution to eq. (38) in the domain ( , )N x yμ η< ≤  
can be generated as  

1
1(0) , 0

2
t t r

γ
α α ω= + ≤ ≤ t            (39) 

where is finite reaching time. Inside the domain tr
)y( ,N x μ≤  the control gain ( )tα is decreasing. Therefore, 

the gain ( )tα  is bounded in the real 2-SMC, and hence, 
Theorem 2 is proven. 

It is worth noting that if the term sgn( ( , ) )N x y μ−  in the 
gain adaptation law (5) is eliminated (by making 0μ = ), 
then the adaptive gain law becomes 

1
2 1
221

3*1

2x x y

ω
γ

α
α

γ
α α

=
+

−
−

           (40) 

or 

1
1 2

γ
α ω=                 (41) 

             
This result is formulated in the following corollary.  

Corollary 1. For the system given by eqs. (1) and (2) and 
any initial conditions (0), (0)x y , the ideal 2-SMC 0x y= =  
is reached in finite time via adaptive gain Twist control law 
given by eqs. (3), (40) or (41). 

V. SIMULATION EXAMPLE 
Consider a numeric example given by 

7 cos( )
x y
y u t

=⎧
⎨ = +⎩

                (42) 

The initial conditions have been taken as (0) 10,x =  
(0) 5, (0) 5y α= = , while the controller parameters are 

min
* 400, 10α ω= = 2, 2, 6, 21 1γ χ α= = = and 1.μ =  

Also the values of and are selected to be equal to 4, and 
thus the domain of convergence is represented by a circle of 
radius 2. 

a b

It is clear from Figures 1-2 that the state variables 
converge to the bounded domain in finite time. The 

maximum  bound of the gainα denoted by *α  is taken to be 
400 (a large value). Furthermore, there is no overestimation 
of the control gain ( )tα as seen from Figure 4. As soon as 
the domain ( ,N x y) 1≤  is reached, the gain ( )tα starts 
dynamically reducing until the system trajectories leave the 
domain. The control gain ( )tα then starts to increase that 
forces the trajectories back to the domain in finite time. 
However, if ( )tα  reaches its minimum value while 

( , )N x y μ≤ , then switching takes place as per the second 
part of eq. (5), and hence 0α > . This means that ( )tα will 
again start increasing, and this back and forth switching 
continues till ( ,N x )y μ> . This can be seen from Figures 4-
5, where ( )tα switches around   min 2α =

) 1≤
 during the 

interval  12.9- 13.2 seconds, while . ( ,N x y
 

20

50 10 15 20-20

-10

0

10

x
y

T ( s e c s) i m e  
Fig 1. Time history of the state variables 
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Fig 2. Phase plot of the state variables 
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 Fig 6. Time history of the control u   
Fig 3. Time history of and ( , )N x y μ  

VI. CONCLUSIONS 
 

A novel finite time convergent adaptive-gain twisting sliding 
mode control algorithm that is robust to bounded 
disturbance with the unknown boundary is derived and 
proved using Lyapunov function technique. An ideal or real 
second order sliding mode is established in finite time with 
no overestimation of the control gain. The numerical 
example demonstrates the efficacy of the controller.  
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