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Abstract— In this article, we study optimal control problems
of spiking neurons whose dynamics are described by a phase
model. We design minimum-power current stimuli (controls)
that lead to desired spiking times. In particular, we consider
bounded control amplitude and characterize the range of
possible spiking times according to the bound. The design of
such bounded optimal controls is of fundamental importance as
phase models are accurate under weak forcing. We show that
for a given bound, the corresponding feasible spiking times are
optimally achieved by switching controls. We present analytical
expressions with numerical simulations of these minimum-
power stimuli for various phase models of neurons.

I. INTRODUCTION

Optimal control of neurons and hence the nervous system

by external current stimuli (controls) has received increased

scientific attention in recent years for its wide range of

applications from deep brain stimulation to oscillatory neu-

rocomputers [1], [2], [3]. Traditionally, neuron oscillators

are modeled by phase-reduced models, which form standard

nonlinear systems [4], [5]. Intensive studies using phase

models have been carried out, for example, on investigation

of the patterns of synchrony that results from the type and

architecture of coupling [6], [7] and on the response of large

groups of oscillators to external stimuli [8], [9], where the

inputs to the neuron systems were initially defined and the

dynamics of neural populations were analyzed in detail.

Recently, control theoretic approaches have been em-

ployed to design external stimuli that drive neurons to behave

in a desired way. For example, a multilinear feedback control

technique has been used to control the individual phase rela-

tion between coupled oscillators [10] and geometric control

theory has been adopted to study controllability and optimal

control of a network of neurons with different natural oscil-

lation frequencies [11]. It is feasible to change the spiking

periods of oscillators or tune the individual phase relationship

between coupled oscillators by an electric stimulus [12],

[10]. Minimum-power stimuli that elicit spikes of a neuron

at specified times close to the natural spiking time have

been analyzed previously [8]. Optimal waveforms for the

entrainment of weakly forced oscillators that maximize the

locking range have been calculated, where first and second

harmonics were used to approximate the phase response

curve (PRC) [13]. These optimal controls were found mainly

based on the calculus of variation. That restricts the optimal
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solutions to the class of smooth controls, also the bound of

the control amplitude has not been taken into account.

In this article, we apply Pontryagin’s maximum principle

[14], [15] to derive minimum-power controls that spike a

neuron at desired time instants. We consider bounded control

amplitude and fully characterize the range of feasible spiking

times determined by the bound. In particular, our optimal

control strategies are general so that the bound can be chosen

sufficiently small within the range that the phase models are

valid. The design of such minimum-power stimuli to elicit

spikes of neuron oscillators is of clinical importance, notably

in deep brain stimulation therapy for Parkinson’s disease and

essential tremor [16], where mild stimulations are required.

In addition, the demand to reduce the energy consumption

in neurological implants such as cardiac pacemakers makes

such optimal designs imperative.

This paper is organized as follows. In Section II, we

introduce the phase model for spiking neurons and formulate

the related optimal control problem. In Section III, we

derive the minimum-power controls associated with specified

spiking times for the sinusoidal phase model in the absence

and presence of a control amplitude constraint. The optimal

control strategies derived here are applied to find minimum-

power controls for practical PRC’s, including Morris-Lecar

and Hodgkin-Huxley phase models, presented in Section IV.

II. OPTIMAL CONTROL OF SPIKING NEURON

OSCILLATORS

A periodically spiking or firing neuron can be considered

as a periodic oscillator governed by a nonlinear dynamical

equation of the form

dθ

dt
= f (θ )+ Z(θ )I(t), (1)

where θ is the phase of the oscillation, f (θ ) and Z(θ )
are real-valued functions giving the neuron’s baseline dy-

namics and its phase response, respectively, and I(t) is

an external current stimulus [4]. This nonlinear dynamical

system described in (1) is referred to as the phase model for

the oscillation. The assumption that Z(θ ) vanishes only on

isolated points and that f (θ ) > 0 are made so that a full

revolution of the phase is possible. By convention, neuron

spikes occur when θ = 2nπ , where n ∈ N. In the absence of

any input I(t), the neuron spikes periodically at its natural

frequency, while the spiking time can be advanced or delayed

in a desired manner by an appropriate choice of I(t).
In this article, we study optimal design of neural inputs

that lead to the spiking of neurons at a specified time T after

spiking at time t = 0. In particular, we find the stimulus that
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fires a neuron with minimum power at desired time,T , which

is formulated as the following optimal control problem,

min
I(t)

∫ T

0
I(t)2 dt (2)

s.t. θ̇ = f (θ )+ Z(θ )I(t),

θ (0) = 0, θ (T ) = 2π

|I(t)| ≤ M, ∀ t ∈ [0,T ],

where M > 0 is the amplitude bound of the current stimulus

I(t). Here, we are optimizing over all possible current inputs

including both hyper-polarizing and depolarizing inputs, i.e.,

I(t) can be positive or negative. Note that if T is equal to

the neuron’s natural spiking time, then no input is needed.

We first investigate the case when the control amplitude is

unbounded, upon which the optimal control with bounded

amplitude can be constructed.

III. MINIMUM-POWER STIMULUS FOR SINUSOIDAL PRC

Consider the sinusoidal PRC,

θ̇ = ω + zd sinθ · I(t), (3)

where ω is the natural oscillation frequency of the neuron

and zd is a model-dependent constant. The neuron described

by this phase model spikes periodically with the period T =
2π/ω in the absence of any external input, i.e., I(t) = 0.

Note that this type of PRC’s with both positive and negative

regions can be obtained by periodic orbits near the super

critical Hopf bifurcation[4]. This type of bifurcation occurs

for Type II neuron models like Fitzhugh-Nagumo model [17].

A. Spiking Neurons with Unbounded Control

The optimal current profile can be derived by Pontryagin’s

maximum principle [14]. Given the optimal control problem

as in (2), we form the control Hamiltonian

H = I2 + λ (ω + zd sinθ · I), (4)

where λ is the Lagrange multiplier. The necessary optimality

conditions according to the Maximum Principle gives

λ̇ = −
∂H

∂θ
= −λ zdI cosθ , (5)

and ∂H
∂ I

= 2I + λ zd sinθ = 0. Hence, the optimal current I

satisfies

I = −
1

2
λ zd sinθ . (6)

The maximum principle transforms the optimal control

problem to a boundary value problem, which characterizes

the optimal trajectories of θ (t) and λ (t),

θ̇ = ω −
z2

dλ

2
sin2 θ , (7)

λ̇ =
z2

dλ 2

2
sinθ cosθ , (8)

with boundary conditions θ (0) = 0 and θ (T ) = 2π while

λ (0) and λ (T ) are unspecified.

Additionally, since the Hamiltonian is not explicitly depen-

dent on time, the optimal triple (λ ,θ , I) satisfies H(λ ,θ , I)=
c, ∀0 ≤ t ≤ T , where c is a constant. Together with (6), this

yields

−
z2

d

4
sin2 θλ 2 + ωλ = c. (9)

Since θ (0) = 0, c = ωλ0, where λ0 = λ (0), which is unde-

termined. The optimal multiplier can be found by solving

the above quadratic equation (9), which gives

λ =
2ω ±2

√

ω2 −ωλ0z2
d sin2 θ

z2
d sin2 θ

, (10)

and then, from (7), the optimal trajectory of θ follows

θ̇ = ∓
√

ω2 −ωλ0z2
d sin2 θ . (11)

Integrating the equation (11), we find the spiking time T in

terms of the initial condition λ0,

T =

∫ 2π

0

1
√

ω2−ωλ0z2
d

sin2 θ
dθ . (12)

Note that we choose the positive sign in (11) since the

negative velocity indicates the backward phase evolution.

Therefore, given a desired spiking time T of the neuron,

the initial value, λ0, corresponding to the optimal trajectory

of the multiplier can be found via the one-to-one relation in

(12). Consequently, the optimal trajectories of θ and λ can

be easily computed by evolving (7) and (8) forward in time.

Plugging (10) into (6), we obtain the optimal feedback law

for spiking the neuron at time T of the form

I∗ =
−ω +

√

ω2 −ωλ0z2
d sin2 θ

zd sinθ
, (13)

where λ0 is to be calculated according to the desired spiking

time from (12).

The feasibility of spiking the neuron at a desired time T

largely depends on the initial value of the multiplier, λ0. It is

not feasible to have a 2π revolution if λ0 ≥ ω/z2
d . This fact

can be seen from Fig. 1, where the system evolution defined

by (7) and (8) for zd = 1 and ω = 1 with respect to different

λ0 values (θ = 0 axis) is illustrated. When λ0 = 0, the spiking

period is equal to the natural spiking period, 2π/ω , and no

external stimulus needs to be applied, i.e., I∗(t) = 0, ∀t ∈
[0,2π/ω ]. T is a monotonically increasing function of λ0

for fixed ω and zd and, the average phase velocity decreases

when λ0 increases, the spiking time T > 2π/ω for λ0 > 0 and

T < 2π/ω for λ0 < 0. Fig. 2 shows variation of the spiking

time T with the λ0 corresponding to the optimal trajectories

for different ω values with zd = 1.

The relation between the spiking time T and required

minimum power E = min
∫ T

0 I2(t)dt is evident via a simple

sensitivity analysis [18]. Since a small change in the initial

condition, dθ , and a small change in the initial time, dt,

result in a small change in power according to dE =
λ (t)dθ −H(t)dt, it follows that − ∂E

∂ t
= H = c = ωλ0 [18].

This implies that E increases with initial time t for λ0 < 0
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Fig. 1. Extremals of the sinusoidal PRC system with zd = 1 and ω = 1.
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Fig. 2. Variation of the spiking time, T , with the initial multiplier, λ0, for
different ω values and zd = 1.

and decreases for λ0 > 0. Since the increment of the initial

time is equivalent to the decrement of final time (i.e. spiking

time T ), ∂E/∂T = ωλ0. Since λ0 < 0 (λ0 > 0) corresponds

to T < 2π/ω (T > 2π/ω), we see that the required minimum

power increases if we move away from the natural spiking

time.

The minimum-power stimulus I∗ as in (13) plotted with

respect to time and the phase for various spiking times T =
3,5,10,12 with ω = 1 and zd = 1 are shown in Fig. 3(a)

and 3(b), respectively. The respective optimal trajectories of

λ (θ ) and θ (t) for these spiking times are illustrated in Fig.

3(c) and 3(d).

B. Spiking Neurons with Bounded Control

In practice, the amplitude of stimuli in physical systems

are limited, for example [15]. Therefore, we consider spik-

ing the sinusoidal neuron with bounded control amplitude,

namely, in the optimal control problem (2), |I(t)| ≤ M < ∞
for all t ∈ [0,T ], where T is the desired spiking time. In this

case, there exists a range of feasible spiking times depending

on the value of M, in contrast to the previous case where
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Fig. 3. (a) Variation of the minimum-power control, I∗, with time, t. (b)
Variation of I∗ with phase θ . (c) Variation of the optimal multiplier, λ ∗,
with θ . (d) Variation of the phase, θ ∗, with t, for the sinusoidal PRC with
zd = 1 and ω = 1 for the spiking times, T= 3, 5, 10 and 12.

any desired spiking time is feasible. We first observe that

given this bound M, the minimum time control that spikes

the neuron can be achieved by choosing the phase velocity θ̇
at its maximum over t ∈ [0,T ]. Such a time-optimal control,

for zd > 0, can be characterized by a switching, i.e.,

I∗Tmin
=

{

M for 0 ≤ θ < π
−M for π ≤ θ < 2π

. (14)

Consequently, the spiking time with I∗Tmin
can be computed

using (3) and (14), which yields

T M
min = 2π

√

1

−z2
dM2+ω2

−
4tan−1

{

zdM/
√

−z2
dM2+ω2

}

√

−z2
dM2+ω2

, (15)

for zdM 6= ω . It follows that I∗, derived in (13), is the

minimum-power stimulus that spikes the neuron at a desired

spiking time T if |I∗| ≤ M for all t ∈ [0,T ]. However,

there exists a shortest possible spiking time by I∗ given the

bound M. Simple first and second order optimality conditions

applied to (13) find that the maximum value of I∗ occurs at

θ = π/2 for λ0 < 0 and at θ = 3π/2 for λ0 > 0. Therefore,

the λ0 for the shortest spiking time with control I∗ satisfying

|I∗(t)| ≤ M can be calculated by substituting I∗ = M and

θ = π/2 to the equation (13), and then from (12) we obtain

this shortest spiking period

T I∗

min =

∫ 2π

0

1
√

ω2 + zdM(zdM + 2ω)sin2(θ )
dθ , (16)

Note that T M
min < T I∗

min. According to (3) when M ≥ ω/zd ,

arbitrarily large spiking times can be achieved by making θ̇
arbitrary close to zero. Therefore we consider two cases for

M ≥ ω/zd and M < ω/zd .
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Fig. 4. Optimal bounded and unbounded controls for the sinusoidal PRC
with parameters zd = 1 and ω = 1 (a) for T = 2.8 with the bound M = 2.5
and (b) for T = 10 with the bound M = 0.55.

1) Case I (M ≥ω/zd): Since |I∗|< ω/zd ≤M for λ0 > 0,

I∗ is the minimum-power control for any desired spiking

time T > 2π/ω , and hence for any spiking time T ≥ T I∗

min.

Shorter spiking times T ∈ [T M
min,T

I∗

min) are feasible but, due

to the bound M, can not be achieved by I∗ since it requires

a control with amplitude greater than M for some t ∈ [0,T ].
However, these spiking times can be optimally achieved by

applying controls switching between I∗ and I∗Tmin
.

Let the desired spiking time T ∈ [T M
min,T

I∗

min). Then, there

exist two angles θ1 = sin−1[−2Mω/(zdM2 + zdωλ0)] and

θ2 = π−θ1 where I∗ meets the bound M. When θ ∈ (θ1,θ2),
I∗ > M and we take I(θ ) = M for θ ∈ [θ1,θ2]. Due to the

quadratic nature of the Hamiltonian with respect to I as

in (4), if the minimum is not feasible then the boundary

will be the optimal. The Hamiltonian of the system when

θ ∈ [θ1,θ2] is, from (4), H = M2 + λ (ω + zd sinθ M). If the

triple (λ ,θ ,M) is optimal, then H is a constant, which gives

λ =
H −M2

ω + zdM sinθ
.

This multiplier satisfies the adjoint equation (5), and there-

fore I(θ ) = M is optimal for θ ∈ [θ1,θ2]. Similarly, by

symmetry, I∗ < −M when θ ∈ [θ3,θ4], where θ3 = π + θ1

and θ4 = 2π−θ1, if the desired spiking time T ∈ [T M
min,T

I∗

min).
It can be easily shown by the same fashion that I(θ ) = −M

is optimal in the interval θ ∈ [θ3,θ4].
Therefore, the minimum-power optimal control that spikes

the neuron at T ∈ [T M
min,T

I∗

min) can be characterized by four

switchings between I∗ and M, i.e.,

I∗1 =























I∗ 0 ≤ θ < θ1

M θ1 ≤ θ ≤ θ2

I∗ θ2 < θ < θ3

−M θ3 ≤ θ ≤ θ4

I∗ θ4 < θ ≤ 2π .

(17)

The initial value of the multiplier, λ0, resulting in the optimal

trajectory, can then be found according to the desired spiking

time T ∈ [T M
min,T

I∗

min) through the relation

T =

∫ θ1

0

4
√

ω2−ωλ0z2
d sin2 θ

dθ +

∫ π
2

θ1

4

ω + zdM sin(θ )
dθ .

From (15) the minimum possible spiking time with the

control bound M = 2.5 for zd = 1,ω = 1 is T M
min = 2.735

and from (16) the minimum spiking time by I∗ is T I∗

min =
3.056. Thus, in this example, any desired spiking time

T > 3.056 can be optimally achieved by I∗ whereas any

T ∈ [2.735,3.056) can be optimally obtained by I∗1 as in (17).

FIG. 4(a) illustrates the bounded and unbounded optimal

controls that fire the neuron at T = 2.8, where I∗ is the

minimum-power stimulus when the control amplitude is not

limited and I∗1 is the minimum-power stimulus when the

bound M = 2.5. I∗ drives the neuron from θ (0) = 0 to

θ (2.8) = 2π with 13.54 units of power whereas I∗1 requires

14.13 units.

2) Case II (M < ω/zd): In contrast with Case I in the

previous section, achieving arbitrarily large spiking times is

not feasible with a bound M < ω/zd . In this case, the longest

possible spiking time is achieved by control,

I∗Tmax
=

{

−M for 0 ≤ θ < π ,
M for π ≤ θ < 2π .

The spiking time of the neuron under this control is

T M
max = 2π

√

1

−z2
dM2+ω2

+
4tan−1{zdM/

√

−z2
dM2+ω2}

√

−z2
dM2+ω2

, (18)

and the longest spiking time feasible with control I∗ is given

by,

T I∗

max =

∫ 2π

0

1
√

ω2 + zdM(zdM−2ω)sin2(θ )
dθ . (19)

Similar to Case I, any spiking time T ∈ [T M
min,T

I∗

min) for a

given M < ω/zd can be achieved with the minimum-power

control I∗1 as given in (17), any T ∈ [T I∗

min,T
I∗

max] can be

achieved with minimum power by I∗ in (13), and moreover

any T ∈ (T I∗

max,T
M

max] can be obtained by switching between

I∗ and I∗Tmax
. The corresponding switching angles are θ5 =

sin−1[2Mω/(zdM2 + zdωλ0)],θ6 = π − θ5,θ7 = π + θ5 and

θ8 = 2π − θ5, and the minimum-power optimal control for

T ∈ (T I∗

max,T
M

max] is characterized by

I∗2 =























I∗ 0 ≤ θ < θ5

−M θ5 ≤ θ ≤ θ6

I∗ θ6 < θ < θ7

M θ7 ≤ θ ≤ θ8

I∗ θ8 < θ ≤ 2π .

The λ0 resulting in the optimal trajectory by I∗2 can be

calculated according to the given T ∈ (T I∗

max,T
M

max] via the

relation

T =

∫ θ5

0

4
√

ω2−ωλ0z2
d sin2 θ

dθ +

∫ π
2

θ5

4

ω − zdM sinθ
dθ .

From (18) the maximum possible spiking time with M =
0.55 is T M

max = 10.312 and from (19) the maximum spiking

time feasible by I∗ is T I∗

max = 9.006. Therefore, in this

example, any desired spiking time T ∈ (9.006,10.312] can

be obtained with minimum power by the use of I∗2 . FIG. 4(b)

illustrates the bounded and unbounded optimal controls that

spike the neuron at T = 10, where I∗ is the minimum-power

stimulus when the control amplitude is not limited and I∗2
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Fig. 5. (a) A summary of optimal controls for the case M ≥ ω/zd , and
(b) for M < ω/zd .

is the minimum-power stimulus when M = 0.55. I∗ drives

the neuron from θ (0) = 0 to θ (10) = 2π with 2.193 units of

power whereas I∗2 requires 2.327 units.

A summary of the optimal (minimum-power) spiking sce-

narios for a prescribed spiking time of the neuron governed

by the sinusoidal phase model (3) is illustrated in Fig. 5.

IV. MINIMUM-POWER STIMULUS FOR PRACTICAL PRC

Many of experimentally determined PRC’s for real neu-

rons are not of sinusoidal, which is an approximation arising

from the study of mathematical models of neuron oscillators

close to certain bifurcations. In the following, we apply the

optimal control strategies derived in Section III to practical

PRC’s including Morris-Lecar and Hodgkin-Huxley PRC.

A. Morris-Lecar PRC

The phase model of the Morris-Lecar neuron [19] is given

by

θ̇ = ω + Z(θ )I(t), (20)

where the PRC, Z(θ ), for a standard set of parameters

given in Appendix I can be calculated by XPP [20] and

is shown in Fig. 6. In this case, the neuron has the period

T = 22.212 ms and natural frequency ω = 0.283 rad/ms. Fig.

7 shows the optimal current stimuli without an amplitude

constraint and the corresponding trajectories for various de-

sired spiking times that are shorter, close, and longer than the

natural spiking time, i.e., T = 17,22,27, respectively. With

a bounded control amplitude, the feasible range of spiking

times is limited. The possible range can be computed and it

is [19.623,26.268] ms for the bound M = 0.01 µA. FIG. 8(a)

and 8(b) illustrate the unbound and bounded (M = 0.01 µA)

minimum-power controls for the spiking times T = 20.0 ms

and T = 25.5 ms.

B. Hodgkin-Huxley PRC

The phase model of Hodgkin-Huxley neuron, describing

the propagation of action potentials in a squid axon, is also of

the form as (20) and is a canonical example of neural oscilla-

tor dynamics, with a nominal spiking period T = 14.638 ms

and hence the frequency ω = 0.426 rad/ms [21]. The PRC is
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Fig. 6. Morris-Lecar PRC
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Fig. 7. (a) Optimal currents for various spiking times T = 17,22,27 ms

for the Morris-Lecar PRC. (b) The corresponding phase trajectories.
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Fig. 8. Unbounded and bounded minimum-power controls for the Morris-
Lecar model with M = 0.01 µA for the desired spiking time (a) T = 20.0
ms and (b) T = 25.5 ms.

shown in Fig. 9. The derived optimal current stimuli without

an amplitude constraint and the corresponding trajectories for

various desired spiking times are illustrated in Fig. 10. With

a bounded control amplitude, the feasible range of spiking

time is limited. The possible range can be computed and it is

[13.108,17.492] ms for the bound M = 1.0 µA. Fig. 11(a) and

11(b) illustrate the unbound and bounded minimum-power

control for the spiking time T = 13.3 ms and T = 16.7 ms

with bound M = 1.0 µA.

V. CONCLUSION

In this paper, we studied various phase-reduced models

that describe the dynamics of neuron systems. We considered

the design of minimum-power stimuli for spiking a neuron

at a specified time instant that is different from the natural

spiking time. We formulated this as an optimal control prob-

lem and investigated both cases when the control amplitude

is unbounded and bounded, for which we found analytic

expressions of optimal feedback control laws. In particular

for the bounded control case, we characterized the range of

possible spiking periods with respect to the control bound.
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Fig. 10. (a) Optimal currents for various spiking times T =
12.5,13.5,16,18 ms for the Hodgkin-Huxley PRC. (b) The corresponding
phase trajectories following the optimal current stimuli.

The bound can be chosen sufficiently small within the range

that the phase model of the neuron is valid.

Moreover, minimum-power stimulus for steering any non-

linear oscillator of the form as in (1) between desired initial

and final states can be derived following the steps presented

in this article. In addition, the charge-balanced constraint

can be readily incorporated into this framework, which is

of clinical importance especially in deep brain stimulations

for Parkinson’s disease [22]. The optimal control of a sin-

gle neuron system investigated in this work illustrates the

fundamental limit of spiking a neuron with external stimuli

and provides a benchmark structure that enables us to study

optimal control of spiking neuron populations.

APPENDIX I

The dynamics of the Morris-Lecar neuron is described by

CV̇ − Ib = gCam∞(VCa −V)+ gkw(Vk −V)+ gL(VL −V )

ẇ = φ(ω∞ −w)/τw(V )

m∞ = 0.5[1 + tanh((V −V1)/V2)]

ω∞ = 0.5[1 + tanh((V −V3)/V4)]

τω = 1/cosh[(V −V3)/(2V4)],

where we consider the parameters

φ = 0.5, Ib = 0.09 µA/cm2, VL = −0.01 mV,
v2 = 0.15 mV, V3 = 0.1 mV, v4 = 0.145 mV,
gCa = 1 mS/cm2, Vk = −0.7 mV, VL = −0.5 mV,
gk = 2 mS/cm2, gL = 0.5 mS/cm2, C = 1 µF/cm2.
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