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Abstract— We develop a multi-input, multi-output direct
adaptive controller for discrete-time, possibly nonminimum-
phase, systems with unknown nonminimum-phase zeros. The
adaptive controller requires limited modeling information about
the system, specifically, Markov parameters from the control
input to the performance variables. Often, only a single Markov
parameter is required, even in the nonminimum-phase case.
We analysis the stability of the algorithm using a time-and-
frequency-domain approach. We demonstrate the algorithm on
disturbance-rejection problems, where the disturbance spectra
are unknown. This controller is based on a retrospective

performance objective, where the controller is updated using
either batch or recursive least squares.

I. INTRODUCTION
Unlike robust control, an adaptive controller is self-tuned

during operation. This tuning accounts for the actual—and

possibly changing—dynamics of the system as well as the

nature of the external signals, such as commands and distur-

bances. Adaptive control may also be required for systems

that are difficult to model due to unknown physics or due

to the inability to perform sufficiently accurate identification.

Adaptive control may depend on prior modeling information,

such as bounds on the model order and parameters, or it may

entail explicit on-line identification. These approaches are

known, respectively, as direct and indirect adaptive control.

The key issue then becomes the nature of the modeling

information required by the adaptive controller provided

either prior to or during operation.

In adaptive control, the controller is tuned to the actual

plant during operation. However, this ability comes at a

cost. Adaptive control algorithms may require restrictive

assumptions, such as full-state feedback, positive realness,

minimum-phase zeros, matched disturbances, as well as

information on the sign of the high frequency gain, relative

degree, or zero locations [1–4]. In particular, the starting

point for the present paper is the retrospective cost adaptive

control (RCAC) approach [5–8]. This direct adaptive control

approach is applicable to MIMO (output feedback) plants

that are possibly unstable and nonminimum phase (NMP)

with uncertain command and disturbance spectra. The mod-

eling information required by RCAC in [5–8] is the first

nonzero Markov parameter and locations of the NMP zeros,

if any. Alternatively, a collection of Markov parameters can

be used as long as a sufficient number is available to capture

the NMP zero locations.
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The present paper extends prior RCAC results by de-

scribing a modification of RCAC that does not require

knowledge of the locations of the NMP zeros. Instead, this

extension requires knowledge of a limited number of Markov

parameters; typically only one Markov parameter is needed.

The significant aspect of this extension is the fact that

knowledge of the NMP zeros is not needed. This extension

thus increases the applicability of the method to systems with

unknown NMP zeros, as well as systems with NMP zeros

that may be changing slowly due to aging or due to a slowly

varying linearization of a nonlinear plant.

The algorithm developed in the present paper is analased

using time-and-frequency-domain methods and is demon-

strated on a few SISO. In all cases, the number of Markov

parameters that are used is not sufficient to determine the

NMP zeros of the system. Consequently, these examples

demonstrate the ability to control MIMO NMP systems with

unknown NMP zeros.

II. PROBLEM FORMULATION

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (1)

y(k) = Cx(k) + D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu ,

w(k) ∈ R
lw , and k ≥ 0. Our goal is to develop an adaptive

output feedback controller that minimizes the performance

variable z in the presence of the exogenous signal w with

minimal modeling information about the dynamics and w.

The block diagram for (1)-(3) is shown in Figure 1, where

G(q) = [Gzw(q) Gzu(q)] and

z(k) = Gzw(q)w(k) + Gzu(q)u(k), (4)

where q is the forward-shift operator. Note that w can

represent either a command signal to be followed, an external

disturbance to be rejected, or both. The system (1)–(3)

can represent a sampled-data application arising from a

continuous-time system with sample and hold operations.

Fig. 1. Disturbance-rejection and command-following architecture.
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If D1 = 0 and E0 6= 0, then the objective is to have

the output E1x follow the command signal −E0w. On the

other hand, if D1 6= 0 and E0 = 0, then the objective is to

reject the disturbance w from the performance measurement

E1x. Furthermore, if D1 =
[

D̂1 0
]

, E0 =
[

0 Ê0

]

,

and w(k) =
[

w1(k)T w2(k)T
]T

, then the objective is to

have E1x follow the command −Ê0w2 while rejecting the

disturbance w1. Lastly, if D1 and E0 are empty matrices,

then the objective is output stabilization, that is, convergence

of z to zero.

III. RETROSPECTIVE SURROGATE COST

For i ≥ 1, define the Markov parameter of Gzu given by

Hi
△
= E1A

i−1B. (5)

For example, H1 = E1B and H2 = E1AB. Let r be a

positive integer. Then, for all k ≥ r,

x(k) = Arx(k − r) +
r

∑

i=1

Ai−1Bu(k − i)

+

r
∑

i=1

Ai−1D1w(k − i), (6)

and thus

z(k) = E1A
rx(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i)

+ E0w(k) + H̄Ū(k − 1), (7)

where

H̄
△
=

[

H1 · · · Hr

]

∈ R
lz×rlu

and

Ū(k − 1)
△
=







u(k − 1)
...

u(k − r)






.

Next, we rearrange the columns of H̄ and the components

of Ū(k − 1) and partition the resulting matrix and vector so

that

H̄Ū(k − 1) = H′U ′(k − 1) + HU(k − 1), (8)

where H′ ∈ R
lz×(rlu−lU ), H ∈ R

lz×lU , U ′(k − 1) ∈
R

rlu−lU , and U(k − 1) ∈ R
lU . Then, we can rewrite (7)

as

z(k) = S(k) + HU(k − 1), (9)

where

S(k)
△
= E1A

rx(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i)

+ E0w(k) + H′U ′(k − 1). (10)

Next, for j = 1, . . . , s, we rewrite (9) with a delay of kj

time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the form

z(k − kj) = Sj(k − kj) + HjUj(k − kj − 1), (11)

where (10) becomes

Sj(k − kj)
△

= E1A
r
x(k − kj − r)

+
r

∑

i=1

E1A
i−1

D1w(k − kj − i) + E0w(k − kj)

+ H′

jU
′

j(k − kj − 1)

and (8) becomes

H̄Ū(k − kj − 1) = H′
jU

′
j(k − kj − 1) + HjUj(k − kj − 1),

(12)

where H′
j ∈ R

lz×(rlu−lUj
)
, Hj ∈ R

lz×lUj , U ′
j(k−kj −1) ∈

R
rlu−lUj , and Uj(k − kj − 1) ∈ R

lUj . Now, by stacking

z(k−k1), . . . , z(k−ks), we define the extended performance

Z(k)
△
=







z(k − k1)
...

z(k − ks)






∈ R

slz . (13)

Therefore,

Z(k)
△
= S̃(k) + H̃Ũ(k − 1), (14)

where

S̃(k)
△
=







S1(k − k1)
...

Ss(k − ks)






∈ R

slz , (15)

Ũ(k − 1) has the form

Ũ(k − 1)
△
=







u(k − q1)
...

u(k − qlŨ
)






∈ R

lŨ , (16)

where, for i = 1, . . . , lŨ , k1 ≤ qi ≤ ks + r, and

H̃ ∈ R
slz×lŨ is constructed according to the structure of

Ũ(k − 1). The vector Ũ(k − 1) is formed by stacking

U1(k − k1 − 1), . . . , Us(k − ks − 1) and removing copies

of repeated components.

Next, we define the surrogate performance

ẑ(k − kj)
△
= Sj(k − kj) + HjÛj(k − kj − 1), (17)

where the past controls Uj(k − kj − 1) in (11) are replaced

by the surrogate controls Ûj(k − kj − 1). In analogy with

(13), the extended surrogate performance for (17) is defined

as

Ẑ(k)
△
=







ẑ(k − k1)
...

ẑ(k − ks)






∈ R

slz (18)

and thus is given by

Ẑ(k) = S̃(k) + H̃ ˆ̃
U(k − 1), (19)

where the components of
ˆ̃
U(k−1) ∈ R

lŨ are the components

of Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) ordered in the same

way as the components of Ũ(k − 1). Subtracting (14) from
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(19) yields

Ẑ(k) = Z(k) − H̃Ũ(k − 1) + H̃ ˆ̃
U(k − 1). (20)

Finally, we define the retrospective cost function

J( ˆ̃
U(k − 1), k)

△
= ẐT(k)R(k)Ẑ(k), (21)

where R(k) ∈ R
lzs×lzs is a positive-definite performance

weighting. The goal is to determine refined controls
ˆ̃
U(k −

1) that would have provided better performance than the

controls U(k) that were applied to the system. The refined

control values
ˆ̃
U(k− 1) are subsequently used to update the

controller.

IV. COST FUNCTION OPTIMIZATION WITH ADAPTIVE

REGULARIZATION

To ensure that (21) has a global minimizer, we consider

the regularized cost

J̄( ˆ̃
U(k − 1), k)

△
= ẐT(k)R(k)Ẑ(k)

+ η(k) ˆ̃
UT(k − 1) ˆ̃

U(k − 1), (22)

where η(k) ≥ 0. Substituting (20) into (22) yields

J̄( ˆ̃
U(k − 1), k) = ˆ̃

U(k − 1)TA(k) ˆ̃
U(k − 1)

+ B(k) ˆ̃
U(k − 1) + C(k), (23)

where

A(k)
△
= H̃TR(k)H̃ + η(k)IlŨ

, (24)

B(k)
△
= 2H̃TR(k)[Z(k) − H̃Ũ(k − 1)], (25)

C(k)
△
= ZT(k)R(k)Z(k) − 2ZT(k)R(k)H̃Ũ(k − 1)

+ ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1). (26)

If either H̃ has full column rank or η(k) > 0, then A(k) is

positive definite. In this case, J̄( ˆ̃
U(k− 1), k) has the unique

global minimizer

ˆ̃
U(k − 1) = −

1

2
A−1(k)B(k). (27)

V. CONTROLLER CONSTRUCTION

The control u(k) is given by the strictly proper time-series

controller of order nc given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (28)

where, for all i = 1, . . . , nc, Mi(k) ∈ R
lu×lu and Ni(k) ∈

R
lu×ly . The control (28) can be expressed as

u(k) = θ(k)φ(k − 1), (29)

where

θ(k)
△
= [M1(k) · · · Mnc

(k)

N1(k) · · · Nnc
(k)] ∈ R

lu×nc(lu+lz) (30)

and

φ(k − 1)
△
=





















u(k − 1)
...

u(k − nc)
y(k − 1)

...

y(k − nc)





















∈ R
nc(lu+ly). (31)

A. Recursive Least Squares Update of θ(k)

Let d be a positive integer such that Ũ(k − 1) contains

u(k − d). Next, we define the cumulative cost function

JR(θ(k))
△
=

k
∑

i=d+1

λk−i‖φT(i − d − 1)θT(i − 1)

− ûT(i − d)‖2, (32)

where ‖ · ‖ is the Euclidean norm, and λ(k) ∈ (0, 1] is the

forgetting factor. Minimizing (32) yields

θT(k)
△
= θT(k − 1) + β(k)P (k − 1)φ(k − d − 1)

· [φT(k − d)P (k − 1)φ(k − d − 1) + λ(k)]−1

· [φT(k − d − 1)θT(k − 1) − ûT(k − d)], (33)

where β(k) is either 0 or 1. When β(k) is 1, the controller

is allowed to adapt, when β(k) is 0, the controller adaption

is off. The error covariance is updated by

P (k)
△
= (1 − β(k))P (k − 1) + β(k)λ−1(k)P (k − 1)

− β(k)λ−1(k)P (k − 1)φ(k − d − 1)

· [φT(k − d − 1)P (k − 1)φ(k − d) + λ(k)]−1

· φT(k − d − 1)P (k − 1). (34)

We initialize the error covariance matrix as P (0) = γI ,

where γ > 0.

VI. STABILITY ANALYSIS

A. Conditions for Convergence of z(k) − ẑ(k) to Zero

Consider the retrospective system

x̂(k + 1) = Ax(k) + Bû(k) + D1w(k), (35)

ẑ(k) = E1x̂(k) + E0w(k), (36)

which is obtained by replacing u(k) in (1) with û(k). The

extended retrospective system is given by

X̂(k + 1) = ÃX(k) + B̃
ˆ̃
U(k) + B̃′ ˆ̃U ′(k) + D̃1W (k),

(37)

Ẑ(k) = Ẽ1X̂(k) + Ẽ0W (k), (38)

where X̂(k) ∈ R
sn, W (k) ∈ R

slw , X(k) ∈ R
sn, Ũ ′(k−1) ∈

R
lŨ′ and

X̂(k)
△
=







x̂(k − k1)
...

x̂(k − ks)






, W (k)

△
=







w(k − k1)
...

w(k − ks)






, (39)
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X(k)
△
=







x(k − k1)
...

x(k − ks)






, Ũ ′(k − 1)

△
=







u(k − q′1)
...

u(k − q′lŨ′
)






,

(40)

Ã
△
= Is ⊗ A ∈ R

sn×sn, D̃1
△
= Is ⊗ D1 ∈ R

sn×slw , Ẽ0
△
=

Is ⊗ E1 ∈ R
slz×slw , Ẽ1

△
= Is ⊗ E1 ∈ R

slz×sn, and ⊗
is the Kronecker product. The matrices B̃ ∈ R

sn×lŨ and

B̃′ ∈ R
sn×lŨ′ are block-row matrices with block entries B

and 0n×lu such that

B̃
ˆ̃
U(k) + B̃′ ˆ̃U ′(k) =







Bû(k − k1)
...

Bû(k − ks)






∈ R

slu , (41)

where
ˆ̃
U ′(k) is formed by replacing the entries u(k− q′i) of

Ũ ′(k) by û(k − q′i) for i = 1, . . . , lŨ ′ .

The following result gives conditions under which Ẑ(k) =
0.

Fact 6.1: Assume that H̃ has full column rank, η(k) =

0, R(k) = I , and Z(k) is in the range of H̃, and let
ˆ̃
U(k−1)

be given by (27). Then Ẑ(k) = 0.

Proof. Since Z(k) is in the range of H̃, there exists Q ∈
R

slũ such that Z(k) = H̃Q. Substituting (27) into (20) yields

Ẑ(k) = Z(k) + H̃(H̃TH̃)−1H̃T(−Z(k) + H̃Ũ) − H̃Ũ

= Z(k) − H̃(H̃TH̃)−1H̃TZ(k)

= H̃Q − H̃(H̃TH̃)−1H̃TH̃Q = 0. �

The next result assumes that the recursive-least-squares

optimization yields u(k − d) − û(k − d) → 0 as k → ∞,

that is, θ(k)φ(k − d − 1) − û(k − d) → ∞ as k → ∞.

Fact 6.2: Assume that θ(k) is updated using (33) and

(34), and assume that θ(k)φ(k − d − 1) − û(k − d) → 0 as

k → ∞. Then x(k) − x̂(k) → 0 as k → ∞.

Proof. It follows from (1) and (35) that

x(k − d + 1)−x̂(k − d + 1) = Bu(k − d) − Bû(k − d).
(42)

It follows from (29) that u(k − d) = θ(k − d)φ(k − d − 1).

Defining g(k)
△
= θ(k)φ(k− d− 1)− û(k− d), (42) becomes

x(k − d + 1)−x̂(k − d + 1)

= B[θ(k − d) − θ(k)]φ(k − d − 1) + Bg(k).
(43)

Since g(k) → 0 as k → ∞, it follows from (33) that θ(k)−
θ(k − 1) → 0 as k → ∞. It thus follows from (43) that

x(k − d + 1) − x̂(k − d + 1) → 0 as k → ∞. �

In view of Fact 6.2, we assume henceforth that k is

sufficiently large that the difference between x̂(k), û(k),
ŷ(k), and ẑ(k) and x(k), u(k), y(k), and z(k), respectively,

is negligible. For convenience we set d = r. The following

analysis focuses on the subsequent behavior of x̂(k), û(k),
and ẑ(k), when η(k) = 0 and R(k) = I.

B. Boundedness of the Internal State

Next, we introduce the ideal system performance

z∗(k) = E1A
rx∗(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i)

+ E0w(k) + H′U ′(k − 1) + HU∗(k − 1), (44)

where x∗(k) is the state of the ideal system and U∗(k − 1)
is defined analogously to U(k − 1), with u(k) replaced by

u∗(k), where

u∗(k) = θ∗φ∗(k − 1), (45)

φ∗(k − 1)
△
=

[

u∗T(k − 1) · · · u∗T(k − nc) (46)

y∗T(k − 1) · · · y∗T(k − nc)
]T

, (47)

and the ideal controller θ∗ is assumed to yield the ideal

performance

z∗(k) ≡ 0. (48)

Adding and subtracting E1A
rx̂(k−r) to and from (44) yields

z∗(k) = S(k) + E1A
re(k − r) + HU∗(k − 1), (49)

where S(k) is defined by (10) with x(k) replaced by x̂(k),

and e(k)
△
= x∗(k) − x̂(k).

The extended ideal system is given by

X∗(k + 1) = ÃX∗(k) + B̃Ũ∗(k) + B̃Ũ ′(k) + D̃1W (k),
(50)

Z∗(k) = S̃(k) + Ẽ1Ã
rE(k − 1) + H̃Ũ∗(k − 1) = 0,

(51)

where X∗(k +1) and Z∗(k) are defined in the same way as

X(k + 1) and Z(k), E(k)
△
= X∗(k) − X̂(k), and

Ũ∗(k)
△
= [IlŨ

⊗ θ∗]φ̃∗(k − 1), (52)

φ̃∗(k)
△
=

[

φ∗T(k − q1) · · · φ∗T(k − qlŨ
)

]T
. (53)

The goal is to drive the refined controls
ˆ̃
U(k−1) to Ũ∗(k−1)

to ensure that θ(k) − θ∗ → 0 as k → ∞.

Next, subtracting (19) from (51) and solving for
ˆ̃
U(k−1)

yields

ˆ̃
U(k − 1) = H̃†[Ẽ1Ã

rE(k − 1) + H̃Ũ∗(k − 1) + Ẑ(k)],
(54)

where H̃†H̃ = IlŨ
and H̃ is assumed to have full column

rank.

Under the assumptions of Fact 6.1, Ẑ(k) = 0 and therefore

(54) reduces to

ˆ̃
U(k − 1) = H̃†Ẽ1Ã

rE(k − 1) + Ũ∗(k − 1). (55)

Subtracting (37) from (50), and using (55) yields the error

dynamics

E(k) = (Ã − B̃H̃†Ẽ1Ã
r)E(k − 1). (56)
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Therefore, if Ã − B̃H̃†Ẽ1Ã
r is asymptotically stable, then

x(k)− x∗(k) → 0 as k → ∞. Furthermore, z(k)− z∗(k) =
E1x(k) − E1x

∗(k) → 0 as k → ∞. Since z∗(k) =
E1x

∗(k) = 0, it follows that z(k) → 0 as k → ∞.

VII. REGULARIZED RETROSPECTIVE COST

We now let η(k) > 0. In this case, choosing
ˆ̃
U(k − 1) as

in (27) yields

Ẑ(k) = Z(k) − H̃Ũ(k − 1) + H̃(H̃TR(k)H̃ + η(k)IlŨ
)−1

· H̃TR(k)[−Z(k) + H̃Ũ(k − 1)]). (57)

The following result is an extension of Fact 6.1, where we

no longer assume that η(k) = 0.

Fact 7.1: Assume that H̃ has full column rank, Z(k)
is in the range of H̃ for all k, u(k)− û(k) → 0 as k → ∞,

and let
ˆ̃
U(k − 1) be given by (27). Then Z(k) − Ẑ(k) → 0

as k → ∞.

Proof. Since u(k)− û(k) → 0 as k → ∞, it follows that
ˆ̃
U(k) − Ũ(k) → 0 as k → ∞. Next, the retrospective cost

function is

Ẑ(k) = Z(k) − H̃( ˆ̃
U(k) − Ũ(k)), (58)

therefore, Ẑ(k) − Z(k) → 0 as k → ∞. �

In view of Fact 7.1, we assume henceforth that k is

sufficiently large that the difference between x̂(k), û(k),
ŷ(k), and ẑ(k) and x(k), u(k), y(k), and z(k), respectively,

is negligible. For convenience we set d = r. The following

analysis focuses on the subsequent behavior of x̂(k) and

ẑ(k), when η(k) > 0.

Substituting (27) into (37) yields

X̂(k) = ÃX̂(k) + B̃(H̃TR(k)H̃ + η(k − 1)IlŨ
)−1

· H̃TR(k)[−Ẑ(k) + H̃ ˆ̃
U(k − 1)] + B̃′ ˆ̃U ′(k − 1)

+ D̃1W (k − 1), (59)

Ẑ(k) = Ẽ1X̂(k) + Ẽ0W (k). (60)

Next, we write the performance as

Ẑ(k) = Ẽ1Ã
rX̂(k − 1) + H̃ ˆ̃

U(k − 1) + H̃′ ˆ̃U ′(k − 1)

+ D̃ÃrW (k − 1). (61)

Substituting (61) into (59) yields

X̂(k) = [Ã − B̃(H̃TR(k)H̃ + η(k − 1)IlŨ
)−1

· H̃TR(k)Ẽ1Ã
r]X̂(k − 1), +[D̃1 − B̃(H̃TR(k)H̃

+ η(k − 1)IlŨ
)−1H̃TR(k)D̃Ãr]W (k − 1)

+ [B̃ − B̃(H̃TR(k)H̃

· +η(k − 1)IlŨ
)−1H̃TR(k)H̃′] ˆ̃U ′(k − 1). (62)

Therefore, it follows from (62) that if Ã−B̃(H̃TR(k)H̃+
η(k − 1)IlŨ

)−1H̃TR(k)Ẽ1Ã
r is asymptotically stable, then

X̂(k) and Z(k) are bounded. Furthermore, note that Ã −
B̃(H̃TR(k)H̃ + η(k − 1)IlŨ

)−1H̃TR(k)Ẽ1Ã
r → Ã as

η(k) → ∞.

VIII. FREQUENCY-DOMAIN CONVERGENCE ANALYSIS
Let GFIR(q) be an FIR transfer function whose numerator

coefficients are the Markov parameters of Gzu that comprise

H̃. Furthermore, let the external signal w(k) be a sinusoid

whose frequency is Θ.

Next, assume that A is asymptotically stable, and assume

that the system is turned on at k = 1 and allowed to reach

harmonic steady state, which occurs at k0 > k. Then for

0 ≤ ki < k0, β(ki) = 0, and β(k0) = 1. Furthermore,

β(k0 + 1) = 0, where β(k) = 1, once the system has again

reached harmonic steady state.
Assume that H̃ has full column rank, η(k) → 0 as z(k) →

0, R(k) = I , Z(k) is in the range of H̃, and let
ˆ̃
U(k−1) be

given by (27). Furthermore, assume that u(k) − û(k) → 0
as k → ∞ and

∣

∣

∣

∣

1 −
Gzu(eΘ)

GFIR(eΘ)

∣

∣

∣

∣

< 1. (63)

Then z(k) → 0 as k → ∞. To show this consider the

performance in harmonic steady state we have

zν = Gzw(eΘ)w + Gzu(eΘ)ûν + Gzu(eΘ)gν , (64)

where zν ,w, gν are phasors, and ν = β(0)+ · · ·+β(k), that

is, the number of times the controller θ(k) has been allowed

to adapt, and gν
△
= uν − ûν .

Next, the retrospective cost in harmonic steady state is

ẑν
△
= zν−1 − GFIR(eΘ)uν−1 + GFIR(eΘ)ûν , (65)

ẑν = Gzw(eΘ)w + [Gzu(eΘ) − GFIR(eΘ)]uν−1

+ GFIR(eΘ)ûν . (66)

Solving (66) for ûν yields

ûν = G−1
FIR(eΘ)

[

ẑν − Gzw(eΘ)w − [Gzu(eΘ)

−GFIR(eΘ)]uν

]

. (67)

Substituting (67) into (64) yields

zν = [1 − Gzu(eΘ)G−1
FIR(eΘ)][Gzw(eΘ)w

− Gzu(eΘ)uν−1] + Gzu(eΘ)G−1
FIRẑν + Gzu(eΘ)gν .

Using this process we write zν in terms of u0 as

zν = [1 − Gzu(eΘ)G−1
FIR(eΘ)]ν [Gzw(eΘ)w

− Gzu(eΘ)u0] + [Gzu(eΘ)G−1
FIR]ν ẑ1 + Gzu(eΘ)gν .

(68)

It follows from (68) that

|zν | ≤
∣

∣[1 − Gzu(eΘ)G−1
FIR(eΘ)]ν

∣

∣

·
∣

∣Gzw(eΘ)w − Gzu(eΘ)u0

∣

∣

+
∣

∣Gzu(eΘ)G−1
FIR

∣

∣

ν
|ẑ1| +

∣

∣Gzu(eΘ)gν

∣

∣ . (69)

Therefore, since
∣

∣

∣
1 − Gzu(eΘ)

GFIR(eΘ)

∣

∣

∣
< 1, it follows that

∣

∣

∣
1 − Gzu(eΘ)

GFIR(eΘ)

∣

∣

∣

ν

→ 0 as ν → ∞, then |zν | → 0 as h → ∞.

Condition (63) has a simple geometric interpretation,

namely, GFIR(eΘ) must lie in a half plane that con-

tains Gzu(eΘ) and whose boundary is perpendicular to

|Gzu(eΘ)| and passes through 1
2 |Gzu(eΘ)|. Figure 2 il-
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lustrates the region of admissible GFIR(eΘ) for a given

|Gzu(eΘ)| and frequency Θ.

Fig. 2. The dashed region on the complex plane illustrates the region
of admissible GFIR(eΘ) for a given |Gzu(eΘ)| and frequency Θ as
determined by (63). The admissible region is a half plane.

The above analysis is based on the assumption that the

state of the system reaches harmonic steady state after each

period of adaptation. This assumption is an approximation

invoked to facilitate the analysis. In fact, RCAC adapts at

each step, and thus the state does not reach harmonic state.

The examples in the next section show that this condition is

sufficient but not necessary, and thus provides a conservative

estimate of the allowable uncertainty that can be tolerated in

the FIR approximation error.

IX. NUMERICAL EXAMPLES

For the following numerical examples we use the recursive

least squares update (33) and (34). Furthermore, we consider

only the disturbance rejection problem, where D1 6= 0, D2 =
0, and E0 = 0. We also choose η(k) = η̄(k)ZT(k−1)Z(k−
1), where η̄(k) is a nonnegative number for all k ≥ 1.

Example 9.1: (SISO NMP) Consider the asymptotically
stable, nonminimum-phase system

A =





1.7 −1.2 0.7

1 0 0

0 0.5 0



 , B =





2

0

0



 , (70)

D1 =





0.9794

−0.2656

−0.5484



 , C = E1 =





0.5

−1.25

1





T

. (71)

The goal is to reject the disturbance w(k) = sin(π
5 k). We

choose H̃ = H1 = 1, nc = 5, η̄(k) = 2, and γ = 1.

Figure 3 shows the adaptive filter in closed loop with the

nonminimum-phase system. Note that the controller does not

have any knowledge of the nonminimum-phase zero.

Example 9.2: (SISO NMP) We consider the same plant

and disturbance as in Example 9.1. Furthermore we choose
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Fig. 3. For this example, the plant is SISO and nonminimum phase. We
choose H̃ = H1 = 1, and η̄(k) = 2. (a) shows the performance z(k), (b)
shows the controller parameters θ(k), (c) shows the control signal u(k),
and (d) shows the disturbance w(k).
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Fig. 4. For this example, the plant is SISO and nonminimum phase. We
choose H̃ = [−0.1076 − 0.8]T and η̄(k) = 2. (a) shows the performance
z(k), (b) shows the controller parameters θ(k), (c) shows the control signal
u(k), and (d) shows the disturbance w(k).

the controller parameters as in Example 9.1. However, we

now assume that the 2nd and 6th Markov parameters are

known, and thus H̃ = [−0.1076 − 0.8]T. Figure 4 shows

the resulting closed-loop performance.

X. CONCLUSIONS

In this paper we extended the RCAC adaptive control

algorithm and investigated its ability to adaptively control

systems without knowledge of the nonminimum-phase zeros,

if any. A frequency-domain conditions that ensures stability

of the error system was derived. Furthermore, the algorithm

was demonstrated on several SISO examples. In all cases,

the number of Markov parameters that are used is not

sufficient to determine the nonminimum-phase zeros of the

system. Numerical examples showed that the frequency-

domain convergence analysis, which is based on a harmonic

steady-state assumption, is conservative. Future analysis will

refine this analysis to better reflect the robustness of RCAC

observed in the numerical examples.
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