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Abstract— This paper presents new robust linear matrix
inequality conditions for full order robust H∞ filter design
of discrete-time polytopic linear systems affected by a time-
varying delay. Thanks to the use of a larger number of slack
variables, the proposed conditions are less conservative than the
existing methods. Numerical experiments illustrate the better
performance of the proposed filter design procedure when
compared to other approaches available in the literature.

I. INTRODUCTION

Time-delay systems have received intensive research ef-
forts in the last years, mainly due to the increasing of digital
systems that are affected by delays. As discussed in [1], time-
delays can cause instability or performance degradation of
control systems. There are many works dealing with control
design [2–5] and with stability analysis [6–9] of time-delay
systems. The filtering problem for time-delay systems has
been investigated by many authors in different contexts [10–
14]. It is also worth to mention the recent strategy proposed
in [15], where the time-delay interval is partitioned in several
segments.

The robust filter design for discrete-time uncertain systems
has been addressed through several papers with different per-
formance criteria, using quadratic stability [16–18] and affine
parameter-dependent Lyapunov matrices [19, 20]. Parameter-
dependent matrices with polynomial dependence of degree
greater than one were used in [21–23] and also in [24], for
discrete time-varying systems, improving the existing results.

This paper adresses the problem of robust H∞ filter
design for uncertain linear discrete delay systems with a
time-varying delay. By using the Jensen’s inequality [25]
and Finsler’s Lemma, new parameter-dependent and delay-
dependent linear matrix inequality (LMI) conditions assuring
the existence of a full order robust filter that minimizes a
bound to the H∞ norm of the transfer function from the
noise to the estimation error are given. Thanks to the use
of extra matrix variables, the proposed LMI conditions are
more general than the others in the literature. By imposing a
structure to the decision variables, LMI relaxations based on
homogeneously polynomially parameter-dependent matrices
of arbitrary degree are derived for the robust filter design.
As illustrated by examples, the proposed conditions provide
less conservative results than other existing methods.
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The paper is organized as follows. Section II presents
the preliminary results. The main results are presented in
Section III. Section IV presents numerical experiments that
illustrate the advantages of the proposed method when com-
pared to other techniques from the literature and Section V
concludes the paper.

II. PRELIMINARIES

Consider the discrete-time uncertain linear system with a
time-varying delay affecting the state described by

xk+1 = A(α)xk +Ad(α)xk−dk
+B1(α)wk

zk =C1(α)xk +Cd1(α)xk−dk
+D11(α)wk

yk =C2(α)xk +Cd(α)xk−dk
+D21(α)wk

(1)

with

A(α) ∈ R
n×n, Ad(α) ∈ R

n×n B1(α) ∈ R
n×r,

C1(α) ∈ R
p×n, Cd1(α) ∈ R

p×n, D11(α) ∈ R
p×r,

C2(α) ∈ R
q×n, Cd(α) ∈ R

q×n, D21(α) ∈ R
q×r

where xk ∈R
n is the state vector, wk ∈R

r is the noise input,
zk ∈ R

p is the signal to be estimated and yk ∈ R
q is the

measured output.
The matrices of the system are uncertain and belong to a

polytopic domain parameterized in terms of a time-invariant
vector α , being given by

Z(α) =
N

∑
i=1

αiZi , α ∈ ∆N (2)

where Z(α) represents any matrix of the system in (1), Zi,
i = 1, . . . ,N are the vertices, N is the number of vertices of
the polytope and ∆N is the unit simplex, given by

∆N =
{

α ∈ R
N :

N

∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . ,N
}

(3)

The time delay dk is a positive integer, constant or time-
varying, such that

1 ≤ d ≤ dk ≤ d (4)

where d and d are constant positive integers, respectively the
lower and upper bound of dk.

The problem addressed in this paper is: find a full order
robust linear stable filter given by

x fk+1 = A f x fk +B f yk,

z fk =C f x fk +D f yk

(5)
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with A f ∈ R
n f ×n f , B f ∈ R

n f ×q, C f ∈ R
p×n f and D f ∈ R

p×q,
where x fk ∈ R

n f , n f = n, is the estimated state and z fk ∈
R

p is the estimated output, such that the error dynamics
is asymptotically stable and the H∞ norm of the transfer
function from w to the error ek = zk − z fk is minimized.

Defining the augmented system with x̃′k =
[
x′k x′fk

]
, one

has
x̃k+1 = Ã(α)x̃k + Ãd(α)T x̃k−dk

+ B̃(α)wk

ek = C̃(α)x̃k +C̃d(α)T x̃k−dk
+ D̃(α)wk

(6)

where T =
[
I 0

]
and

Ã(α) =

[
A(α) 0

B fC2(α) A f

]

∈ R
2n×2n,

Ãd(α) =

[
Ad(α)

B fCd(α)

]

∈ R
2n×n,

B̃(α) =

[
B(α)

B f D21(α)

]

∈ R
2n×r,

C̃(α) =
[
C1(α)−D fC2(α) −C f

]
∈ R

p×2n,

C̃d(α) =
[
Cd1(α)−D fCd(α)

]
∈ R

p×n,

D̃(α) =
[
D11(α)−D f D21(α)

]
∈ R

p×r

(7)

Before presenting the main contributions, Finsler’s Lemma
and the Jensen’s inequality are reproduced below for the sake
of completeness.

Lemma 1: Let ξ ∈ R
n, Q ∈ R

n×n and B ∈ R
m×n with

rank(B) < n and B⊥ such that BB⊥ = 0. Then, the
following conditions are equivalent:

i) ξ ′Qξ < 0,∀ ξ 6= 0 : Bξ = 0
ii) B⊥′QB⊥ < 0
iii) ∃ µ ∈ R : Q−µB′B < 0
iv) ∃ X ∈ R

n×m : Q+X B+B′X ′ < 0
For the proof, see [26]. The following lemma (Jensen’s
inequality) can be found in [25].

Lemma 2: For any constant matrix 0 < M = M′ ∈ R
r×r,

d1 ∈N, d2 ∈N, d1 ≤ d2, and a vector function f : [d1,d2]→
R

n such that the sums in the following are well defined, then

− (d2 −d1 +1)
d2

∑
i=d1

f (i)′M f (i)≤

−
(

d2

∑
i=d1

f (i)

)′

M

(
d2

∑
i=d1

f (i)

)

(8)

III. MAIN RESULTS

Lemma 3: Let Ã(α) be a Schur stable matrix. The in-
equality ||H(z)||∞ <

√
µ holds for all α ∈ ΛN if there exist

parameter-dependent symmetric positive definite matrices
P(α)∈R

2n×2n, Z1(α)∈R
n×n, Z2(α)∈R

n×n, Q1(α)∈R
n×n,

Q2(α)∈R
n×n, Q3(α)∈R

n×n, Q4(α)∈R
n×n and parameter-

dependent matrices E(α) ∈R
2n×2n, K(α) ∈R

2n×2n, H(α) ∈
R

n×2n, M(α) ∈ R
n×2n, N(α) ∈ R

n×2n, X(α) ∈ R
p×2n and

V (α) ∈ R
r×2n such that1

Θ(α)+Ψ(α)< 0, ∀ α ∈ ΛN (9)

1The symbol ⋆ denotes a symmetric block.

with Θ(α) as in (10), Ψ(α) as in (11) and δ = d −d.
Proof: Choose a Lyapunov functional candidate as

V (α,k) =
8

∑
i=1

Vi(α,k)> 0 (12)

V1(α,k) = x̃′kP(α)x̃k (13)

V2(α,k) =
k−1

∑
j=k−dk

x̃′jT
′Q1(α)T x̃ j (14)

V3(α,k) =
k−1

∑
j=k−d

x̃′jT
′Q2(α)T x̃ j (15)

V4(α,k) =
k−1

∑
j=k−d

x̃′jT
′Q3(α)T x̃ j (16)

V5(α,k) =
1−d

∑
ℓ=2−d

k−1

∑
j=k+ℓ−1

x̃′jT
′Q1(α)T x̃ j (17)

V6(α,k) = δ
−1−d

∑
ℓ=−d

k−1

∑
m=k+ℓ

y′mT ′Q4(α)Tym (18)

V7(α,k) = d
−1

∑
ℓ=−d

k−1

∑
m=k+ℓ

y′mT ′Z1(α)Tym (19)

V8(α,k) = d
−1

∑
ℓ=−d

k−1

∑
m=k+ℓ

y′mT ′Z2(α)Tym (20)

where y j = x̃ j+1− x̃ j, P(α)=P(α)′ > 0, Qi(α)=Qi(α)′ > 0,
i = 1, . . . ,4, Z j(α) = Z j(α)′ > 0, j = 1,2.

Define ∆V = V (k+ 1)−V (k). Then, along the solutions
of (6), one has

∆V1(k) = x̃′k+1P(α)x̃k+1 − x̃′kP(α)x̃k (21)

∆V2(k)≤ x̃′kT ′Q1(α)T x̃k − x̃′k−dk
T ′Q1(α)T x̃k−dk

+
k−d

∑
i=k+1−d

x̃′iT
′Q1(α)T x̃i (22)

∆V3(k) = x̃′kT ′Q2(α)T x̃k − x̃′
k−d

T ′Q2(α)T x̃k−d (23)

∆V4(k) = x̃′kT ′Q3(α)T x̃k − x̃′k−dT ′Q3(α)T x̃k−d (24)

∆V5(k) = δx′kT ′Q1(α)T xk −
k−d

∑
i=k+1−d

x̃′iT
′Q1(α)T x̃i (25)

∆V6(k) =δ 2y′kT ′Q4(α)Tyk −δ
k−d−1

∑
m=k−d

y′mT ′Q4(α)Tym

=δ 2y′kQ4T ′(α)Tyk −δ
k−dk−1

∑
m=k−d

y′mT ′Q4(α)Tym

︸ ︷︷ ︸

S1

−δ
k−d−1

∑
m=k−dk

y′mT ′Q4(α)Tym

︸ ︷︷ ︸

S2
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Θ(α) =


















P(α)+T ′(d
2
Z1 +δ 2Q4(α)+d2Z2(α)

)
T T ′(−d

2
Z1 −δ 2Q4(α)−d2Z2(α)

)
T

⋆
−P(α)+T ′((δ +1)Q1(α)+Q2(α)+Q3(α)+d

2
Z1(α)

+δ 2Q4(α)+d2Z2(α)−Z1(α)−Z2(α)
)
T

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

0 0 0 0 0
0 T ′Z1(α) T ′Z2(α) C̃(α)′ 0

−Q1(α)−2Q4(α) Q4(α) Q4(α) C̃d(α)′ 0
⋆ −Q2(α)−Z1(α)−Q4(α) 0 0 0
⋆ ⋆ −Q3(α)−Z2(α)−Q4(α) 0 0
⋆ ⋆ ⋆ −I D̃(α)
⋆ ⋆ ⋆ ⋆ −µI













(10)

Ψ(α) =













−E(α)−E(α)′ E(α)Ã(α)−K(α)′ E(α)Ãd(α)−H(α)′

⋆ K(α)Ã(α)+ Ã(α)′K(α)′ K(α)Ãd(α)+ Ã(α)′H(α)′

⋆ ⋆ H(α)Ãd(α)+ Ãd(α)′H(α)′

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

−M(α)′ −N(α)′ −X(α)′ E(α)B̃(α)−V (α)′

Ã(α)′M(α)′ Ã(α)′N(α)′ Ã(α)′X(α)′ K(α)B(α)+ Ã(α)′V (α)′

Ãd(α)′M(α)′ Ãd(α)′N(α)′ Ãd(α)′X(α)′ H(α)B̃(α)+ Ãd(α)′V (α)′

0 0 0 M(α)B̃(α)
⋆ 0 0 N(α)B̃(α)
⋆ ⋆ 0 X(α)B̃(α)
⋆ ⋆ ⋆ V (α)B̃(α)+ B̃(α)′V (α)′













(11)

Applying Lemma 2, one gets

S1 ≤−(d −dk)
k−dk−1

∑
m=k−d

y′mT ′Q4(α)Tym ≤

− (x̃k−dk
− x̃k−d)

′Q4(α)(x̃k−dk
− x̃k−d)

S2 ≤−(dk −d)
k−d−1

∑
m=k−dk

y′mT ′Q4(α)Tym ≤

− (x̃k−d − x̃k−dk
)′Q4(α)(x̃k−d − x̃k−dk

)

Moreover,

∆V6(k)≤ δ 2y′kT ′Q4(α)Tyk

− (x̃k−dk
− x̃k−d)

′T ′Q4(α)T (x̃k−dk
− x̃k−d)

− (x̃k−d − x̃k−dk
)′T ′Q4(α)T (x̃k−d − x̃k−dk

) (26)

∆V7(k) = dy′kT ′Z1(α)Tyk −d
k−1

∑
j=k−d

y′jT
′Z1(α)Ty j

︸ ︷︷ ︸

S3

(27)

Applying Lemma 2 again, in S3, one has

S3 ≤−





k−1

∑
j=k−d

y j





′

T ′Z1(α)T





k−1

∑
j=k−d

y j



=

− (x̃k − x̃k−d)
′T ′Z1(α)T (x̃k − x̃k−d) (28)

Then,

∆V7 ≤ d
2
y′kT ′Z1(α)Tyk

− (x̃k − x̃k−d)
′T ′Z1(α)T (x̃k − x̃k−d) (29)

and, similarly,

∆V8 ≤ d2y′kT ′Z2(α)Tyk

− (x̃k − x̃k−d)
′T ′Z1(α)T (x̃k − x̃k−d) (30)

Finally,

∆V (α,k) =
8

∑
i=1

∆Vi (31)

8227



To establish the H∞ performance for the filtering error
system, consider the following criterion

J ,
∞

∑
k=0

(
e′kek −µw′

kwk

)
(32)

Under zero initial conditions, that is, x̃k = 0, V (α,0) = 0 and
V (α,∞)≥ 0, one has

J ≤
∞

∑
k=0

(
e′kek −µw′

kwk +∆V (α,k)
)

(33)

that can be rewritten as

J ≤
∞

∑
k=0

ξ ′
kΘ(α)ξk (34)

with Θ(α) given by (10) and

ξk =
[

x̃′k+1 x̃′k x̃′k−dk
T ′ x̃′

k−d
T ′ x̃′k−dT ′ zk wk

]′

By applying condition i) of Lemma 1 in ξ ′
kΘ(α)ξk and

selecting

X =













E(α)
K(α)
H(α)
M(α)
N(α)
X(α)
V (α)













,B=
[
−I Ã(α) Ãd(α) 0 0 0 B̃(α)

]

in condition iv) one has (9).
It is important to note that Lemma 3 has been established

without defining a particular structure for the parameter-
dependent matrix variables. Moreover, the decision variables
of interest (i.e. A f , B f , C f and D f ) appear in sub-matrices
multiplying other matrices. As it has been presented, the
robust filter design is a nonconvex problem of infinite di-
mension (since the parameter-dependent inequalities need to
be verified for all α ∈ ∆N).

Note that the parameter-dependent inequalities in
Lemma 3 have parameter-dependent matrices E(α), K(α),
H(α), M(α), N(α), X(α) and V (α) that can represent
extra degrees of freedom when sufficient LMI conditions
are derived.

In order to derive numerically tractable LMI conditions
for the filter design, structural constraints are imposed to
the parameter-dependent matrices E(α), K(α), H(α), M(α),
N(α), X(α) and V (α), similarly to what has been done in
[20, 23]:

E(α) =

[
E11(α) K̂

E21(α) K̂

]

, K(α) =

[
K11(α) λ1K̂

K21(α) λ2K̂

]

,

H(α) =
[
H1(α) λ3K̂

]
, M(α) =

[
M1(α) λ4K̂

]
,

N(α) =
[
N1(α) λ5K̂

]
, X(α) =

[
X1(α) 0

]
,

V (α) =
[
V1(α) 0

]
(35)

where K̂ ∈ R
n×n is a matrix and λi, i = 1, . . . ,5 are scalar

variables to be determined. For convenience, matrix P(α) is
also partitioned in n×n blocks

P(α) =

[
P11(α) P12(α)
P12(α)′ P22(α)

]

(36)

and the following change of variables is adopted K1 = K̂A f ,
K2 = K̂B f . With this particular choice for the decision
variables, a sufficient parameter-dependent LMI condition for
the existence of a robust H∞ filter is presented below.

Theorem 1: If there exist symmetric parameter-dependent
positive definite matrices Q1(α), Q2(α), Q3(α), Q4(α),
Z1(α), Z2(α) and P(α) as in (36) matrices K(α), E(α),
V (α), X(α), M(α), N(α) and H(α) as in (35), K1 ∈ R

n×n,
K2 ∈R

n×q, C f ∈R
p×n, D f ∈R

p×q, µ > 0 and scalars λ1, λ2,
λ3, λ4 and λ5 such that condition (37) holds for all α ∈ ΛN ,
then A f = K̂−1K1, B f = K̂−1K2, C f and D f are the matrices
of the robust stable filter that assures a guaranteed cost H∞

given by
√

µ .
Proof: The proof follows straightforwardly the same steps of
the proof of Lemma 3, with the structure presented in (35)
to the slack variables and as in (36) to matrix P(α).

Theorem 1 is a parameter-dependent sufficient LMI condi-
tion for the existence of a robust H∞ filter, obtained directly
from Lemma 3 by imposing particular structures to the
matrix variables. Moreover, the conditions depend on scalar
variables λi, i = 1, . . . ,5 that need to be searched.

To solve the parameter-dependent LMI conditions of The-
orem 1, the technique proposed in [27] to handle parameter-
dependent LMIs with parameters in the unit simplex can
be applied. To this end, the polynomial matrices (deci-
sion variables in the parameter-dependent LMIs, i.e. P(α),
K11(α), K21(α), E11(α), E21(α), H1(α), M1(α), N1(α),
X1(α) and V1(α)) are treated as homogeneous polyno-
mials of arbitrary degree g and LMI conditions, more
and more precise with the increase of g, are expressed
only in terms of the vertices of the system. The LMI
conditions were obtained with the Robust LMI Parser
toolbox available at http://www.dt.fee.unicamp.br/

~agulhari/Doutorado/polynomial_parser.zip.

IV. NUMERICAL EXPERIMENTS

The objective of the experiments is to compare the con-
ditions proposed in this paper with other methods from
the literature. The routines were implemented in MATLAB,
version 7.1.0.246 (R14) SP 3 using the programs Yalmip [28]
and SeDuMi [29]. Although line searches in λi could further
improve the guaranteed costs, λi = 0, i = 1, . . . ,5 have been
used in this paper with good results.

Consider the discrete-time system [22] given by

A =

[
0 0.3

−0.2 ρ

]

, Ad =

[
0 0

0.1 φ

]

, 1 ≤ dk ≤ d,

BT
1 =

[
0 1

]
, C1 =

[
1 2

]
, C2 =

[
1 0

]
,

Cd =
[
0.2 0

]
, Cd1 = D11 = 0, D21 = 1

where |φ | ≤ 0.1 and |ρ | ≤ β . Table I shows the H∞ costs
obtained with different values of β for d = 5. As can be seen,
the proposed approach provides less conservative results than
the one in [22].

As another experiment, Table II shows the H∞ costs for
β = 0.7 and d = 4,5,6,7. It can be noticed that, in most
cases, the H∞ guaranteed costs obtained by Theorem 1 with
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















−E11(α)−E11(α)′+P11(α)+d
2
Z1 +δ 2Q4(α)+d2Z2(α) −K̂ −E21(α)′+P12(α)

⋆ −K̂ − K̂′+P22(α)
⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

E11(α)A(α)+K2C2(α)−K11(α)′−d
2
Z1 −δ 2Q4(α)−d2Z2(α) K1 −K21(α)′

E21(α)A(α)+K2C2(α)−λ1K̂′ K1(α)−λ2K̂′

K11(α)A(α)+A(α)′K11(α)′+λ1K2C2(α)+λ1C2(α)′K′
2 +Q1(α)(δ +1)

+Q2(α)+Q3(α)d
2
Z1 +δ 2Q4(α)+d2Z2(α)−Z1(α)−Z2(α)−P11(α)

λ1K1 +A(α)′K21(α)′+λ2C2(α)′K′
2 −P12(α)

⋆ λ2K1 +λ2K′
1 −P22(α)

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

E11(α)Ad(α)+K2Cd(α)−H1(α)′ −M1(α)′

E21(α)Ad(α)+K2Cd(α)−λ3K̂′ −λ4K̂′

K11(α)Ad(α)+λ1K2Cd(α)+A(α)′H1(α)′+λ3C2(α)′K′
2 A(α)′M1(α)′+λ4C2(α)′K′

2 +Z1(α)′

K21(α)Ad(α)+λ2K2Cd(α)+λ3K′
1 λ4K′

1
H1(α)Ad(α)+Ad(α)′H1(α)′+λ3K2Cd(α)+λ3Cd(α)′K′

2 −Q1(α)−2Q4(α) Ad(α)′M1(α)′+Q4(α)′

⋆ −Q2(α)−Z1(α)−Q4(α)
⋆ ⋆

⋆ ⋆

⋆ ⋆

−N1(α)′ −X1(α)′

−λ5K̂′ 0
A(α)′N1(α)′+λ5C2(α)′K′

2 +Z2(α)′ A(α)′X1(α)′+C1(α)′−C2(α)′D′
f

λ5K′
1 −C′

f

Ad(α)′N1(α)′+Q4(α)′ Ad(α)′X1(α)′+Cd1(α)′−Cd(α)′D′
f

0 0
−Q3(α)−Z2(α)−Q4(α) 0

⋆ −Ip

⋆ ⋆

E11(α)B1(α)+K2D21(α)−V1(α)′

E21(α)B1(α)+K2D21(α)
K11(α)B1(α)+λ1K2D21(α)+A(α)′V1(α)′

K21(α)B1(α)+λ2K2D21(α)
H1(α)B1(α)+λ3K2D21(α)+Ad(α)′V1(α)′

M1(α)B1(α)+λ4K2D21(α)
N1(α)B1(α)+λ5K2D21(α)

X1(α)B1(α)+D11(α)−D f D21(α)
V1(α)B1(α)+B1(α)′V1(α)′−µIr

















< 0 (37)
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TABLE I

H∞ COSTS FOR EXAMPLE 1 USING THEOREM 1 (T1), λi = 0, i = 1, . . . ,5

AND [22], FOR d = 5 AND DIFFERENT VALUES OF β .

β 0.5 0.6 0.7 0.75
[22] (g = 1) 2.3691 3.0628 4.9838 9.1328
[22] (g = 2) 2.3179 2.8175 3.9136 6.1137
T1 (g = 1) 2.3179 2.7919 3.6249 6.2043
T1 (g = 2) 2.3179 2.7919 3.6171 6.0030

TABLE II

H∞ COSTS FOR EXAMPLE 1 USING THEOREM 1 (T1), λi = 0, i = 1, . . . ,5

AND [22] FOR β = 0.7 AND DIFFERENT VALUES OF d .

d 4 5 6 7
[22] (g = 1) 3.9537 4.9838 6.6630 10.6396
[22] (g = 2) 3.3236 3.9136 4.8960 7.7017
T1 (g = 1) 3.1400 3.6249 4.6118 7.8222
T1 (g = 2) 3.1400 3.6171 4.5222 7.6297

g = 1 are smaller than the ones provided by [22] with g = 2,
illustrating clearly that the proposed approach can provide
less conservative results with less computational effort. As
an example, the robust filter provided by Theorem 1 with
g = 2, d = 6 and β = 0.7 is given by

A f =

[
−0.6969 0.2431
0.2761 −0.0828

]

, B f =

[
−0.2917
−1.6307

]

C f =
[
−0.9541 −1.9847

]
, D f =

[
−0.0042

]

V. CONCLUSIONS

This paper presented new parameter-dependent delay-
dependent LMI conditions for the design of full order
robust H∞ filters for discrete-time uncertain polytopic linear
systems with unknown time-varying delay. LMI relaxations
based on homogeneous polynomials of arbitrary degrees
provided less conservative results when compared to other
existing techniques. The conditions could be extended to
cope with H2 robust filter design as well.
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