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Abstract— This paper considers games with incomplete asym-
metric information, where one player (the deceiver) has priv-
ileged information about the other (the mark) and intends
to employ it for belief manipulation. We use hypergames to
represent the asymmetric information available to players and
assume a probabilistic model for the actions of the mark.
This framework allows us to formalize various notions of
deception in a precise way. We provide a necessary condition
and a sufficient condition for deceivability when the deceiver is
allowed to reveal information to the mark as the game evolves.
For the case when the deceiver acts stealthily, i.e., restricts her
actions to those that do not contradict the belief of the mark,
we are able to fully characterize when deception is possible.
Moreover, we design the worst-case max-strategy that,
when such a sequence of deceiving actions exists, is guaranteed
to find it. An example illustrates our results.

I. INTRODUCTION

Informational asymmetries in strategic scenarios provide
opportunities for manipulating beliefs or inducing certain de-
sired perceptions. In this paper, we consider a class of games
where one player (the deceiver) wishes to misrepresent
certain information in order to gain a strategic advantage over
the opponent (the mark). In our framework, the deceiver can
anticipate the effect that her actions will have on the mark’s
belief structure. In this sense, the deception goal can be
understood as steering the evolution of a particular dynamical
system into a desired set of outcomes. Scenarios of interest
includes bargaining, cybersecurity, military operations, and
human behavior modeling.

Literature review: In strategic scenarios with informa-
tional asymmetries [1], players may decide not to disclose
some information (passive deception) or lie about a value
of interest to the opponent (active deception). Within the
context of games of incomplete information, deception has
not been studied in a systematic way with the exception
of a few references. [2] demonstrates that the inconsistent
structure of beliefs can lead to counterintuitive behaviors. [3]
studies deception via strategic communication, in which a
‘sophisticated’ player sends either truthful or false messages
to the opponents. [4] investigates the vulnerability of strategic
decision makers to persuasion. The recent work [5] con-
structs a theory of deception for games with incomplete in-
formation where players form expectations about the average
behavior of the other players based on past histories. [6], [7]
consider scenarios where one player has access to certain
information and can distort it before it is passed on to others.
In this paper, we make use of hypergames [8], [9], [10],
since they provide a natural framework for modeling strategic
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situations with asymmetric information among players. Early
references on deception in dynamic games with imperfect
information include [11], [12]. The works [13], [14], [15]
provide examples of how informational asymmetries can be
used to induce false perceptions in the opponent and lead to
strategic deception. The works [16], [17] provide deception-
robust schemes for a class of discrete dynamic stochastic
games under imperfect observations.

Statement of contributions: We consider games of incom-
plete information where players have different perceptions
about the scenarios they are involved in. We study a class of
2-player hypergames where the deceiver has full information
about the mark’s game and intends to induce a certain belief
in her. The mark is rational, observes the actions taken by
the deceiver and assumes she acts rationally (although she
may not), and updates her perception about the opponent’s
preferences accordingly. From the deceiver’s viewpoint, the
mark’s actions are rational and probabilistic. This framework
sets the stage for the first contribution of the paper, which
is the introduction of precise notions of deception to capture
different forms of belief manipulation. These notions allow
us to identify a necessary condition and a sufficient condition
for deceivability on the mark’s belief structure. Next, we
study scenarios where the deceiver purposefully restricts her
set of actions to those that do not contradict the mark’s
belief structure. We term these actions stealthy and fully
characterize when deception via such actions is possible.
Our third contribution is the design of the worst-case
max-strategy that, given a desired deception objective,
determines a stealthy sequence of actions that achieves it.
An example illustrates the main results. Proofs are omitted
for space reasons and will appear elsewhere.

II. PRELIMINARIES

We denote the set of real and positive real numbers by R
and R>0, respectively. We denote by Z≥0 and Z≥1 the set of
nonnegative and positive integers, respectively. A nonempty
set X along with a preorder �, i.e., a reflexive and transitive
binary relation, is called a directed set if for every pair of
elements in X there exists an upper bound with respect to the
preorder. We use σ = (x1, x2, . . .), where x1, x2, . . . ∈ X ,
to denote a sequence of elements in X . Note that a finite
sequence of k ∈ Z≥1 elements is simply a k-tuple.

A. Graph theory

A digraph G is a pair (V,E), where V is a finite set,
called the vertex set, and E ⊆ V × V , called the edge
set. Given an edge (u, v) ∈ E, u is an in-neighbor of v
and v is an out-neighbor of u. The set of in-neighbors and
out-neighbors of v are denoted, respectively, by N in(v) and
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N out(v). The in-degree and out-degree of v are the number
of in-neighbors and out-neighbors of v, respectively. A is an
adjacency matrix for G = (V,E) if the following holds: for
each vi, vj ∈ V , aij > 0 iff (vi, vj) ∈ E. A (directed) path is
an ordered sequence of vertices so that any two consecutive
vertices are an edge of the digraph. A cycle in a digraph is
a directed path that starts and ends at the same vertex and
has no other repeated vertex. A digraph is called acyclic if
it does not contain any cycle.

B. Markov chains

We recall here some basic notions from Markov chains
following [18]. We denote by (Ω,F ,P) a probability space,
where Ω is a countable set, F is a σ-algebra over Ω,
and P is a probability measure. An E-valued random vari-
able is a measurable mapping X : (Ω,F ,P) → (E, E),
where E is a σ-algebra over E and (E, E) is a measurable
space. A Markov chain is a sequence of random variables
(X1, X2, . . .) such that, for all n ∈ Z≥1 and x ∈ Ω,

P(Xn+1 = x |X1 = x1, X2 = x2, . . . , Xn = xn) =

P(Xn+1 = x |Xn = xn).

The probability transition kernel TP is

TP(xi, xj) = P(Xn+1 = xi |Xn = xj),

where xi, xj ∈ Ω. Note that for every x ∈ Ω, TP(x, .) is also
a probability measure on Ω. One can inductively define

T kP (xi, xj) : = P(Xn+k = xi |Xn = xj).

If there exists k ∈ Z≥1 such that T kP (xi, xj) > 0, the state xi
is reachable from xj (or, equivalently, that xj communicates
with xi). We denote the set of all states reachable from xj ,
with respect to the transition probability TP , by

RTP (xj) = {xi ∈ Ω | ∃ki ∈ Z≥1, T kiP (xi, xj) > 0}.

C. Hypergame theory

We consider games with inconsistent perceptions across
the players in the framework of hypergames [19], [8], [9].
A 0-level hypergame is simply a (finite) game, i.e., a triplet
G = (V,Soutcome,P), where V is a set of n ∈ Z≥1 players,
Soutcome = S1 × . . . × Sn is the outcome set with finite
cardinality N = |Soutcome| ∈ Z≥1 and P = (P1, . . . , Pn),
with Pi = (x1, . . . , xN )T ∈ Sp the preference vector of
player vi, i ∈ {1, . . . , n}. Here, Si is a finite set of actions
available to player vi ∈ V and Sp ⊂ SNoutcome is the set of
all elements in SNoutcome with pairwise different entries. We
denote by πi the projection of Soutcome onto Si.

A n-person 1-level hypergame is a set H1 =
{G1, . . . ,Gn}, where Gi = (V, (Soutcome)i,Pi), for i ∈
{1, . . . , n}, is the subjective finite game of player vi ∈ V ,
and V is a set of n players; (Soutcome)i = S1i×. . .×Sni, with
Sji the finite set of strategies available to vj , as perceived
by vi; Pi = (P1i, . . . , Pni), with Pji the preference vector
of vj , as perceived by vi. In a 1-level hypergame, each
player vi ∈ V plays the game Gi with the perception
that she is playing a game with complete information. The

definition of 1-level hypergame can be extended to higher-
order hypergames as follows: a n-person k-level hypergame,
k ≥ 1, is a set Hk = {Hk1

1 , . . . ,Hkn
n }, where ki ≤ k − 1

and at least one ki is equal to k − 1.

1) Stability and equilibria: Here we recall the notion
of stability for 2-person 1-level hypergames. This class of
hypergames is the simplest one that explicitly models the
perception of players about their opponents’ preferences (the
reader is referred to [8] for the extension to higher-order hy-
pergames). Let H1 = {H0

A, H
0
B}. Here, H0

A = (PAA,PBA)
is the 0-level hypergame for player A, where PAA and PBA
are, respectively, the preferences of A and B perceived by A.
The same convention holds for H0

B = (PAB ,PBB). For sim-
plicity, the 0-level hypergames have the same set of outcomes
Soutcome. We denote by �PIJ the binary relation on Soutcome
induced by PIJ , where I, J ∈ {A,B}. For convenience, we
let Soutcome|πI(x) = {y ∈ Soutcome | πI(y) = πI(x)} and refer
to it as a restricted outcome set. We also use I ′ to denote the
opponent of I in {A,B}. We assign rank(x,PIJ) ∈ R>0

to each outcome x ∈ Soutcome such that rank(y,PIJ) >
rank(x,PIJ) iff x �PIJ y (players prefer the outcomes with
lower ranks). We use the set {1, . . . , |Soutcome|} to rank the
outcomes. Given two distinct outcomes x, y ∈ Soutcome, y
is an improvement from x for I ∈ {A,B}, perceived by
J ∈ {A,B} in H0

J , iff πI′(y) = πI′(x) and y �PIJ x.
x ∈ Soutcome is called rational for I ∈ {A,B}, as perceived
by J ∈ {A,B} in H0

J , if there exists no improvement from x
for I . The common notion of rationality in hypergames is the
notion of sequential rationality [20], [9], [21]. An outcome
x ∈ Soutcome is sequentially rational for I ∈ {A,B} with
respect to H0

J , J ∈ {A,B}, iff for each improvement y for
I , perceived by J in H0

J , there exists an improvement z for
I ′, perceived by J in H0

J , such that x �PIJ z. Whenever this
holds, we say that the improvement z from y for I ′ sanctions
the improvement y from x for I in H0

J . By definition, a
rational outcome is also sequentially rational. An outcome
x ∈ Soutcome is unstable for player I with respect to H0

J if
it is not sequentially rational for player I , as perceived by
player J and is an equilibrium of H0

J if it is sequentially
rational for both J and J ′, perceived by J . An outcome x
is an equilibrium of H1 if it is sequentially rational for A in
H0
A and also for B in H0

B . Note that x can be an equilibrium
for H1 and not an equilibrium of H0

A.

2) H-digraphs: The notion of H-digraph encodes the
stability information of hypergames. Formally, the H-digraph
associated to H0

A is GH0
A

= (Soutcome, EH0
A

), where there
exists an edge (x, y) ∈ EH0

A
iff either there exists an

improvement y from x for A for which there is no sanction
of B in H0

A, or there exists an improvement y from x
for B for which there is no sanction of A in H0

A. One
can similarly construct GH0

B
. By definition, an outcome x is

sequentially rational for A (respectively for B) iff N out(x)∩
Soutcome|πB(x) = ∅ (respectively N out(x) ∩ Soutcome|πA(x) =
∅). Moreover, an outcome is an equilibrium for H0

A iff its
out-degree in the associated H-digraph is zero.

3) Learning in hypergames: Suppose players A and B
take actions that change the outcome from x to y. If A can

5763



perfectly observe B’s action and believes that the opponent is
rational, she concludes that B prefers (πA(x), πB(y)) over
x. Therefore, A can incorporate this information into her
hypergame and update her perception about the preferences
of B. Here, we recall a method called swap learning to do
this, see [19]. These notions can similarly be defined for B.

We start by an algebraic construction. Let V be a set
of cardinality N and let W ⊂ V N with pairwise different
elements. For x1, x2 ∈ V , let swapx1 7→x2

: W →W be

(swapx1 7→x2
(v))k = vk if vk 6= x1, x2,

(swapx1 7→x2
(v))i =

{
vj if vi = x1, vj = x2 and i < j,

vi if vi = x1, vj = x2 and i > j,

(swapx1 7→x2
(v))j =

{
vi if vi = x1, vj = x2 and i < j,

vj if vi = x1, vj = x2 and i > j.

We refer to swapx1 7→x2
as the x1 to x2 swap map. The

swap learning maps SwA
x,y : SP → SP for A is given by

SwA
x,y(P) = swapx 7→(πA(x),πB(y))(P). One can show [19]

that if players are rational, swap learning is guaranteed to
decrease the mismatch between a player’s perception and
the true payoff structure of other players. When the outcome
changes from x to y and A updates her perception via swap
learning, her H-digraph changes from GH0

A
to SwA

x,y(GH0
A

).
Similarly, if players A and B repeatedly take actions such
that the hypergame outcomes are σ = (x1, . . . , xn), then the
associated H-digraph of A is denoted SwA

x1,σ(GH0
A

), where

SwA
x1,σ = SwA

x1,x2
◦SwA

x2,x3
◦ · · · ◦ SwA

xn−1,xn .

We denote by SwA
x1,σ(EH0

A
) the edge set of SwA

x1,σ(GH0
A

).

III. PROBLEM STATEMENT

In this paper, we consider 2-person 2-level hypergame.
We assume B has perfect knowledge about the preferences
of A, while A perfectly observes the actions of B and
uses the swap learning map to update her perception. We
focus on swap learning, although the analysis could also
be carried out for other learning mechanisms. Formally, the
situation described above corresponds to a 2-person 2-level
hypergame H2 = {H0

A, H
1
B}, with H1

B = {H0
AB , H

0
BB}

such that H0
AB = H0

A. Since H0
BB = H0

B , we actually have
H2 = {H0

A, {H0
A, H

0
B}}. Because of the special form of

H2, the equilibria of H2, as defined in [8], are exactly the
same as the equilibria of H1

B = {H0
A, H

0
B}.

We assume that players take their actions sequentially, one
after each other. This assumption matches up with the notion
of sequential rationality and guarantees that the repeated play
of any 0-level hypergame converges to an equilibrium [22].
Note that scenarios where one players takes multiple actions
before the other player acts can also be accommodated.

Definition 3.1 (Admissible sequence): A sequence of out-
comes σ = (x0, x1, x2, . . .) in Soutcome is admissible if
πI(x2i) = πI(x2i+1), and πI′(x2i+1) = πI′(x2i+2), for
all i ∈ Z≥0, where I ∈ {A,B}. The set of all admissible
sequences on Soutcome is denoted by Sadm(Soutcome).

When convenient, we use the notation σB and σB to
denote admissible sequences where B is the first and last,
respectively, to take an action. The notation σBB then means
that B is the first and last to take an action. Similar notations
can be defined for A. Given an admissible sequence σ =
(x0, x1, . . . , xk), k ∈ Z≥1, we say that z ∈ Soutcome is
aligned with σ at time i if z = xi. In this paper, without
loss of generality, we assume that B is the first to take an
action. We start by introducing some basic notions.

A. Modeling player actions via probability distributions

Although player B has complete information about A’s
game, she does not know the strategy that A follows to decide
her actions. Formally, this can be captured by assigning a
probability distribution to the edges of the H-digraph of A.
Let PAB(Xn+1 = y | Xn = x), for y ∈ Soutcome|πB(x),
denote the probability that the outcome of the hypergame
changes from x to y by the action πA(y) of A, as perceived
by B. Given what B knows about A’s game, we have that for
all (x, y) /∈ EH0

A
, PAB(Xn+1 = y | Xn = x) = 0. Note that,

for all x ∈ Soutcome,
∑
y∈Soutcome|πB(x)

PAB(Xn+1 = y | Xn =

x) = 1. The probability distribution PAB is selected by B
by applying some rule (e.g., ‘assign more probability to the
most preferred outcome’) to the H-digraph of the opponent.
The results of the paper are independent of the specific rule
used and so we leave it unspecified.

Player B can choose her own actions based on her
preferences in any way she sees fit. For later use, We formally
describe this via a probability distribution PB on any action
πB(y) which changes the outcome from x to y. Note that this
can, in particular, be a vector with one entry of 1 and the rest
0, and that it can be re-selected at each round of the game.
Since players only use the current state of the game to decide
about their next action, the sequence of repeated outcomes
of the game is a Markov chain, possibly time-varying as the
H-digraph of A can evolve with time.

B. Notions of deception

Here, we introduce several definitions to capture different
forms of deception. The first definition encodes a situation
where the deceiver wishes to make sure that the mark will
not take a certain action from a given outcome.

Definition 3.2 (Edge-deceivability): Suppose players A
and B play sequentially a hypergame H2 = {H0

A, H
1
B},

with H0
AB = H0

A. An edge (x, y) ∈ EH0
A

, πB(x) =

πB(y), is deceivable by B in H0
A from x0 ∈ Soutcome

if there exists an admissible sequence of outcomes σB =
(x0, x1, x2, . . . , x2k+1), k ∈ Z≥0, where

(i) (x2i−1, x2i) ∈ SwA
x2i−2,x2i−1

◦ · · ·◦SwA
x0,x1

(EH0
A

) and
(ii) TPAB (x2i, x2i−1) > 0,

for all i ∈ {1, . . . , k}, such that (x, y) /∈ SwA
x,σB (EH0

A
). We

refer to σB a deceiving sequence and say that ‘B deceives
A’ if the hypergame evolves according to σB . We denote by
EB,x0

dec (H0
A) ⊆ EH0

A
the set of all deceivable edges by B in

H0
A from x0. We say that (x, y) is surely deceivable by B

in H0
A from x0 if it is deceivable with probability one and

we denote the set of all such edges by EB,x0

sdec (H0
A) ⊆ EH0

A
.

5764



Let us elaborate more on the properties of the deceiving
sequence σB in the above definition. (i) states that A uses her
updated H-digraph and takes an action to shift the outcome
to a sanction-free improvement. (ii) states that B perceives
a positive probability to the actions of A contained in σB .
There is an abuse of notation due to the fact that PAB can
change with the evolution of the H-digraph. Also, here we
have assumed that B takes the last action. This is without loss
of generality; if the edge (x, y) is deceived by B, it remains
deceived afterwards, unless B reveals new information.

Definition 3.3: (Strong edge-deceivability): The edge
(x, y) is strong deceivable by B in H0

A if it is deceivable
from any outcome x0 ∈ Soutcome and is surely strong
deceivable if it is strong deceivable with probability one. The
set of strong deceivable and surely strong deceivable edges
are denoted, respectively, by EBstdec(H

0
A) and EBsstdec(H

0
A).

Note that Definitions 3.2 and 3.3 are a stepping stone
towards the deceiver being able to make sequentially rational
an (in principle) unstable outcome for the mark. In this paper,
we restrict our attention to the problem of edge-deceivability.

Lemma 3.4 (Deceivability inclusions): For all x0 ∈
Soutcome, the following inclusions hold

EBsstdec(H
0
A) ⊆ EB,x0

sdec (H0
A), EBstdec(H

0
A) ⊆ EB,x0

dec (H0
A).

We are now ready to formally state the problem we set
out to study. Consider H2 = {H0

A, H
1
B}, with H0

AB = H0
A.

We wish to provide answers to the following two problems:
(i) given (x, y) ∈ EH0

A
, with πB(x) = πB(y), what are

the set of outcomes x0 ∈ Soutcome from which the edge
is (surely/strongly) deceivable by B?

(ii) given an answer to the previous question, design an
strategy that B can implement in order to deceive A.

IV. WHEN IS IT POSSIBLE TO PERFORM DECEPTION?

In this section, we identify a necessary condition and a suf-
ficient condition for the notions of deceivability introduced in
Section III-B. We also define a class of admissible sequences
of outcomes, termed stealthy, and characterize conditions for
deceivability that are both necessary and sufficient when the
allowable sequences are restricted to this family.

A. Necessary and sufficient conditions for deceivability

We first identify a necessary condition for deceivability.
Lemma 4.1: (Necessary condition for edge-deceivability):

Let x0 ∈ Soutcome and assume (x, y) ∈ EB,x0

dec (H0
A). Then

HAdec(x, y) = {u ∈ Soutcome|πA(y) | u ≺PAA x} 6= ∅.
We also have the following result for sure deceivability.
Lemma 4.2: (Sufficient conditions for surely deceivabil-

ity): Let (x, y) ∈ EH0
A

, πB(x) = πB(y), and suppose
HAdec(x, y) 6= ∅. Then (x, y) ∈ EB,ỹsdec (H0

A), for all ỹ ∈
TAdec(y) = {w ∈ Soutcome|πA(y) | w �PBA y}.

B. Stealthy sequences of actions

If B takes an action not aligned with the perception
of A, and A updates her perception (using for instance
swap learning), then the structure of the H-digraph of A

will change. Therefore, for B, the complexity of selecting a
sequence of actions to deceive the opponent greatly grows
with the length of the sequence. Here, instead, we focus on
a particular family of sequences, which we term stealthy,
that B can employ to achieve her goal without revealing
any information to A, up to the moment that the ‘deceiving
action’ takes place. Let us formally define this notion.

Definition 4.3: (Stealthy sequence): An admissible se-
quence of outcomes σB = (x0, x1, . . . , xk), is stealthy if
(xi, xi+1) ∈ EH0

A
, for all i < k − 1, and (xk−1, xk) /∈ EH0

A
.

A consequence of the definition is that, if σB =
(x0, x1, . . . , xk), k ∈ Z≥1, is a stealthy sequence, then
SwA

xi−1,xi(EH0
A

) = EH0
A
, for all i ∈ {1, . . . , k − 1}, i.e., A

does not see her perception contradicted when the outcomes
of the game correspond to σB . Moreover, at the last outcome,
SwA

xk−1,xk
(EH0

A
) = SwA

x0,σB (EH0
A

) 6= EH0
A
.

Note that with this definition, the probability distribution
PAB does not change when the games is played according
to a stealthy sequence. This definition motivates us to define
the set S PAB

adm (Soutcome) ⊆ Sadm(Soutcome) with

S PAB
adm (Soutcome) = {(x0, x1, x2, . . .) ∈ Sadm(Soutcome) |

TPAB (xi+1, xi) > 0,∀i ∈ Z≥0, πB(xi) = πB(xi+1)}.

If σ ∈ S PAB
adm (Soutcome), we call σ a PAB-admissible se-

quence. With this definition, B perceives a positive prob-
ability to the actions of A contained in σ. From now on,
when we use the term ‘stealthy sequence’ we mean ‘PAB-
admissible stealthy sequence’.

Theorem 4.4: (Necessary and sufficient conditions for de-
ceivability via stealthy sequences): Let x0 ∈ Soutcome and
(x, y) ∈ EH0

A
, πB(x) = πB(y). The following are equivalent:

(i) (x, y) is deceivable from x0 via a stealthy sequence;
(ii) HAdec(x, y) 6= ∅ and

T Adec(y, x0) = TAdec(y) ∩
(
{x0} ∪ RTPABTPB

(x0)
)
6= ∅,

for a probability distribution PB such that PB(Xn+1 =
z | Xn = r) > 0 for any (r, z) ∈ EH0

A
.

The choice of PB in Theorem 4.4(ii) ensures that all
actions of B are considered when determining if a stealthy
sequence exists to deceive A. Once such sequence is found,
B will assign probability one to each of the actions for her
prescribed in the sequence (cf. Section V).

Theorem 4.4 shows that, given x0 ∈ Soutcome, any ac-
tion of B from T Adec(y, x0) to HAdec(x, y) removes the edge
(x, y) from the H-digraph GH0

A
. Thus, if these two sets

are nonempty, finding a stealthy sequence is equivalent, by
definition of T Adec(y, x0), to finding a path in GH0

A
that reaches

T Adec(y, x0) from x0. One can characterize the set of all initial
outcomes from which the edge (x, y) is deceivable as

IAdec(x, y) = {x0 ∈ Soutcome | HAdec(x, y), T Adec(y, x0) 6= ∅}.

V. THE WORST-CASE MAX-STRATEGY

Here, we provide an algorithmic approach that can be
used by B to determine a stealthy sequence to deceive A.
Consider the scenario described in Section III. Suppose at
time t ≥ 0 the outcome of the 2-person 2-level hypergame
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is x(t). Without loss of generality, assume that B takes
actions when t ∈ 2Z≥0 and A takes actions when t ∈
2Z≥0 + 1. In this situation, Theorem 4.4 characterizes the
edges of the H-digraph of A that are deceivable by B via a
stealthy sequence. To model the fact that the outcome of the
hypergame is influenced by the actions of A, let us introduce
the map ΦPAB : S PAB

adm (Soutcome)→ R,

ΦPAB (x0, . . . , xk) =

k−1∑
i=0

πB(xi)=πB(xi+1)

ln (TPAB (xi+1, xi)) . (1)

This map captures the probability of reaching an outcome via
a PAB-admissible sequence. In this scenario, after making
sure that the necessary condition for deception is satisfied,
a reasonable strategy for B at each round is to take an
action that maximizes the minimum probability of achieving
the deception goal. We call this strategy the worst-case
max-strategy and formally describe it in Algorithm 1.

Algorithm 1: worst-case max-strategy

Input: GH0
A

, PAB , (x, y) ∈ EH0
A

, x0 ∈ Soutcome,
N out(x0) ∩ Soutcome|πA(x0) 6= ∅

Initialization: αmaxmin = −∞, σB = ∅, x(0) = x0

1 check HAdec(x, y) 6= ∅; else, announce (x, y) not deceivable
at time: t ∈ 2Z≥0

2 if x(t) ∈ TAdec(y) then
3 take action that makes x(t+ 1) ∈ HAdec(x, y)
4 else
5 if σB 6= ∅ and x(t) is aligned with σB then
6 take action prescribed by σB
7 else
8 foreach w ∈ Soutcome|πA(x(t)), (x(t), w) ∈ EH0

A
do

9 αmin = +∞
10 foreach ỹ ∈ TAdec(y) do
11 if there is path in GH0

A
from w to ỹ

then
12 find σAA from w to ỹ minimizing ΦPAB
13 if ΦPAB (σAA) ≤ αmin then
14 αmin = ΦPAB (σAA)
15 end
16 end
17 end
18 if αmin 6= +∞ and αmin ≥ αmaxmin then
19 αmaxmin = αmin, η = σ
20 end
21 end
22 if αmaxmin 6= −∞ then
23 σB = (x(t), η) take action prescribed by σB
24 else
25 (x, y) is not deceivable from x(t)
26 end
27 end
28 end

The rationale behind its name is made explicit next.

Lemma 5.1: (Algorithm 1 maximizes the minimum proba-
bility of deception): The following are equivalent:

(i) σB = (x0, x1, x2, . . . , x2k) ∈ S PAB
adm (Soutcome), where

k ∈ Z≥1, x2k ∈ TAdec(y), and (xi, xi+1) ∈ EH0
A

for
i ∈ {0, . . . , 2k − 1}, is a minimizer of ΦPAB ;

(ii) σB corresponds to the longest path from x0 to x2k ∈
TAdec(y), in (Soutcome, EH0

A
,AH0

A
), where, for i, j ∈

{1, . . . |Soutcome|}, AH0
A

)ij = | ln (TPAB (zj , zi)) |, if
πB(zi) = πB(zj), and is zero otherwise.

Note that, in Lemma 5.1, (i) is equivalent to stating that σB
is a minimizer of Πk

i=1TPAB (x2i, x2i−1), and (ii) implies that
finding solutions to the worst-case max-strategy is
equivalent to finding a longest path on a digraph.

Remark 5.2: (Complexity of Algorithm 1): The digraph
(Soutcome, EH0

A
,AH0

A
) was recently shown in [22] to be

acyclic, and therefore, the problem of finding a longest path
is well-posed and can be solved efficiently. •

Algorithm 1 is complete, in the following sense.
Theorem 5.3: (Surely deceivable edges via worst-case

max-strategy): The edge (x, y) ∈ EH0
A

, πB(x) =
πB(y), is surely deceivable from x0 ∈ Soutcome via a stealthy
sequence of B iff HAdec(x, y) 6= ∅ and either x0 ∈ TAdec(y) or

max
x1∈Soutcome|πA(x0)

min
σB

ΦPAB (σB) = 0,

where σB = (x0, x1, x2, . . . , x2k) ∈ S PAB
adm (Soutcome), k ∈

Z≥1, x2k ∈ TAdec(y), (xi, xi+1) ∈ EH0
A

, i ∈ {0, . . . , 2k − 1}.
Remark 5.4 (Strong deceivability): The execution of the

worst-case max-strategy from all the outcomes in
Soutcome fully characterizes the set IAdec(x, y). Note that,
by definition, IAdec(x, y) = Soutcome iff (x, y) is strongly
deceivable via a stealthy sequence. •

VI. AN EXAMPLE

Consider a 2-level H2 = {H0
A, H

1
B} between A and B,

with H0
AB = H0

A and outcome set Soutcome = SA × SB =
{1, . . . , 50}, where SA and SB are the action sets of A and
B, respectively, and |SA| = 5 and |SB | = 10. The preference
vectors PAA and PBA are shown in Figure 1. The H-digraph
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Fig. 1. Preference vectors PAA (left) and PBA (right). The horizontal
axis shows the outcomes and the vertical axis shows the rank of outcomes.

GH0
A

is shown in Figure 2(left). Regarding the actions of A,
player B perceives that outcomes with lower rank in PAA
have higher probability of occurring. Formally, B assigns

TPAB (j, i) =
50− rank(j,PAA)∑

l∈N out(i)∩Soutcome|πB(i)
(50− rank(l,PAA))

,

to the event that the outcome changes from i to j by the
action πA(j) of A, where j ∈ Soutcome|πB(i).
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Fig. 2. H-digraphs GH0
A

(left) and SwA
36,11(GH0

A
) (right). Player A plays rows, B plays columns, and PAA and PBA are given in Figure 1.

Suppose the game initially starts at outcome x0 = 14 and
B wishes to deceive A by removing the edge (29, 26) ∈ EH0

A

via a stealthy sequence. Since HAdec(29, 26) = {11, 31, 41},
and thus non-empty, the necessary condition of Lemma 4.1 is
satisfied. According to Theorem 4.4, we compute TAdec(26) =
{1, 6, 26, 36}. The actions of B from 14 aligned with A’s
H-digraph are N out(14) ∩ Soutcome|πA(14) = {9, 24, 39}.
By executing the worst-case max-strategy, B finds
that the action that maximizes the minimum probability of
reaching any of the outcomes in TAdec(26) is πB(24), where
she perceives that the repeated play of the game will reach
outcome 36 via the path S = (14, 24, 25, 40, 36), with
probability 0.52. Note that, by definition, 36 ∈ T Adec(26, 14).
If the repeated play goes according to B’s perception, after
reaching 36, B takes an action that changes the outcome
to any of the outcomes in HAdec(29, 26). e.g., if B chooses
to take the action πB(11) (note that (36, 11) /∈ EH0

A
),

then A’s H-digraph after updating her perception via swap
learning is shown in Figure 2(right). If A takes an action
not aligned with the sequence S at any round, according to
the worst-case max-strategy, B will recompute the
stealthy sequence and take the ensuing action accordingly.

VII. CONCLUSIONS

We have studied scenarios of active deception in 2-person
2-level hypergames with asymmetric information. Using the
properties of hypergames encoded in the notion of H-digraph,
we have introduced formal notions that capture different
forms of deception. We have provided a necessary condition
and a sufficient condition for deceivability for the case when
the deceiver might take actions that contradict the perception
of her opponent about the game. When this is not the
case, i.e., if the deceiver acts in a stealthy way and only
takes actions aligned with her opponent’s perception, we
have fully characterized when deception is possible. Finally,
we have introduced the worst-case max-strategy
which maximizes the minimum probability that the deceiver
achieves the deception goal. We have shown this algorithm
to be complete. Future work will study efficient ways of
performing outcome deceivability, the impact of signaling
cost on the deceiver’s strategies, and the challenging scenario
of deception via non-stealthy strategies, where the H-digraph
of the opponent might change by the action of the deceiver.
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