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Abstract— In this paper a new complex dynamic model for
multi-phase asynchronous motors has been presented using
the Power-Oriented Graphs (POG) technique. This new model
is obtained using a complex rectangular transformation that
reduces the number of the used complex state space variables.
The odd harmonic injection has also been considered in order
to describe the most general dynamics of the machine by using
a compact model. Finally some simulation results have been
reported to prove the effectiveness of the new transformation
and to show the contribution of the harmonic injection in terms
of torque enhancement.

I. INTRODUCTION

The benefits and the advantages of the multi-phase asyn-

chronous machines are well know in literature, see [3]

and [4], especially concerning the torque enhancement: this

aspect makes these machines particularly suitable for high-

power applications. Another additional degree of freedom

of the concentrated-winding multi-phase machines that con-

tributes to provide a higher density torque, is the odd order

harmonic injection, widely described in literature in [5], [6],

[7], [8] and [9] in the cases of limited number of stator and

rotor phases.

The main focus of this paper is to obtain a new com-

plex reduced dynamic model of a multi-phase asynchronous

motor, considering an arbitrary number of stator and rotor

phases together with the odd order harmonic injection. The

dynamic equations of the system have been obtained using

a “complex” state space transformation that reduces the

number of the internal variables and the obtained model

has been graphically represented using the Power-Oriented

Graphs modeling technique: the result is a very compact and

general model of the machine, that includes the multi-phase

features, the complex transformation and the harmonic injec-

tion and that can be easily used to perform any simulations

of the induction motors. The paper is organized as follows: in

Section II the basic properties of the POG technique in the

complex case are briefly presented. Section III introduces

and describes the complex reduced dynamic equations of

the considered system, putting in evidence the harmonic

injection and its contribution in terms of torque enhancement.

Last Section IV shows some simulation results.

II. POWER-ORIENTED GRAPHS

The Power-Oriented Graphs, see [1] and [2], is a graphical

modeling technique suitable for modeling physical systems.
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Fig. 1. POG: a) elaboration block; b) connection block.

The POG are normal block diagrams combined with a

particular modular structure essentially based on the use

of the two blocks shown in Fig. 1: the elaboration block

stores and/or dissipates energy (i.e. springs, masses, dampers,

capacities, inductances, resistances, etc.); the connection

block redistributes the power within the system without

storing or dissipating energy (i.e. any type of gear reduction,

transformers, etc.). The POG schemes can be used both

for scalar and vectorial systems, and for real and complex

variables. In the vectorial case, G(s) and K are matrices:

G(s) is always a square matrix of positive real transfer

functions; matrix K can also be rectangular, time varying

and function of other state variables. The circle present in

the e.b. is a summation element and the black spot represents

a minus sign that multiplies the entering variable. The main

feature of the Power-Oriented Graphs is to keep a direct

correspondence between the dashed sections of the graphs

and real power sections of the modeled systems: the real part

of the scalar product x∗y of the two power vectors x and

y involved in each dashed line of a power-oriented graph,

see Fig. 1, has the physical meaning of the power flowing

through that particular section. From the POG schemes one

can directly obtain the state space equations of the system:

L ẋ = −Ax + Bu, y = B∗x. The energy matrix L is

always symmetric and positive definite: L = L∗ > 0. When

an eigenvalue of matrix L tends to zero (or to infinity), the

system degenerates towards a smaller dynamic system. The

dynamic equations Lż = −Az+Bu and y = B
∗

z of the

“reduced” system can always be obtained from the original

one using a “congruent” transformation x = Tz (matrix T

can also be complex and/or rectangular) where L = T∗LT,

A = T∗AT − T∗LṪ and B = T∗B. When matrix T is

rectangular, the system is transformed and reduced at the

same time.
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Fig. 2. Structure of a multi-phase asynchronous motor.

A. Notations

In this paper the following notations are used to denote

full, diagonal, column and row matrices respectively:

i j

|[ Ri,j ]|
1:n 1:m

=








R11 R12 · · · R1m

R21 R22 · · · R2m

...
...

. . .
...

Rn1 Rn2 · · · Rnm








,
i

|[ Ri ]|
1:n

=






R1

. . .

Rn




,

i

|[ Ri ]|
1:n

=
[
R1 R2 · · · Rn

]T

,
j

|[ Rj ]|
1:m

=
[
R1 R2 · · · Rm

]
.

The symbol δ(n)|mk denote the following function:

δ(n)|mk =

{
1 if n ∈ [k, k ± m, k ± 2m, . . .]

0 in the other cases

where n, k,m ∈ Z. The symbol Im denotes an identity

matrix of order m.

III. COMPLEX DYNAMIC MODEL OF THE MOTOR

The structure of a multi-phase star-connected asyn-

chronous motor is shown in Fig. 2, whose electrical and

mechanical parameters are shown in Table I. All the electrical

parameters have been obtained connecting in series the p
polar couples of the motor. Let us denote tVs, tIs, tVr

and tIr as stator and rotor voltage/current vectors in the

external frame Σt:

tVs =







Vs1

Vs2
...

Vsms







, tIs =







Is1

Is2
...

Isms







, tVr =







Vr1

Vr2
...

Vrmr







, tIr =







Ir1

Ir2
...

Irmr







where Vsi = Vi − Vs0 for i ∈ {1, 2, . . . , ms} and Vri =
Vrr − Vr0 for i ∈ {1, 2, . . . , mr}. Using the following

generalized state vector tq̇ and extended input vector tV:

tq̇ =





tIs
tIr

ωm



 =

[
tIe

ωm

]

, tV =





tVs
tVr

−τe



 =

[
tVe

−τe

]

ms number of stator phases

mr number of rotor phases

p number of rotor and stator polar expansions

γs stator angular phase displacement (γs = 2π
ms

)

γr rotor angular phase displacement (γr = 2π
mr

)

θm rotor angular position

ωm rotor angular velocity

θs stator voltage angular position

ωs stator voltage frequency

θ electric angle (θ = p θm)

Rs stator phases resistance

Ls stator phases self inductance

Ms0 maximum mutual inductance of the stator phases

Rr rotor phases resistance

Lr rotor phases self inductance

Mr0 maximum mutual inductance of the rotor phases

Msr0 stator-rotor phases maximum mutual inductance

Jm rotor inertia momentum

bm rotor linear friction coefficient

τm electromotive torque acting on the rotor

τe external load torque acting on the rotor

TABLE I

ELECTRICAL AND MECHANICAL PARAMETERS OF THE MULTI-PHASE

ASYNCHRONOUS MOTOR.

and applying the “Lagrangian” approach discussed in [10],

one obtains the following dynamic equations of the multi-

phase asynchronous motor referred to the external frame Σt:

d

dt

([
tLe 0
0 Jm

]

︸ ︷︷ ︸

tL(tq)

[
tIe

ωm

]

︸ ︷︷ ︸

tq̇

)

=−
[

tRe + tFe
tKe

− tKT

e bm

]

︸ ︷︷ ︸

tR + tW

[
tIe

ωm

]

︸ ︷︷ ︸

tq̇

+

[
tVe

−τe

]

︸ ︷︷ ︸

tV
(1)

where:

tL(tq) =





tLs
tMT

sr(θm) 0
tMsr(θm) tLr 0

0 0 Jm



 =

[
tLe 0
0 Jm

]

,

tR =





tRs 0 0
0 tRr 0
0 0 bm



=

[
tRe 0
0 bm

]

,

tW =







0 − 1
2

tṀT

sr
1
2

∂ t
M

T
sr

∂θm

tIr

− 1
2

tṀsr 0 1
2

∂ t
Msr

∂θm

tIs

− 1
2

tIT

r
∂ t

Msr

∂θm

− 1
2

tIT

s
∂ t

M
T
sr

∂θm

0







.

In order to provide an harmonic injection, the stator and rotor

self and mutual inductance matrices can be expressed with

the following odd terms Fourier series:

tLs = Ls0 Ims
+ Ms0

i j∣
∣
∣
∣
∣

[
ms−2∑

n=1:2

as
n cos(n (i − j)γs)

]∣
∣
∣
∣
∣

1:ms 1:ms

,

tLr = Lr0 Imr
+ Mr0

i j∣
∣
∣
∣
∣

[
mr−2∑

n=1:2

ar
n cos(n (i − j)γr)

]∣
∣
∣
∣
∣

1:mr 1:mr

,
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ω Īe

� -

ωV̄e � �

ωR̄e

6

6

- -

� �

ωΩ̄e

6

6

- -

�
�

��

@
@

@@

0� �

ωF̄e

6

6

- -

3

Energy Conversion

�
�

��

@
@

@@

- ωK̄∗

e
-

�
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Fig. 3. POG graphical representation of a multi-phase asynchronous motor in the complex transformed frame Σ̄ω .

tMsr(θ) = Msr0

i j∣
∣
∣
∣
∣

[
msr−2∑

n=1:2

asr
n cos(n(θ + iγr − jγs))

]∣
∣
∣
∣
∣

0:mr−1 0:ms−1

where msr = min{ms,mr}, Ls0 = Ls − Ms0 and Lr0 =
Lr−Mr0. The terms as

n, ar
n and asr

n are the coefficients of the

self and mutual Fourier series. They satisfy the constraints:

ms−2∑

n=1:2

|as
n| ≤ 1,

mr−2∑

n=1:2

|ar
n| ≤ 1,

msr−2∑

n=1:2

|asr
n | ≤ 1.

The considered asynchronous motor belongs to the

class of concentrated-winding multi-phase machines. Let
tT̃ω(m, θ) ∈ C

m×(m−1)/2 and tT̃ωN ∈ C
m×(m+1)/2 denote

the following rectangular “complex” matrices:

tT̃ω(m, θ) =

√

1

m

h k∣
∣
[

ej k(θ−hγm)
]∣
∣

0:m−1 1:2:m−2

,

tT̃ωN (m, θ) = tT̃ω(m, θ)Nm =
[

tT̃ω zm

]

Nm (2)

where γm = 2π
m , zm ∈ R

m and Nm ∈ C
(m+1)/2×(m+1)/2:

zm =

h∣
∣
∣

[ √
1
m

]∣
∣
∣

0:m−1

, Nm =

[ √
2 Im−1

2

0

0 1

]

.

Let tTω denote the following complex matrix, see (2):

tTω =





tT̃ωN (ms, θs) 0 0

0 tT̃ωN (mr, θp) 0
0 0 1



=

[
tTωN 0

0 1

]

=





tT̃ω(ms, θs) 0 0

0 tT̃ω(mr, θp) 0
0 0 1









Nms
0 0

0 Nmr
0

0 0 1





=

[
tTω 0
0 1

] [
N 0
0 1

]

= tTω N

where θp = θs − θ. It can be easily shown that all the

columns of matrix tTω are orthogonal complex vectors.

Applying the state space transformation tq̇ = tT∗

ω
ωq̇ to

system (1) one obtains the dynamic equations of the multi-

phase asynchronous motor expressed in the new complex

transformed frame Σ̄ω:
»

ω
L̄e 0

0 Jm

–

| {z }
ωL

»
ω ˙̄
Ie

ω̇m

–

| {z }
ωq̈

=−
»

ω
R̄e+

ω
F̄e+

ω
Ω̄e

ω
K̄e

− ω
K̄

∗

e bm

–

| {z }
ωR+ ωW

»
ω
Īe

ωm

–

| {z }
ωq̇

+

»
ω
V̄e

−τe

–

| {z }
ωV

(3)

where: ωL = tT
∗

ω
tL tTω , ωR = tT

∗

ω
tR tTω and ωW =

tT
∗

ω
tW tTω . The complex vectors ωV = tT∗

ω
tV and

ωq̇ = tT∗

ω
tq̇ have the following structure:

ωV =





ωV̄s
ωV̄r

−τe



 =

[
ωV̄e

−τe

]

, ωq̇ =





ω Īs
ω Īr

ωm



 =

[
ω Īe

ωm

]

where ωV̄r = 0 because the rotor phases are short-circuited.

Moreover, vectors ω Īe and ωV̄e have the following struc-

ture:

ω Īe = tT
∗

ωN
tIe =

[
tT̃∗

ωN (ms, θs)
tIs

tT̃∗

ωN (mr, θp)
tIr

]

=







ω Īs
ωIsms

ω Īr
ωIrmr







,

ωV̄e = tT
∗

ωN
tVe =

[
tT̃∗

ωN (ms, θs)
tVs

tT̃∗

ωN (mr, θp)
tVr

]

=





ωV̄s
ωVsms

0





where ωIsms
=

∑ms

h=1 Ish, ωIrms
=

∑mr

h=1 Irh and ωVsms
=

∑mr

h=1 Vsh. When the stator and rotor phases are star-

connected it is ωIsms
= ωIrms

= 0. When the input stator

voltages are balanced it is Vsms
= 0. Vectors ω Īs, ω Īr and

ωV̄s can be expressed as follows:

ω Īs =

k∣
∣
∣

[

Idsk + j Iqsk

]∣
∣
∣

1:2:ms−2

, ω Īr =

k∣
∣
∣

[

Idrk + j Iqrk

]∣
∣
∣

1:2:mr−2

,

ωV̄s =

k∣
∣
∣

[

Vdsk + j Vqsk

]∣
∣
∣

1:2:ms−2

.
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




Ls0+ ms

2 Ms0as Msrea
T

sr 0

Msreasr Lr0+ mr

2 Mr0ar 0

0 0 Jm












ω ˙̄Is

ω ˙̄Ir

ω̇m






=−






Rs+jωskms
(Ls0+ ms

2 Ms0as) jωsMsrekms
aT

sr 0

jωpMsrekmr
asr Rr+jωpkmr

(Lr0+ mr

2 Mr0ar) 0

j p
2Msre

ω Ī∗rkmr
asr −j p

2Msre
ω Ī∗skms

aT

sr bm











ω Īs

ω Īr

ωm




+






ωV̄s

0

−τe






Fig. 4. Complex dynamic equations of a multi-phase asynchronous motor with odd harmonic injection in the transformed reduced rotating frame Σ̄ω .

In the transformed rotating frame Σ̄ω the energy matrix ωL

has the following constant structure:

ωL =







Ls0 + ms

2 Ms0 as Msre aT

sr 0

Msre asr Lr0 + mr

2 Mr0 ar 0

0 0 Jm







where as, ar and asr are real constant matrices (function of

the Fourier series coefficients) defined as follows:

as =

k∣
∣
∣

[

as
k

]∣
∣
∣

1:2:ms−2

, ar =

k∣
∣
∣

[

ar
k

]∣
∣
∣

1:2:mr−2

, asr =

k l∣
∣
∣

[

asr
k δ(k)|∞l

]∣
∣
∣

1:2:mr−2 1:2:ms−2

.

Matrix ωW has the following skew-symmetric structure:

ωW=






jωskms
(Ls0+ ms

2
Ms0as) j(ωs−

ω
2
)Msrekms

aT
sr

ωK̄s

j(ωs−
ω
2
)Msrekmr

asr jωpkmr
(Lr0+ mr

2
Mr0ar) ωK̄r

−
ωK̄∗

s −
ωK̄∗

r 0






where km =
k

|[ k ]|
1:2:m−2

. In the transformed frame Σ̄ω the

torque vector ωK̄∗

e has the following form:

ωK̄∗

e =
[

ωK̄∗

s
ωK̄∗

r

]

=
[

−j
p

2
Msre

ω Ī∗r kmr
asr j

p

2
Msre

ω Ī∗s kms
aT

sr

]

.

The mechanical torque τm can be expressed as:

τm = Re ( ωK̄∗

e
ωIe) = Re

(
[

ωK̄∗

s
ωK̄∗

r

]
[

ω Īs
ω Īr

])

=
p

2
Msre Re

(
[
−j ω Ī∗r kmr

asr j ω Ī∗s kms
aT

sr

]
[

ω Īs
ω Īr

])

= pMsre

msr−2∑

n=1:2

k asr
k (Idrk Iqsk − Idsk Iqrk). (4)

When the inductance matrices have a simple cosinusoidal

shape, see [11], the expression of the mechanical torque is:

τm1
= Re ( j pMsre

ω Ī∗s
ω Īr) = Re ( j pMsre

ω Ī∗s
ω Īr)

= pMsre (Idr1 Iqs1 − Ids1 Iqr1).
(5)

In (5) the mechanical torque τm1
is generated only by the

fundamental harmonic component, whatever is the number of

stator and rotor phases. On the contrary, in (4) the mechanical

torque is produced by all the odd harmonic components

n ∈ [1 : 2 : msr − 2], providing a higher torque density.

A POG graphical representation of system (3) is shown in

Fig. 3: the connection blocks present between sections 1

Electrical parameters

ms = 7 mr = 7
Ls = 0.12 mH Lr = 0.12 mH
Rs = 3Ω Rr = 3 Ω
Ms0 = 0.1 mH Mr0 = 0.1 mH
p = 1 Msr0 = 0.09 mH
Vmax = 100 V ωs = 8π rad/s

Mechanical parameters

Jm = 0.8 Kg m2 bm = 0.5 Nm s/rad
τe = 2 Nm

TABLE II

ELECTRICAL AND MECHANICAL PARAMETERS USED IN SUMULATION.

and 2 represent the state space transformation Σt ↔ Σ̄ω .

The connection block defined by function “Re(·)” represents

the “complex to real conversion” of the input vectors. The

elaboration blocks between sections 2 and 3 represent

the Electrical part of the system. This part is composed

only by complex matrices and complex variables (see the

lightly shaded section of Fig. 3). The Mechanical part of

the motor is described by the blocks present between sections
4 and 5 . The c.b. between sections 3 and 4 represents

the energy and power conversion (without accumulation nor

dissipation) between the electrical and mechanical domains.

The expanded form of system (3) is shown in Fig. 4 where:

Msre =
Msr0

√
msmr

2
, ωp = ωs − ω.

It can be easily proved that in (3) the two terms ωKe ωm and
ωF̄e

ω Īe simplify each other. These two terms have been left

in the POG scheme of Fig. 3 and have been eliminated in

the system equations represented in Fig. 4.

IV. SIMULATION RESULTS

This section presents the simulation results obtained in

Matlab/Simulink by implementing the model of the motor

discussed in Sec. III and shown in Fig. 3. The electrical

and mechanical parameters used in simulation are listed in

Tab. II. The considered input voltage vector has the following

balanced structure:

tVs =
h

|[ Vsh ]|
1:7

=
5∑

k=1:2

h

|[ Vmk cos(k (θs−(h−1)γs)) ]|
1:7

(6)

where k ∈ [1 : 2 : 5] indicates the harmonic order. The

mutual inductance coefficients tMsr(1, 1) between the first

stator and the first rotor phase are shown in Fig. 5: the

different shapes have been obtained by using the following

asr coefficient matrices: 1) asr = diag
[

1 0 0
]

which
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corresponds to the fundamental harmonic injection only (blue

curve of Fig. 5); 2) asr = diag
[

0.8 0.2 0
]
, i.e. the

fundamental plus 3rd harmonic injection (green curve); 3)

asr = diag
[

0.6 0.2 0.2
]
, i.e. the fundamental plus 3rd

and 5th harmonic injection (red curve). Clearly, the choice

of the coefficients of asr is important to decide which weight

has to be assigned to each harmonic in order to obtain the

desired torque density, see (4). The following method has

been adopted to define the input voltage vector amplitudes

Vmk of (6): only the fundamental amplitude Vm1 has been

chosen, while the others have been scaled by using the

following percentage coefficients Kk
1 :

Kk
1 =

Vmk

Vm1
=

Vdsk

Vds1
, k ∈ {3, 5},

that indicate the percentage of the kth harmonic component

amplitude with respect to the fundamental. In Fig. 6 stator

voltage Vs1, stator current Is1 and rotor current Ir1 in the

range t ∈ [0, 1] s are shown, with K3
1 = Vds3/Vds1 =

50% and K5
1 = Vds5/Vds1 = 33%: each curve refers to

a different coefficient matrix asr previously defined, that

is to a different mutual inductance shape of Fig. 5. Note

that the lighter curves in Fig. 6 have a sinusoidal shape

because they correspond to asr = diag
[

1 0 0
]
, where

only the fundamental has been considered. In Fig. 7 angular

velocity ωm and mechanical torque τm in the range t ∈
[0, 1.8] s are shown, corresponding to the three different

mutual inductance coefficients tMsr(1, 1) shown in Fig. 5: it

can be noticed that the mechanical torque τm is function of

the number of odd harmonics involved, especially in terms

of transient dynamics.

Let us now consider the following self and mutual induc-

tance coefficient matrices:

as = ar = asr = diag
[

0.6 0.2 0.2
]
,

and let us vary the scaling coefficients as follows:

K3
1 =

[
0 15 30 45 60

]
% , K5

1 = K3
1/2.

In Fig. 8 the time behavior of Vs1, Is1 and Ir1 in the range

t ∈ [0, 1] s have been reported as function of the scaling

coefficients K3
1 and K5

1 . The time behavior of mechanical

torque τm and angular velocity ωm in the frame t ∈ [0, 1.8] s,

are reported in Fig. 9: one can notice how the torque density

increases by choosing higher values of coefficients Kk
1 . This

is well shown in Fig. 10, where a three-dimensional evolution

of the mechanical torque as function of the angular velocity

and the scaling coefficients are shown, together with the

torque level curves: one can notice that the peak torque

and the steady-state torque are both proportional to the

coefficients Kk
1 . Finally, in Fig. 11, steady-state torque τss

and peak torque τp are reported: the increase of the amplitude

of the injected harmonics provide a significantly higher peak

torque compared with the smaller variation of the steady-

state torque.
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Fig. 5. Mutual inductance between the first stator and rotor phase.
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Fig. 6. Time behavior of stator voltage Vs1, stator current Is1 and rotor
current Ir1 in the original reference frame Σt as function of coefficient
matrices asr .
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Fig. 7. Time behavior of angular velocity ωm and mechanical torque τm

as function of coefficient matrices asr .

V. CONCLUSION

In the paper a compact and general complex dynamic

model of a multi-phase asynchronous motor has been pre-

sented and modeled using the POG graphical technique.

A complex rectangular transformation has been used and

the odd harmonic injection terms have been considered,

obtaining a reduced-order model that describes the dynamics

of the asynchronous machine in the most general case.

This model has been implemented in Matlab/Simulink and

simulated in the 7-phase case. The simulation results have
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Fig. 8. Time behavior of stator voltage Vs1, stator current Is1 and
rotor current Ir1 in the original reference frame Σt as function of scaling
coefficients K3
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Fig. 9. Time behavior of angular velocity ωm and mechanical torque τm

as function of scaling coefficients K3

1
and K5

1
.

shown the contribution of the harmonic injection in terms of

torque enhancement and have depicted the different behav-

iors corresponding to the different harmonic order injected.
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