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Abstract— The design of genetic networks with specific func-
tions is one of the major goals of synthetic biology. However,
constructing biological devices that work “as required” remains
challenging, while the cost of uncovering flawed designs exper-
imentally is large. To address this issue, we propose a fully
automated framework that allows the correctness of synthetic
gene networks to be formally verified in silico from rich, high
level functional specifications.

Given a device, we automatically construct a mathematical
model from experimental data characterizing the parts it is
composed of. The specific model structure guarantees that
all experimental observations are captured and allows us to
construct finite abstractions through polyhedral operations.
The correctness of the model with respect to temporal logic
specifications can then be verified automatically using methods
inspired by model checking.

Overall, our procedure is conservative but it can filter
through a large number of potential device designs and select
few that satisfy the specification, to be implemented and tested
further experimentally. As illustration, our methods are applied
to the design of a simple synthetic gene network.

I. INTRODUCTION

Synthetic biology is an emerging field that focuses on the
rational design of biological systems. A number of biological
devices - gene networks engineered for a specific function
- have been constructed (see [21] for a review) but success
stories have largely been the result of extensive experimenta-
tion. As the field matures, a systematic approach that enables
the implementation of complicated designs into functionally
correct devices with less experimental work is needed. One
approach enabled by biological standards [16] and (online)
libraries [1] involves the modular design and construction
of devices from biological parts - genetic sequences known
to function as promoters, ribosome binding sites, coding se-
quences, etc. Using bio-design automation (BDA) platforms
such as Clotho [11], parts can be retrieved from online
libraries and devices can be designed, checked against rules
of correct assembly and implemented automatically. Even
so, BDA platforms asses potential devices in terms of their
assembly feasibility but not based on their correctness with
respect to specifications of required function.

Designing biological devices that work “as required” re-
mains challenging and is usually approached through mod-
eling to minimize costly experimentation (see [9] for a
review of modeling formalisms). A realistic model is needed
to guide design efforts but such models are often hard
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to analyze. In addition, estimating model parameters may
require extensive experimental data which is rarely available,
although characterizations resulting in biological part data
sheets [7] are currently ongoing. Besides selecting a realistic
yet analytically tractable model, specifying the required de-
vice behavior in a formalism that is both general and allows
for automatic analysis procedures is a separate challenge. In
this paper, we propose a fully automated framework for in
silico verification of synthetic gene networks from rich, high
level specifications expressed as temporal logic formulas.

Temporal logics [8] are customarily used for specifying
the correctness of digital circuits and computer programs.
Due to their expressivity and resemblance to natural language
they have gained popularity in other areas including the
specification and analysis of qualitative behavior of genetic
networks [2], [4], [3]. There also exist off-the-shelf algo-
rithms for verifying the correctness of a finite state system
for a temporal logic specification (model-checking [8]).
However, such finite models are usually too simple to capture
the dynamics of genetic networks with the detail necessary
for design applications.

In our previous work [24] we used piecewise affine (PWA)
systems as models of gene networks [23]. Such systems are
globally complex and can approximate nonlinear dynamics
with arbitrary accuracy [17], which makes them realistic
models. They are also locally simple, which allowed us to
analyze them formally from temporal logic specifications
through a procedure based on the construction and refinement
of finite abstractions through polyhedral operations [24] and
model-checking [8]. In this paper, we use a class of models
that is inspired by PWA systems but is more general. To
account for the variability due to experimental conditions
and the uncertainty inherent in biological systems we allow
model parameters to vary in some ranges. We develop a
procedure for the automatic construction of such models
from part characterization data with the guarantee that all ex-
perimental observations can be reproduced by the identified
model. We also extend our methods from [24] and integrate
them with our model identification procedure, which leads
to a fully automatic framework for specifying and verifying
the correctness of genetic networks constructed from parts.
Our approach can be used both to verify individual device
designs or to automatically explore the space of potential
device designs that can be constructed from characterized
parts, available from libraries.

In terms of analysis, our method is related to tools such
as the Genetic Network Analyzer (GNA) [10] and
RoVerGeNe [5], which study biological systems using tem-
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poral logic specifications but usually focus on the analysis
of separate devices for which a model is available. Instead,
our procedure can explore different devices constructed from
a set of parts, while models are derived automatically from
part characterization data. In that respect, our approach is
related to methods such as [18] that focus on the gen-
eration and analysis of analog and mixed-signal circuit
models from simulation traces. Unlike other gene network
modeling approaches, we do not enforce sigmoidal (Hill)
regulation functions but construct models which capture all
experimental observations and resemble uncertain parameter
PWA systems. This relates our procedure to other PWA
identification methods (see [15] for a review). Such tools
address the threshold reconstruction problem more rigorously
but only identify fixed parameter models and require device
experimental data which is not usually available during
design. This motivates the development of our procedure for
constructing device models from part characterization data.

Compared to other tools such as GEC [20] and
GenoCAD [6] that allow the computational study of bio-
logical devices constructed from parts, our approach differs
in three major aspects (see [25] for details). First, we only
assume that protein degradation rates are known (they are
often available from literature or can be predicted computa-
tionally [14]) but construct device models automatically from
the available experimental part characterization data, which
makes our approach easier to apply in practice. Second, in-
stead of relying on numerical simulation for model analysis,
we construct models which can be analyzed formally (using
model-checking based methods, developed previously in [24]
and extended in this paper) but are also rich enough to
capture all experimental observations. Finally, we formalize
high level specifications in linear temporal logic which is
both rich (i.e. it captures many properties of interest) and
“user-friendly” (i.e. it resembles natural language).

Throughout the rest of the paper we use the following
notation. Given a set S we use |S| and 2S to denote
the cardinality and the powerset (the set of subsets) of S,
respectively. For a set S ⊂ RN and a scalar λ ∈ R, we use
λS to denote the set of elements from S multiplied by λ.
Given sets S and S′ we denote their Minkowski (set) sum by
S+S′. Given polytope X , we denote the set of vertices of X
by V(X) and their convex hull as X = hull({v ∈ V(X)}).

II. PROBLEM FORMULATION

In this section we formulate the problem of verifying the
correctness of a gene network (biological device) from high
level specifications. We start by discussing our simplified
view of the biochemistry involved in gene expression, the
parts we consider as basic building blocks of all devices and
the experimental data that we assume is available.

We consider only two basic types of biological parts -
sequences of DNA that either function as promoters or code
for proteins (we refer to such sequences as genes). This is
the minimal set of parts required to define the interactions
in gene networks but the methods we subsequently develop
can be extended easily for more detailed formulations. We
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Fig. 1. In the simplified expression mechanism we consider, a gene
g is expressed from promoter p at rate βp to produce protein, whose
concentration is denoted as xg . The protein degrades at rate αg . The
promoter might be regulated by protein xg′ .

assume that each gene codes for a single protein which
degrades at a certain rate and whose concentrations can be
measured directly in experiments. We treat protein produc-
tion as a single step process, which is sufficient to capture
transcriptional regulation (see Fig. 1).

For a protein to be produced, its corresponding gene must
be expressed, which requires placing it after a promoter (we
assume that other sequences required for correct expression
such as a ribosome binding site are already contained within
a gene). The simplest device we consider contains a single
promoter and expresses a single gene to produce a single
protein (Fig. 1). By placing multiple genes on the same pro-
moter and including additional promoters, more complicated
devices can be assembled. We assume that, in a device, a
gene is expressed from a single promoter - such assembly
constraints are handled by platforms such as Clotho [11].

We differentiate between constitutive and regulated pro-
moters. A protein is always produced if its gene is expressed
from a constitutive promoter (i.e. the promoter is always
“on”), while expression from a regulated promoter varies,
depending on the concentrations of proteins or chemicals
(inducers), called regulators. In general, a promoter can
be regulated by several regulators but, for simplicity of
presentation in this paper we consider only the case of a
single regulator per promoter, although our methods can also
be extended for the more general case.

We consider only devices built from characterized parts -
genes and promoters for which experimental data indicative
of their performance is available. A gene is characterized
by the degradation rate (or equivalently the half-life) of
the protein it codes for, which we assume is a fixed and
known value. Protein degradation rates are often available
from literature or can be predicted computationally [14]. A
promoter is characterized by a rate of expression, which we
assume is the same for all genes expressed from it. However,
because of variability in experimental conditions and the
inherent uncertainty of biological systems, we assume that
the rate of expression from a promoter varies in a certain
range. For a constitutive promoter, the characterization data
is simply a set of experimentally measured expression rates
(Fig. 2(a)), while for a regulated promoter, we assume that
experimental measurements of the expression rate at different
concentrations of the regulator are available (Fig. 2(b)). Mea-
suring expression rates directly can be challenging and such
data is usually obtained by simultaneously measuring the
concentration of a regulator and a gene expressed from the
regulated promoter [22]. In Sec. III we provide a procedure
for converting such measurements to the expression rates
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Fig. 2. (a) Experimental observations in the form of a range of values
of the rate of expression βp1 characterize the constitutive promoter p1. (b)
The regulated promoter p2 is characterized by experimental observations of
the rate of expression βp2 at different concentrations of the regulator (in
this case, repressor) xg′ .

data shown in Fig. 2, which we assume is available for all
characterized promoters.

Given a device, we are interested in studying the dynamics
of the concentrations of proteins expressed from its genes.
Let G denote the set of genes where N = |G| is the
device size. We use xg to denote the concentration of the
protein expressed from gene g ∈ G, which is bounded in
a physiologically relevant range xming ≤ xg ≤ xmaxg . The
hyper-rectangle

X = [xming1 , xmaxg1 ]× . . .× [xmingN , xmaxgN ] (1)

is the feasible state space of the device, where each x ∈ X
is a vector of the concentrations of all proteins xg, g ∈ G.
Given an initial state x(0) ∈ X , the concentrations of species
from G evolve over time and produce an infinite trajectory
x(0), x(1), . . ., where x(k) ∈ X is the state at step k.

We define a set of atomic propositions Π as a set of linear
inequalities

Π = {πi, i = 1, . . . ,K}, πi = {x ∈ X | cTi x+di ≤ 0}. (2)

In other words, each atomic proposition πi partitions the
feasible space X into a satisfying and violating subset for πi.
Given a state x ∈ X we write x � πi if and only if cTi x+di ≤
0 (i.e x satisfies πi). A trajectory x(0), x(1), . . . produces an
infinite word w(0), w(1), . . . where w(k) = {π ∈ Π | x(k) �
π} is the set of propositions satisfied at step k.

To specify temporal logic properties of trajectories of
the system we use Linear Temporal Logic [8]. Informally,
LTL formulas over Π are inductively defined by using
the standard Boolean operators (e.g., ¬ (negation), ∨ (dis-
junction), ∧ (conjunction)) and temporal operators, which
include © (“next”), U (“until”), � (“always”), and ♦
(“eventually”). LTL formulas are interpreted over infinite
words, as those generated by the system. For example,
the word w(0), w(1), . . . where w(0) = {π1, π2}, w(1) =
{π1, π2, π3}, and w(2), w(3), . . . = {π1, π4} satisfies for-
mulas �π1,♦π3,♦�(π1∧π4), and π2Uπ4 but violates �π2
and ♦π5. We say that a trajectory x(0), x(1), . . . satisfies
an LTL formula φ if and only if the corresponding word
w(0), w(1), . . . satisfies φ. The device satisfies φ from a
given region X ⊆ X if and only if all trajectories originating
in X satisfy the formula.

We are now ready to formulate the main problem we
consider in this paper:

Problem 1: Given a device constructed from characterized
parts and a specification expressed as an LTL formula over

a set of linear inequalities in the concentrations of proteins,
determine if the device satisfies the specification.

Our approach to Problem 1 consists of two main steps.
Given a device, we first use the characterization data avail-
able for its parts to automatically construct a mathematical
model by applying the procedure we develop in Sec. III. The
particular model structure we enforce allows us to guarantee
that all experimental observations can be reproduced by the
identified model. As a second step, we also exploit this
structure to analyze the model from the temporal logic spec-
ification using a method inspired by model-checking, which
we described in [24] but review and extend in Sec. IV. Our
analysis procedure results in the computation of a satisfying
(respectively, violating) region - a subset of the system’s state
space from which all trajectories are guaranteed to satisfy
(respectively, violate) the specification. A device design is
considered “good” if analysis reveals a large satisfying region
and an empty or small violating region, while a design is
“bad” whenever a substantial violating region is found. Given
a library of characterized parts, our overall procedure can
serve to evaluate a large number of possible device designs
in order to select few for further experimental testing.

III. MODEL CONSTRUCTION

In this section, we describe our procedure for the auto-
matic construction of device models from part character-
ization data. As it will become clear later, the resulting
models capture all experimental observations and take the
form of uncertain parameter systems with different dynamics
in different regions of the state space.

In Sec. II we considered a simplified mechanism of gene
expression (Fig. 1). A gene g was expressed from promoter p
at rate βp to make protein whose concentration was denoted
by xg and which degraded at rate αg . We can express the
dynamics of protein concentration as

xg(k + 1) = αgxg(k) + βp. (3)

In the problem formulation of Sec. II, we assumed that, for
each gene (protein) g, αg has a fixed value which is known
for characterized parts, but βp is allowed to vary in some
range, which is unknown and must be computed from the
promoter characterization data (Fig. 2).

We first consider the computation of a range Bcp ⊂ R
for a constitutive promoter p, such that βp ∈ Bcp in Eqn. (3).
Then, we consider a regulated promoter where βp ∈ Bp(xg′)
(i.e. the range of allowed rates Bp(xg′) ⊂ R is, in general,
a function of the regulator concentration xg′ ). For both,
we first discuss the case when experimental observations of
expression rates are directly available and later extend our
procedure to compute such measurements indirectly from
more realistic experimental data. We conclude the section
by discussing the construction of models for general devices
composed of a number of characterized parts. In developing
our model identification procedure, we seek to compute
a range of expression rates that is tight but contains all
experimental measurements. This leads to the construction of
models that can reproduce all observed behavior but are not
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overly general, which would make their subsequent analysis
in Sec. IV too conservative. In the following, we denote
measured expression rates and protein concentrations from
promoter p and gene g by β̃p and x̃g , respectively.

A. Constitutive promoter

If promoter p is constitutive, expression rate βp does
not depend on the concentrations of other species in the
system (there are no regulators) but varies in range Bcp.
If a data set Dc

p = {β̃p(1), . . . β̃p(n)} of experimentally
measured expression rates is available (Fig. 2(a)), this range
is simply Bcp = [min(Dc

p),max(Dc
p)], which captures all

experimentally observed rates and extrapolates under the
assumption that any rate between the minimal and maximal
observed one is also possible for the system.

In general, expression rates cannot be measured directly
and must be computed from protein concentration measure-
ments [22]. If gene g is expressed from constitutive promoter
p, given a finite trajectory fragment x̃g(0), x̃g(1), . . . , x̃g(n+
1) observed in experiments1, from Eqn. (3) it follows that
the expression rate β̃p(k) observed at step k = 0, . . . , n is

β̃p(k) = x̃g(k + 1)− αgx̃g(k). (4)

B. Regulated promoter

For a regulated promoter p, the rate of expression βp varies
in a range Bp(xg′), which is a function of the regulator
concentration xg′ . Range Bp(xg′) is unknown and must be
computed from the available promoter characterization data
(β̃p, x̃g′) ∈ Dp (i.e. Dp is a set of expression rates measured
at different repressor concentrations as in Fig. 2(b)). In the
following, we focus on the construction of the set

B̄p = {(βp, xg′) | xg′ ∈ [xming′ , xmaxg′ ], βp ∈ Bp(xg′)}. (5)

This allows us to compute Bp(xg′) at arbitrary concen-
trations xg′ as the slice of B̄p at xg′ (i.e. Bp(xg′) =
{βp | (βp, xg′) ∈ B̄p}). By constructing the tightest B̄p
that contains all experimental measurements (i.e. Dp ⊂ B̄p),
we guarantee that the model we identify can reproduce all
observed behavior but our subsequent analysis in Sec. IV is
not overly conservative.

We introduce a set of thresholds θig′ (computed as de-
scribed in Sec. III-C), such that xming′ ≤ θig′ ≤ xmaxg′ for all
i = 1, . . . , ng′ and θig′ < θi+1

g′ for all i = 1, . . . , ng′ − 1. For
each regulator concentration region (i.e. when θig′ < xg′ <

θi+1
g′ ), we construct a trapezoid B̄ip that has the two thresh-

olds as its bases and contains all expression rates observed
in that region. Then, we have B̄p =

⋃ng′−1
i=1 B̄ip and, given

regulator concentration xg′ such that xg′ = λθig′+(1−λ)θi+1
g′

for some i = 1, . . . , ng′ − 1 and λ ∈ [0, 1],

Bp(xg′) = λBp(θ
i
g′) + (1− λ)Bp(θ

i+1
g′ ). (6)

Additional details and other strategies for the computation
of B̄ip and B̄p are described in [25].

1When protein concentration measurements from individual cells are not
available the method can still be applied but additional assumptions or
computation are necessary as described in [25]

As for constitutive promoters, when expression rates are
not available directly, they can be computed from protein
concentration measurements. Given genes g,g′ and a pro-
moter p, such that g is expressed from p and g′ regulates
p, and a trajectory fragment x̃(0), x̃(1), . . . , x̃(n+ 1) where
x̃(k) = (x̃g(k), x̃g′(k)) is a vector of regulator and protein
concentrations, we have

Dp = {(β̃p(k), x̃g′(k)) | x̃(k) = (x̃g(k), x̃g′(k)), (7)

β̃p(k) = x̃g(k + 1)− αgx̃g(k), k = 1, . . . , n}.

C. Device models

To summarize the construction of models using the pro-
cedures we discussed so far, we consider a device consisting
of a set of genes G and promoters P (see the problem
formulation in Sec. II). For notational simplicity, we assume
that for i = 1, . . . , N , gene gi ∈ G is expressed from
promoter pi ∈ P , which is either constitutive or regulated
by the protein produced by gene g′i ∈ G. We assume that,
for each gene g ∈ G, we have at least two thresholds (i.e.
ng ≥ 2) where θ1g = xming and θ

ng
g = xmaxg (i.e. the

boundaries of the state space X introduced in Sec. II are
thresholds). Computing the set of thresholds is not the focus
of this paper but related methods are available [12]. Here,
we implement a sampling procedure where, out of a number
of randomly generated thresholds, we select the subset of a
given size that minimizes the volume of B̄p.

For a state x ∈ Xl where x = (xg1 , . . . , xgN ), the
dynamics of each component xg are given by Eqn. (3) where

βpi ∈
{
Bcp if p is constitutive or
Bp(xg′i) if p is regulated (8)

It is important to note that the identified model can re-
produce all experimental data used for part characterization.
Consider a trajectory fragment used in Eqn. (4) or (7) to
respectively characterize a constitutive or regulated promoter.
We can guarantee that the expression rate from the promoter,
required to reach the concentration of the expressed protein
observed at step k + 1 starting from the concentration
observed at step k, is always in the allowed range. In Sec. IV
we will show that the model structure allows the computation
of finite abstractions through polyhedral operations, enabling
the application of formal analysis techniques.

IV. FORMAL ANALYSIS

In Sec. III we developed a procedure for the automatic
construction of device models from part characterization
data. All experimental measurements were captured in the
resulting models by allowing expression rates to vary in
certain ranges. In this section we show that, despite this
uncertainty, finite quotients of the identified models can
be constructed using polyhedral operations, which enables
analysis through methods inspired by model checking. With
the exception of Prop. 1, the material presented in this section
is largely a review of our results from [24].

The state space X from Eqn. (1) is partitioned by the
thresholds θig, i = 1, . . . , ng of all genes g ∈ G into a number
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of hyper-rectangular regions. We partition X further using all
linear inequalities π ∈ Π (Eqn. (2)) and ignore the measure-
zero set consisting of all boundaries2. This results in a set
of open polytopes Xl, l ∈ L such that, for all l1, l2 ∈ L,
Xl1 ∩ Xl2 = ∅ and ∪l∈Lcl(Xl) = X , where cl() denotes
the closure of a set. We denote the set ∪l∈LXl as X̄ . Note
that all states from a given region satisfy the same atomic
propositions (i.e. for all x1, x2 ∈ Xl for some l ∈ L and all
π ∈ Π, x1 � π if and only if x2 � π).

We define two states as equivalent if and only if they
belong to the same region Xl for some l ∈ L. The finite,
proposition preserving quotient induced by this equivalence
relation is the transition system T = (Q,→,Π,�) where
Q = L is the finite set of states, Π is the set of atomic
propositions from Eqn. (2), and �⊆ Q×Π is the satisfaction
relation3 where, given l ∈ L and π ∈ Π, l � π if and
only if, for all x ∈ Xl, x � π. The transition relation
→⊆ Q × Q is defined as (l1, l2) ∈→ if and only if there
exists a transition from a state in region Xl1 to a state in Xl2 .
From this definition, it follows that T simulates the infinite
system identified through our procedure from Sec. III (in
other words, T can produce any word that the infinite system
can produce [19]). This allows us to guarantee that if an
arbitrary LTL formula φ is satisfied by T at state l ∈ L, then
all trajectories of the system originating in region Xl satisfy
the formula. Note that when T does not satisfy φ from state
l we cannot say anything about the satisfaction of φ from
region Xl, which makes the overall method conservative.

In [24] we developed an analysis procedure based on the
construction, model checking and refinement of simulation
quotients such as T . Our algorithm used model checking
to partition the set of states L into set Lφ ⊆ L from
which T satisfied an LTL formula φ and L¬φ ⊆ L from
which T satisfied the negation ¬φ. This allowed us to
guarantee that all trajectories originating in the satisfying
region X φ =

⋃
l∈Lφ Xl and none of the trajectories origi-

nating in the violating region X¬φ =
⋃
l∈L¬φ Xl satisfied φ.

Both satisfying and violating trajectories originated in region
X̄ \ (X φ∪X¬φ) and our algorithm implemented an iterative
refinement procedure to try and separate them, in which case
X φ and X¬φ can be expanded.

To apply our method from [24] (implemented as the
software tool FaPAS) we need to be able to construct T ,
which reduces to the computation of its transitions →. For
all l ∈ L, we denote the set of states reachable from Xl in
one step as Post(Xl). Transitions of T can be computed as

(l1, l2) ∈→ if and only if Post(Xl1) ∩ Xl2 6= ∅. (9)

To show that T can be constructed, we show that
Post(Xl1) ∩ Xl2 is computable for all l1, l2 ∈ L. We use
the notation introduced in Sec. III where each promoter,
gene and regulator is denoted by pi ∈ P and gi, g

′
i ∈ G,

2It is unreasonable to assume that equality constraints can be detected in
practice and, in general, trajectories of the system do not disappear in such
measure zero sets.

3We abuse the notation and use symbol � to denote the satisfaction of a
proposition by a state in the original infinite system and its abstraction T .

i = 1, . . . , N , respectively. Given a state x ∈ Xl for some
l ∈ L such that x = (xg1 , . . . , xgN ), the overall system
dynamics are given by

x(k + 1) ∈ Ax(k) +B(x(k)), (10)

where A is the diagonal matrix of degradation rates A =
diag(αg1 , . . . , αgN ) and

B(x) = B1(xg′1)× . . .×BN (xg′N ) where (11)

Bi(xg′i) =

{
Bcpi if pi is constitutive or
Bpi(xg′i) if pi is regulated

Proposition 1: For all l ∈ L, Post(Xl) is convex and
computable as4

Post(Xl) = hull({Av +B(v) | v ∈ V(Xl)}).
Following from Prop. 1 (with a proof available in [25]), the
intersection Post(Xl1) ∩ Xl2 is convex and computable for
all l1, l2 ∈ L. Then, transitions can be computed using Eqn.
(9) which completes the construction of T and, therefore,
the satisfying and violation regions of the system identified
in Sec. III can be computed. The relative volumes of those
regions can be used to determine if a device satisfies the
specification, which provides a solution to Problem 1. The
same approach can also be used to compare different designs
constructed from a set of parts based on their satisfaction of
a common specification. To illustrate this, in Sec. V we use
our method to design a synthetic gene network.

V. DESIGN OF GENE NETWORKS

To illustrate our method, we apply it to the design of
a bistable gene network inspired by the “genetic toggle
switch” [13], which has the topology shown in Fig. 3. We
start by constructing a library of parts, which includes three
genes (denoted by g1, . . . g3) and three promoters (denoted
by p1, . . . p3). We assume that the proteins produced from
all three genes are stable and their degradation rates are
negligible compared to the dilution due to cell growth, which
leads to a protein half-life of 30 min - an estimate of the
generation time of bacteria. All promoters are regulated and
the protein produced by gene gi represses promoter pi.

To characterize the promoters in the library, we need to
obtain experimental data of their expression rates at different
repressor concentrations as described in Sec. II and III.
We follow the strategy from [22] where a characterization
device similar to the one from Fig. 1 is used. It consists
of an arbitrary reporter protein that is expressed from the
regulated promoter to be characterized. The regulator protein
is initialized at high concentration but is not expressed5 and,
as a result, repressor concentration decreases over time due
to degradation. By measuring both repressor and reporter
concentrations simultaneously we can compute the promoter
characterization data as in Eqn. (7). Through numerical

4Although set B(v) might be different for different regions that share
vertex v ∈ V(Xl), from the index l ∈ L it is always clear which B(v) is
used for the computation.

5Experimentally, this is accomplished by expressing the regulator from
an externally controlled promoter, which is switched off.
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Fig. 3. Toggle switch. Two repressor proteins are expressed from two
regulated promoters and mutually repress each other.

simulation of stochastic differential equations we generate
a number of trajectories for each characterization device in
lieu of single cell experimental measurements and use this
information for model construction as described in Sec. III
(plots of some characterization device trajectories and the
constructed expression rate ranges are available in [25]).

We consider all “toggle switch” devices with topology as
in Fig. 3 that can be constructed from the set of available
parts. For device 1, gene g2 is expressed from promoter p1
and gene g1 is expressed from promoter p2. For device 2, g3
is expressed from p1 and g1 is expressed from p3. For device
3, g2 is expressed from p3 and g3 is expressed from p2.
For each device, we consider specifications φ1 = ♦�π1 and
φ2 = ♦�π2 where π1 := xgi ≥ 2xgj and π2 := 2xgi ≤ xgj .
In other words, specification φ1 indicates that eventually
and for all future times the concentration of protein xgi
is at least twice greater than that of protein xgj , while φ2
indicates the opposite. We seek a bistable device satisfying
both specifications from different initial conditions.

Analysis using the procedure described in Sec. IV leads
to the computation of the relative volumes of the satisfying
and violating regions for all three devices for each of the two
specifications (results are summarized in Table I). Analysis
indicates that only device 3 is bistable, which is confirmed
through simulations of the stochastic differential equation
models of all three devices (results are available in [25]).

VI. CONCLUSION

In this paper, we presented an automated procedure for the
design of functionally correct synthetic gene networks from
parts. We formalized high level specifications of required de-
vice behavior as temporal logic formulas over linear inequali-
ties in protein concentrations. We developed a procedure for
the construction of device models from experimental data
characterizing the different parts the devices were composed
of. The identified models were related to PWA systems but
allowed expression rates from promoters to vary in certain
ranges and could capture all experimental observations. This
model structure also allowed us to construct finite quotients
through polyhedral operations. Such quotients could then
be analyzed using methods inspired by model checking
to compute a range of initial conditions from which all
trajectories of the device model were guaranteed to satisfy (or
violate) the specification. The relative sizes of those regions
provided information about the correctness of a device design
with respect to the specification. Our procedure could test
individual, user-specified device designs or automatically
search for correct devices by exploring the design space
of devices constructed from a set of parts. Future research
directions involve decreasing the conservatism of the method
by quantifying the “likelihood” of different parameters and
applying it to real experimental studies.

TABLE I
spec. φ1 = ♦�π1 φ2 = ♦�π2

device satisfying violating satisfying violating
1 0% 46.9% 35.1% 0%
2 0% 88.8% 88.8% 0%
3 8.4% 58.4% 26.7% 8.4%
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