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Abstract — Multi-objective optimization, data-intensive
analysis and hardware-software co-design are the major
challenging themes in the concurrent design of high-
performance electromechanical systems. Direct-drive servos
guarantee superior torque and force densities, efficiency,
robustness, simplicity and other enabling performance
quantities. Nano-, micro-, mini- and macro-scale axial and
radial actuators exist in a great variety, e.g.,, from living
organisms to various engineered electromechanical systems.
Permanent-magnet actuators and servos are widely used in
aerospace, automotive, biotechnology, energy, medical, power,
robotic and other applications. The major goal of this paper is
to report and apply advanced concepts in design and
implementation of tracking control laws. These control laws
are designed using the state transformation method applying
the Hamilton-Jacobi optimization and Lyapunov stability
theory. We design and evaluate high-performance drives and
servos. Various servo-systems with radial- and axial-topology
actuators are demonstrated and characterized by evaluating
analog and digital tracking control laws. The studied direct-
drive actuators with SmCo permanent-magnet arrays
guarantee high toque density, high efficiency, reliability, fast
dynamics, etc. The controllers designed guarantee stability,
high precision and robustness. The high-frequency PWM
drivers vary the voltage applied by changing the duty ratio of
FETs. High-accuracy sensors measure angular velocity and
displacement. Linear and nonlinear analog control laws
guarantee superior performance, enabling capabilities,
minimal complexity, simplicity, noise immunity, etc. The
analog control laws can be discretized and implemented using
microcontrollers and DSPs. The studied drives and servos are
applicable in many applications, including hard drives, high-
precision pointing systems, rotating tables, manipulators, etc.
This paper examines and solves a spectrum of pertinent
problems in design and implementation of enabling minimal-
complexity control laws and controllers which guarantee near-
optimal system performance

I. INTRODUCTION

Various nonlinear analysis, control and optimization
concepts have being used in design of electromechanical
systems. In high-performance drives, servos, additional
factors and considerations emerged due to the strengthening
of performance requirements, hardware limits, etc. These
high-performance direct-drive actuators with matching
sensors and ICs must ensure minimal complexity while
guaranteeing optimal performance and capabilities.

Control laws must be designed and implemented with
the ultimate goal to optimize overall dynamic performance
(stability, accuracy, settling time, robustness, etc.), improve
operating characteristics, enhance operating envelopes, etc.
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Design of minimal complexity closed-loop systems is the
key to attaining desired performance. Though various
control methods were proposed in [1-5] and references
therein, their overall applicability, suitability and
practicality must be examined. Control schemes are
actuator-specific. ~ Operating principles and control
algorithms for various classes of electrostatic and
electromagnetic actuators are fundamentally distinct.
Design  of control laws and their consequent
implementation have not been sufficiently studied.
Application of many concepts, which were applied to
descriptive generic models of dynamic systems, may not
guarantee the desired performance, specified capabilities,
required adaptability and overall practicality [6, 7]. For
example, adaptive, “intelligent” and other control schemes
require advanced DSPs to ensure real-time decision-
making, reconfiguration, etc. Correspondingly, the overall
practicality and other factors suggest one to focus on
practical solutions. As illustrated in Figure 1, the
dimensionality of actuators may be less than operational
amplifiers and sensors. Controlling electronics and ASICs
should be designed to reduce hardware complexity with a
minimum number of measured variables and feedback.

(8)

Figure 1. Mini-motors with ASICs: Actuators are fabricated
utilizing bulk and surface micromachining technologies [7]
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Linear and nonlinear proportional-integral-derivative
(PID) control laws, linear quadratic algorithms, nonlinear
compensators and soft-switching sliding mode control
schemes have been widely used for decades in MIMO
electromechanical systems, robots, flight/ground/marine
vehicles, etc. The aforementioned control schemes usually
ensure near-optimal performance. These control laws are
designed using the Hamilton-Jacobi theory, Lyapunov
stability concepts and other methods [6-8]. However, some
deficiencies may emerge in the design of minimal
complexity systems with strict performance requirements in
the expanded operating envelope. The aforementioned
challenges necessitate design of robust tracking
proportional-integral control laws with state feedback. We
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design, demonstrate, test and characterize high-performance
drives and servos with advanced hardware solutions and
control schemes. This paper considers two general classes
of servos which guarantee:

1. Bidirectional 360-degree-of-rotation;

2. Bidirectional limited-angle displacement.

In these drives and servos, many-pole radial- and axial
topology actuators are used. These high-torque-density
permanent-magnet actuators are controlled by high-switching-
frequency PWM drivers which change the applied voltage.
Excellent performance and enabling capabilities are
achieved by using high-performance actuators, power
electronic drivers with two- and four-quadrant power
stages, sensors, and other components. The control laws are
designed to satisfy the specifications imposed, e.g.,
stability, minimal settling time, high acceleration, accuracy,
disturbance attenuation, robustness to parameter variations,
minimal complexity, practicality, etc.

Axial topology permanent-magnet actuators are
documented in Figure 2. Fully integrated direct-drive
actuators and servos are built, tested and characterized. A
servo-system with a limited-angle axial-topology actuator is
depicted in Figure 3. The reference signal is the angular
displacement. Using the reference 6., and actual 6, angular
displacements (measured by the high-accuracy sensor), the
controller ICs drive the comparator, changing the switching
activity of output stage FETs. Hence, the voltage u, applied
to the winding varies [7].

ator-with

Figure 2. Single-phase axial topology actuator. Images of axial-
topology hard-drive: Rotor (pointer) with planar deposited coils
above a stator aperture with SmCo permanent magnets [7]
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Figure 3. Closed-loop servo: Actuator (Pointer) — Sensors —
PWM Driver (ICs, output stage and other circuitry) - Controller

Our basic, analytic and experimental developments
unify nonlinear design, analysis and implementation. We
report the systematic procedures in the design of tracking
control laws. Experiments are reported to assess closed-
loop servos evaluating dynamic and steady-state
performance, as well as overall capabilities.

II. MODELS OF PERMANENT-MAGNET SERVOMOTORS

We examine bidirectional 360-degree-of-rotation and
limited-angle actuators. These radial- and axial topology
actuators are designed within single-, two- and three-phase
acl/dc electromagnetics and electric machine configurations.
High-fidelity mathematical models are developed in [7]. In

general, the circuitry-electromagnetic and torsional-
mechanical equations of motion are
. d
u=ri+ Jo=IT, Q)

dt
where u and i are the vector of the applied voltages and
phase currents (for single- and three-phase actuators, u=u,,
i=i, and w=[uy, up Uyl i=[is iy ies]'); Ty is the phase
resistance; Y is the vector of flux linkages; a is the angular
acceleration; YT is the ner torque; J is the equivalent
moment of inertia.
For the one-dimensional case, assuming that the
friction torque is B,, @, the torsional-mechanical dynamics
Jo=XT leads to

2
AT
or, 9 _LYi _p o 51), 90 _y, @)
e J t

where B,, is the friction coefficient; 7, 1is the
electromagnetic torque; X7} is the net load, perturbation,
disturbance and other torques.

2. 1. Direct-Drive Limited-Angle Actuators

Consider a bidirectional direct-drive axial topology
actuator with a segmented array of permanent magnets as
documented in Figure 2. These high-torque-density
permanent-magnet actuators exceed performance and
capabilities achieved by other servo-motors [7]. The
electromagnetic  design and optimization of the
aforementioned actuators are reported in [7].

The mathematical model is found to perform numerical
analysis and design of control laws. Depending on the
magnetization, the magnetic field developed by the magnets
is approximated as continuous or discontinuous functions.
For limited-angle actuators, which are shown in Figures 2
and 3, depending on the geometry, structural design,

#l | magnetization and separations of magnets, one has

B(8)=a0., 1B(8,)|<B .

B(8)=Busin™ (), or B()=Btanh™(a8)),
where By, is the magnetic flux density from the permanent
magnets as viewed at the coils; a is the magnetization-,
technology- and size-dependent constant; g is the
technology-dependent integer, and, usually g=1 or ¢g=2.

The magnetic coupling between the current loop
(winding) and segmented permanent magnets leads to the
electromagnetic torque. The electromagnetic torque can be
derived using the magnetic dipole moment m, T,=mXxB. For
a straight filament (conductor) in a uniform magnetic field

F=ilxB, F=—iBx/dl. (3)
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We assume optimal electromagnetic and mechanical
designs. The electromagnetic forces F,, and F., are
developed by the right and left filaments. Thus,

T=To+Tr=R\XF=R,(F.1+F.r), (4)
where R, is the perpendicular radius.

Example 2. 1. Let B(6,)=Bpatanh® ' (a8), g=1, a>>1.

From tanh(afz)=1 and tanh(a8;)=1 (6z#0 and 6,#0),
one finds the expression for the electromagnetic torque

T, i=TeL+TeR=2RJ.leqNBmaxim
where 6; and 6, are the relative angular displacements of
the right and left filaments; N is the number turns in
filaments; [, is the coil effective active length; i, is the
current in the coil. |

The mathematical model is found by using Kirchhoff’s
and Newton’s second laws [7]. The circuitry-
electromagnetic and torsional-mechanical equations (1) are

2
u,=ri, +d—'//, d 6; =i(T —-B, o, —XT,)- )
dt dr* J
The expression for the induced emf is

E=§Ew)-dl = —%jé(r)dﬁ =—N
1 K

dd

4® __dV ()
dt

—
Example 2. 2. Consider a typical magnetization with
B(6)=Btanh(a6)).

Tour Gimax .
From &= _ Ndi J J' B, tanh(a@,)rdrd6, , one finds
L O,

2 2

&= —”‘”"72_”"” NB,, (tanha@, +tanhaé,)w, , )

where 6.(1)=0,—6,(t) and Gr(t)=6ro+O(1); GL0= o= max-
From (5), a set of nonlinear differential equations
which describes the dynamics of a limited-angle axial-
topology actuator is
di 1 .=
t=—J|—ri, ——"=NB__ (tanhaHL +tanha6, )a), +u, |
dar L 2

a

do 1 .
= R|L,NB, (tanha6, +tanha,)i, - B, ~T, ~T;]
der = a)r 5 _ermaxsgrsermax, (8)
dt

where L, is the self-inductance; T is the restoring force,
Ts=k519,+ks3t9,3; ks and kg are the restoring constants
(spring, permanent magnet and other schemes are used); T
is the stochastic torque (perturbations and disturbances). H

The winding resistance r, varies due to temperature
changes. The friction coefficient B, can vary due to
mechanical wearing, bending, changes of the operating
envelope, etc. The equivalent moment of inertia J may vary.
These parameter variations are accounted [7].

2. 2. Radial and Axial Topology Actuators

The mathematical models of rotational radial- and axial
topology two- and three-phase actuators are found utilizing
differential equations (1). The electromagnetic design,
magnetization and magnet placement define the coupling

magnetic field B(8,). One derives the resulting expressions
for the emf & and electromagnetic torque 7, [6, 7].

Example 2. 3. For a single-phase axial-topology

permanent-magnet motor one may have
B(8)=Bsin™”' (2N,,6) or B(6)=Basgnlsin(2N,, 8)],
where N,, is the number of magnets.

Using the electrical angular displacement 6,, for two-
and three-phase permanent magnet synchronous machines
with (as and bs) and (as, bs and cs) windings, we have

Bu(8)=Buuxsin”'(8) and Byy(6)=Bracos™ ™ (6),
and Bi(8)=Buuxsin™(8), By(8)=Buusin™ (8%,

By(6)=Byxsin® (0+% 7).

The resulting electromagnetic design and equations of
motion are straightforward to carry-out. |

III. CONTROL OF SERVO-SYSTEMS

The differential equations (1) are nonlinear.
Furthermore, for rotational radial- and axial topology two-
and three-phase actuators, the applied voltages must be
applied as a function of the rotor angular displacement §,.
The magnitude of the applied PWM voltage u,, is bounded.
The FETs duty cycle dp is bounded as —1<dp<l. Thus,
Unin<U<un,x. To control the applied voltage, we use the
signal-level control voltage u. supplied to the comparator
thereby defining the duty ratio of the FETs [7]. High-
performance drivers with two- and four-quadrant power
stages and different switching configurations are used to vary
the applied voltage supplied to the phase windings.

The transient dynamics of ICs and power electronic
circuitry are within the nanosecond range. These fast
dynamics and parameter variations can be accounted as
bounded uncertainties pe P. The studied servo is modeled as

X)) =F(p,x™)+B(p,x” )u, y=Hx", ®
where x™e X™*cR" is the state vector; ue UcR™ is the control
vector; ye YR is the output vector; F(-,7) and B(:,") are the

smooth Lipschitz maps; He R” is the output matrix with
constant coefficients.

3.1. Design of Tracking Proportional-Integral Control Laws
With State Feedback: Unconstrained Control

Consider the following model

()= A x™ + B”u, y=Hx"", (10)
where A”eR™ and B™eR™™ are the constant-coefficient
matrices.

Example 3. 1. For the limited-angle servos, depending
on permanent magnet magnetization, the governing equations
of motion are derived. Consider the resulting model (8)
which corresponds to B(6,)=B.xtanh(ag,). To maximize the
torque, magnets are magnetized such that a>>1. One finds

&=— ka @,
where k, is the back emf constant.

From T=T,+T.r=R,l.,,NBy.x(tanha 6 +tanhaby)i,, we
have T,=2R 1, ,;NBpyi,.

Thus, the equations of motion (8) are simplified to
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i, = i(— ri,—k,o +u, )s
dt L,
do, 1 .
dt = 7 [2RJ_let/NBmax la - Bm a)r - kxer - Tf ] ’
dg’ =, - ermaxi eri ermax-
dt
That is, linear differential equations (10) result. [ ]

The tracking error vector e R® is
e(t)=Nr(t)— y(t)= Nr(t)— Hx™ (1) . an
To enable stability of the tracking error evolution, we
define the evolution of de/dt as
é(t)=—1I,e— HA”x" — HB"u,
where I€ R™ is the identity matrix.
Using the expanded vector x=[x"" ¢]”, we have

x(t)=[xfyx(t)}={ S }{"H B }MZAJHBM. (13)
o | |-HA® -I1.| e | |-HB”

The space transformation method [6, 7] uses vectors

12)

Sys

z= |:J, zeR™ ™ and v=1i, ve R" (14)
We define the variables as
X
z:[ ]zeR"*bmand v=u+u,veR" (15)
u

The evolution of the control function is governed by
the following equation

u=—lu+1I,v, (16)
where I, R™" is the identity matrix.

From (10)-(16), one obtains the system

A B 0
z(t)= z+ v=Az+Byv, y=Hx"- (17)
0 -1, I, : :

Design Problem Formulation: Minimize the quadratic
performance functional

sz(zTsz+vTsz)dt’ (18)

fo
subject to the system dynamics (17). O
In (18), Qz c R(n+b+m) X (n+b+m), QZEO, Gz c ]Rm X m, GZ>0.
The Hamilton-Jacobi principle is applied. The first-order
necessary condition for optimality dH/dv=0 gives
v=-G.'B'Kz.
The Riccati equation
~K=KA +A'K-KB.GI'BIK+Q.,K(t;)=K, (20)

R(n+b+m)><(n+b+m)

19)

is solved to find the unknown matrix Ke
From (16) and (19), one has

0]k, K’
(1) =~G B Kz~ I ju =G v L)
i i i IU KZI K22 u

=—G'K,x— (G Ky +1, =K, x+ K u.

From () = Ax+ Bu,u=B"(i(r)— Ax)=(B"B) B ((t) - Ax)
Therefore, using (21), one obtains

(1) =K x+ K u =K x+ K (BB BT (i) Ax)
_ [Kfl ~K,,(B"BJ BTA}x(t) +K,,(B"B] ' BTie) 22

=(K = Ky AW(0) + Ky 6(0) = Ky X(0) + K (0).

e(r)
an optimal proportional-integral control law with state
feedback. In particular,

() = K pyx() = K 5, + [ Ky x(@)d T+ 1,

= I([:1|:XS'“Y (t):| — KF1|:xgys (t):| + J. I(F2|:XS'“Y (T):|d2- + u().
e(?) e (1) e(7)

For nonlinear systems (9), the proposed procedure can be
straightforwardly used. One finds the proportional-integral
control law with state feedback as

i) =—G B Y 1 u=—G" 0 Tav(x’”)—l u, 24)
e Y N, | olxul v

where V(x,u) is the return function.

From (22) and recalling that x(r) :{xmm] one finds

Example 3. 2.

Consider the so-called force/torque control problem.
We examine the second-order translational- or rotational
dynamics of mechanical systems which are modeled as

dx,

dt

Here, x; and x, are the linear (angular) velocity and
displacement; u is the control (force or torque).

The PID control law

—x tu, % = x\ Y=o, (25)

u = kye + kiedt + kydeldt, (26)
is synthesized to be

u = 100e + 10de/dt, e=r — x,. 27

Using the state-transformation method, one obtains

10 0 1 0 1o 0 0

A = 1 00 0 and B = o|. Let Q —|o1 0 0| and
z -1 0 -1 0 z 0 2 0 0 100000 0
00 0 -1 1 00 0 1

G=1. From (23) one has
u(t)= K, x(t)+ [ K,,x(z)dt = Kﬂ[ﬁl} +K,, [;}dr (28)

The following feedback matrices are found

Kr=[-11.83 0 0] and Kmn=[-80.75 -1 -234.78].

Figure 4 reports the simulation results for linear closed-
loop systems (25)-(27) and (25)-(28) if the reference signal
is r=t1. The evolution of the output y=x, is of our particular
interest. Control law (28) ensures better closed-loop system
performance than compared with PID control (26).

In electromechanical, electronic, mechanical and other
systems, there are limits on control efforts. That is, due to
mechanical, electromagnetic and other physical limits,
control u is constrained as vy, <uU<U .

Thus, we have control laws with bounds, and

u = kye + kiledt + kudeldt, tmin<u<ttmyy, (29)
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u(t) = Kﬂ[f (30)
For —20<u<20, the simulations of system (25) with

control laws (29) and (30) are documented in Figure 5.
Output Dynamics, y Output Dynamics, y
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Figure 4. Output dynamics of the closed-loop systems with:

(a) Proportional-derivative control law; (b) Tracking control law.
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Figure 5. Output dynamics of the closed-loop systems with control
bounds —20<u<20: (a) Proportional-derivative control law; (b)
Tracking control law.

If the amplitude of the reference signal r(f) increases,
the closed-loop system with a bounded PID control law
(29) becomes unstable. In contrast, the tracking control law
with state feedback (30) guarantees stability and robustness
in the expanded envelopes XE despite control bounds. |

3.2. Constrained Control
The control law is bounded as 4, <u=<t,x. To design the
admissible control laws, we minimize [6-10]

J= j[xTQx + (@' (w)) Gau ]1r, 31)
where @(-):R™"—R" is the bounded, integrable, one-to-one,
real-analytic  globally Lipschitz continuous function,
&e UCR"™.

Minimizing (31), for linear and nonlinear systems with
UninSUSUmax, UE U, we have

- a—‘; = min{xTQx +[(@ " @) Gau + aa—v (Ax + Bu )}, (32)
uelU Z

and
aV
-5 =
Using the first-order necessary condition for optimality,
an admissible control law is found to be [6-10]

'n{xTQx +[ (@' w)) Gau +%—V [F(x)+ B(x)u]} (33)
eU Z

10

u(t) = —@[G‘BT av} ,ueU. (34)
dx
The solution of the Hamilton-Jacobi equation is

approximated by the quadratic or non-quadratic return
function. One obtains control laws with linear and nonlinear
switching surfaces, respectively. The admissible control law
(34) is bounded. The second-order necessary condition for
optimality is satisfied. However, the sufficient conditions
must be examined. The admissibility concept is applied [8].

Applying the state transformation method an using the
quadratic return function, one obtains

u(t)=®(K ., x(0) + [ K, x(0)d7), ue U. 35)

Theorem 3. 1. A closed-loop system with a bounded
control law ue U (35) is robustly stable in X(X,,U,P), and,
robust tracking is guaranteed in the convex and compact set
E(EyY,R), if for the reference input re R and uncertainties
(parameter variations, unmodeled dynamics, etc.) pe P, there
exists a C* (kx1) positive-definite function V(e,x), such that
for a closed-loop system (9)-(35)

Vi dV(e,x)

(e.9)>0 and Y <0

If the criteria imposed on the Lyapunov pair (36) are
guaranteed for all x,eX,, ej€Ey, ue U, reR and peP, the
closed-loop system is robustly stable in X(X,,U,P) and robust
tracking is guaranteed in E(Ey,Y,R). By explicitly deriving the
total derivative for V(e,x), the unknown feedback gains can be
found to satisfy the sufficient conditions for stability. In
dV(e,x)

dt

(36)0

particular, inequality <0 should be solved.

3.3. Implementation of Control Laws

The designed analog control laws can be
straightforwardly implemented using operational amplifiers.
Furthermore, arbitrary complexity filters can be implemented
using operational amplifiers. If needed, microcontrollers can
be used. Analog controllers are discretized using the
sampling period 7. For example, the feedback gains k,, and
k,; of the digital control law are found using the proportional,
integral, and derivative coefficients of the analog PID
control law as well as 7,. We have kgp=k,~Y2k;; and
ky=Tk;. The controller can be realized as

u(kT,)=k,e(KT, )+ 35T, 3 el = DT, )+ (T, )].

The proportional-integral controllers with the state
feedbacks are implemented in the similar way.

IV. CONTROL OF A HIGH-PERFORMANCE SERVO

We study pointing systems and hard drives. The
requirements are to guarantee accurate and fast tracking and
repositioning, eliminate steady-state positioning error
(tracking error), attenuate disturbances, minimize the
settling time, ensure robustness to parameter variations, etc.
The specific features are the random disturbances due to
non-uniformity, kinematics deviations, etc. Figure 3
illustrates the servo configuration and hardware test bed.
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The actuator parameters are: r,=7 ohm, La=1><10"4 H,
Bx=0.7 T, a=50, N=100; R,=0.02 m, [,=0.01 m,
B,=5x10"* N-m-sec/rad and J=23x10"" kg-m’.

Using the tracking error e(f), PID and proportional-
integral with state feedback control laws are designed,
examined and tested. The angular displacement 6, is
measured by a high-accuracy sensor. The third-order notch
filter attenuates the high-frequency noise.

Using the pole-placement approach, as well as
Lyapunov theory, the feedback coefficients &, and &; of (26)
are found. In general, the pole-placement concept may not
ensure the desired eigenvalues despite coherent attempts to
assign the adequate characteristic eigenvalues due to the
control bounds. Using the quadratic function

V(e x)=Ya(i,+ @>+6+e%), V(ex)>0,
for the closed-loop system we apply the following inequality

dV(e,x)S 2, q.=1.

dt

The sufficient conditions are used to study the stability
of the closed-loop system in X(Xo,U,P) and E(E,,Y,R). The
PID control law (26) was experimentally verified. It is found
that the assigned poles are not guaranteed due to the
saturation and nonlinearities even for small reR.
Furthermore, the system is sensitive to parameter variations
and noise. The analog PI control algorithm is discretized
and implemented using a microcontroller. It is found that
digital controllers do not provide advantages, and that
analog control schemes are the preferable solutions.

We tested a direct-drive servo with and without a
restoring spring which is commonly used to ensure
mechanical damping. The results are reported without the
restoring spring. The output dynamics with different
feedback gains k, and k; were observed. The reference is
6.,=0.349 rad or §=20.2°. As evident from Figure 6, the PI
controller does not ensure the desired performance, such as,
specified tracking accuracy, repositioning time, etc.

The desired tracking accuracy and other required
performance quantities are achieved using the proportional-
integral control with state feedback (23). We use the
expanded state vectors, and

=li, @ 61", x=[x"" el’, z=[x u]".

Solving (20), from (22), the feedback matrices Kr; and
Kp» are obtained. The control law (23) is implemented using
analog ICs. The output dynamics are shown in Figures 6 for
two different designs cases. In particular, changes of Q, and
G, result in different Kr and Kp,. The settling time and
overshoot were minimized. A closed-loop servo-system
operates at very high efficiency. High electromagnetic torque
is developed to accurately reposition the pointer within
minimum time. We conclude that optimal or near-optimal
performance and capabilities are achieved

4|
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Figure 6. Output dynamics of the closed-loop servo with the
bounded PI and proportional-integral controller with state feedback

V. CONCLUSIONS

High-performance electromechanical systems, which
are comprised from permanent-magnet actuators, sensors,
PWM drivers and ICs, were studied. The major goal of this
paper was to solve the motion control problem performing
analysis and design of minimal complexity systems.
Mathematical models were developed and used to design
unbounded and bounded control laws. These control laws
were implemented using operational amplifiers, ASICs and
microcontrollers. Closed-loop system performance and
capabilities (stability, accuracy, settling time and other) were
examined. Near-optimal performance and exceptional
capabilities were achieved and demonstrated. The reported
results in the design of servo-systems are directly applied to
other high-performance systems allowing one to achieve a
spectrum of requirements and specifications commonly
imposed on servo-drives and servomechanisms.
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