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Abstract— A multiple component structure consisting of two
Euler-Bernoulli beams connected to a rigid mass is used to
model the heave dynamics of an aeroelastic wing micro air
vehicle that is acted upon by a nonlinear aerodynamic lift
force. In this work we consider two different strategies for
designing nonlinear controllers that achieve specified wing
morphing trajectories, namely (a) linearization followed by
linear quadratic tracking and (b) a feedback linearization inner
loop with sliding mode outer loop. We seek to analyze the
relative performance of the two controllers as we note the
advantages and disadvantages of each approach.

I. INTRODUCTION

The motivation for this work stems from interest in the

development of flexible-wing micro aerial vehicles (MAVs).

In recent years, much research has been stimulated by the

notion of biologically-inspired flight, including aerodynam-

ics, structural dynamics, flight mechanics, and control (see,

for example, [1],[2],[3], and [4]). Traditional controllers

designed using methods applicable to fixed wing aircraft are

unlikely to realize the agile flight potential of flexible wing

MAV airframes. While there are projects underway which

involve control studies of biological flight, it is our goal to

examine vehicular modeling as a whole while simultaneously

seeking to exploit the model for control design.

An initial model representing the heave dynamics of a

flexible wing MAV was presented in [5]. The model was

elaborated upon and its ability to track to a desired state

was tested in [6]. In this work we employ two approaches

for obtaining morphing wing trajectories over time: feedback

linearization inner loop with a sliding mode controller and

linear quadratic tracking control. We seek to analyze the

controllers’ performance via morphing trajectory over time,

and note advantages and disadvantages of each approach.
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II. CONTROL TECHNIQUES

A. Feedback Linearization

While there does not appear to be controller existence

results for the feedback linearization scheme for general

nonlinear PDE systems, there is an existence result for hyper-

bolic quasi-linear systems [7]. Further, even in the absence of

such existence or convergence guarantees, others have used

feedback linearization and backstepping with success for

control design on nonlinear PDE systems (see, for example,

[8], [9], [10], [11], [12]). Thus, a feedback linearization

approach appears to be a reasonable option to explore for

this problem. In light of the lack of feedback linearization

theoretical results in the infinite-dimensional setting, the

following discussion is posed in finite dimensions.

Consider a nonlinear multi-input multi-output system that

is input-affine of the form:

ẋ = f (x(t))+
m

∑
k=1

gk(x(t))uk(t) (1)

yi = hi(x(t)); i = 1,2, ...,m (2)

It is desired to develop a linear relationship between the

output vector h(x) and a synthetic input vector V (t). In order

to achieve this, each of the output channels yi is successively

differentiated, until a coefficient of a control is non-zero [13].

Using Lie derivative notation, we get

driyi

dtri
= L

ri

f (hi(x))+
m

∑
k=1

< dL
ri−1
f (hi(x)),gk > uk (3)

If the nonlinear system is input-output linearizable, then for

each output yi, a relative degree (also called linearizability

index) ri exists such that

< dLm
f (hi(x)),gk > = 0, f or m = 1,2, ...,ri −1

6= 0, f or m = ri (4)

Then we can write the synthetic input vector V (t) in the form

V (t) = L(x(t)))+ J(x(t))u(t) (5)

where

L(x) =











L
r1
f (h1(x))

L
r2
f (h2(x))

· · ·

L
rm
f (hm(x))











(6)
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and

J(x) =











< dL
r1−1
f (h1(x)),g1 > · · · < dL

r1−1
f (h1(x)),gm >

< dL
r2−1
f (h2(x)),g1 > · · · < dL

r2−1
f (h2(x)),gm >

· · · · · · · · ·

< dL
rm−1
f (hm(x)),g1 > · · · < dL

rm−1
f (hm(x)),gm >











.

(7)

An outer-loop controller is then constructed for the above

feedback-linearized system. Define Yd(t) as the desired out-

put vector, i.e.

Yd(t) =
[

Yd1(t) Yd2(t) · · · Ydm(t)
]T

(8)

where Ydi(t) represents the desired output trajectory for the

i th output. Then a set of surfaces, S, representing the desired

dynamics of the errors between the values of the true and

the desired outputs, is defined for the outer loop sliding

controller. Thus Si is the i th element of S and is a function

of the derivative of yi up to the (ri −1) th order.

Si =
ri−1

∑
k=1

βik

dk(yi − ydi)

dtk
(9)

Ṡ = Yd −L(x)− J(x)u (10)

Taking F(s) = [F1(s) F2(s) ... Fm(s)]T , with Fi(s) =
ηi sgn(Si) and ηi > 0, we can satisfy ṠiSi < 0 for all

i = 1,2, ...,m. The control law is eventually obtained as

u = J(x)−1[Yd −L(x)+ F(s)] (11)

The existence of J(x)−1 is related with conditions involving

the output controllability and the invertibility matrices [13].

B. Linear Quadratic Tracking

Here we consider two cases of the standard Linear

Quadratic Tracking problem. It is important to note that

we pose the following discussion in an infinite dimensional

setting since theory is in place to guarantee convergence of fi-

nite dimensional approximations to the PDE controller under

usual assumptions (see [14] and [15]). We first consider the

case where full state knowledge is assumed, more commonly

known as Linear Quadratic Regulator (LQR) state tracking

design, where the tracking problem reduces to a disturbance-

rejection problem of the form

ẋ(t) = Ax(t)+Bu(t)+ w(t), x(0) = x0, (12)

where x(t) = x(t, ·) = ξ (t, ·)− ξ̃ (t, ·) ∈ X , a Hilbert space,

w(t) is represented by

w(t) = Aξ̃ −
˙̃ξ 6= 0, (13)

ξ is the state of some original dynamical linear system of

interest,

ξ̇ (t) = A0ξ (t)+B0u(t)+ z, ξ (0) = ξ0, (14)

ξ̃ is the known desired state target of (14), and z is zero-

mean, Gaussian, white noise. Here, A is the linearized system

operator defined on D(A)⊆ X that, by assumption, generates

a C0−semigroup, B is the control operator, and u(t) is the

control input, defined on a Hilbert space U , which is taken

to be IRm in this work.

The solution to the steady state tracking problem involves

solving the standard control Riccati equation

A∗Π + ΠA−ΠBR−1B∗Π + Q = 0 (15)

for Π, where Q : X → X is a state weighting operator, taken

to be C∗C in this work (see (20)) and R : U →U is a control

weighting operator taken to be of the form R = cI, with

c a scalar and I the identity operator, with both operators

corresponding to the standard LQR cost function. Then the

feedback control gain is defined as

K = R−1B∗Π. (16)

The feed forward signal u f w is

u f w = R−1B∗q, (17)

where an approximation of q can be calculated by integrating

backwards in time to obtain the steady state solution of

q̇(t) = −[A−BR−1B∗Π]q(t), (18)

with q(∞) = 0, as stated in [16]. Then the control law for

the LQR state tracking is

u(t) = −Kx(t)−u f w, (19)

which is implemented in (12).

The second Linear Quadratic control implementation in-

volves an H2, specifically a Linear Quadratic Gaussian

(LQG), state tracking design, where it is assumed that an

estimate of the state from (12) exists, based on a measure-

ment

y = Cx(t)+ v, (20)

where measurement y(t) : X → Y , with Y a Hilbert space,

is taken to be IRp in this work, v is zero-mean, Gaussian,

white noise, uncorrelated with z in (14), and the estimate,

xc(t) = xc(t, ·) ∈ X , is used in the control law (19). Again,

the state from (12) is ξ − ξ̃ . It is assumed that the desired

target of the state estimate is also ξ̃ . To provide this estimate,

a compensator is used that has the form

ẋc(t) = Acxc(t)+Fcy(t), xc(0) = xc0
(21)

and the feedback control law is written

u(t) = −Kxc(t)−u f w, (22)

where K and u f w are determined from the LQR tracking

solution. From standard theory, it is well-known that by

solving an additional filter Riccati equation

AP+ PA∗−PC∗CP+BB∗ = 0, (23)

one can obtain the operators Fc, and Ac via

Fc = PC∗,
Ac = A−BK−FcC.

(24)

Under standard assumptions of stabilizability of (A,B) and

detectability of (A,C), there are guaranteed unique solutions
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Π and P to (15) and (23), respectively, such that the linear

closed loop system given by

d

dt

[

x(t)
xc(t)

]

=

[

A −BK

FcC Ac

]

[

x(t)
xc(t)

]

+

[

z−u f w

Fcv

]

(25)

is stable.

The operators K, Fc, Ac as determined above for the

linearized system, are substituted into the corresponding

nonlinear system

ẋnℓ(t) = Anℓxnℓ(t)+Bunℓ(t)+Fnℓ(xnℓ(t))+G+ w(t), (26)

thus producing the nonlinear observer

ẋc(t) = Acxc(t)+Fcy(t)+Fnℓ(xc(t)), (27)

with an appropriate initial condition. Then the nonlinear

closed loop system takes on the form

d

dt

[

xnℓ(t)
xc(t)

]

=

[

Anℓ −BK

FcC Ac

]

[

xnℓ(t)
xc(t)

]

+

[

z−u f w +Fnℓ(xnℓ(t))+G

Fcv +Fnℓ(xc(t))+G

]

.

(28)

III. MULTIPLE COMPONENT STRUCTURE

Two Euler-Bernoulli beams connected at a rigid mass are

used to model a flexible wing MAV. Each beam represents a

wing with the rigid mass at the center representing a fuselage.

It is assumed that the material properties of both beams

are uniform, identical, and composed of latex and carbon-

graphite fiber with epoxy. A graphical representation of the

system can be seen in Figure 1. The vehicle is assumed

Fig. 1. MAV model system.

to be initially in flight, gliding with morphable wings as

opposed to performing a flapping movement. (See [2] and [4]

for projects on flapping flight.) Denoting the displacement

(which is a combination of both rigid body and flexible

motions) of the left beam from its initial equilibrium position

at time t and position sL by wL(t,sL) and the corresponding

displacement of the right beam at time t and position sR by

wR(t,sR), the model is described as follows:

ρAẅL(t,sL)+ γ1ẇL(t,sL)

+γ2Iẇ′′′′
L (t,sL)+ EIw′′′′

L (t,sL)

= b(sL)uL(t)+
mbg

ℓ1

−
0.5ρaz2c

ℓ1

Cℓ,

(29)

for 0 ≤ sL ≤ ℓ1, t > 0, and

ρAẅR(t,sR)+ γ1ẇR(t,sR)

+γ2Iẇ′′′′
R (t,sR)+ EIw′′′′

R (t,sR)

= b(sR)uR(t)+
mbg

ℓ2

−
0.5ρaz2c

ℓ2

Cℓ,

(30)

for ℓ1 + ℓM ≤ sR ≤ ℓ1 + ℓM + ℓ2, t > 0. Here ẇi(t,si) =
∂

∂ t
wi(t,si) and w′

i(t,si) =
∂

∂ si

wi(t,si) with i = L,R for the

left or right beam, respectively, ρ is the density of the beam

material, A is the cross-sectional area of the beam, E is

Young’s modulus, I is the area moment of inertia of the

beam, γ1 is the coefficient of viscous damping, γ2 is the

coefficient of Kelvin-Voigt damping, g is gravity, mb is the

mass of each beam, bL(sL) is the control input function for

the left beam, bR(sR) is the control input function for the

right beam, uL(t) is the controller for the left beam, uR(t) is

the controller for the right beam, ρa is the density of air, z

is the forward vehicle velocity, c is the chord length of each

wing (beam width), and Cℓ is the aerodynamic lift coefficient.

The aerodynamic lift coefficient applied to this model is

the same one derived in [17] for a fruit fly model. While it

was derived for a flapping flight insect, it should be noted

that its relevance also holds in this framework due to the

dimensionless property of the lift coefficient and the flexi-

bility of the wings of the fruit fly. The lift coefficient model

is scaled to the the size of the MAV under consideration

here by the parameters of the dynamic pressure, 0.5ρaz2.

Together the lift coefficient and the dynamic pressure makeup

the aerodynamic lift force, 0.5ρaz2cCℓ. The lift coefficient is

given by

Cℓ =

[

k1 + k2 sin

(

k3 arctan

(

ẇ(t,s)+ k5

z

)

+ k4

)]

, (31)

where k1,k2,k3,k4 are the best fit parameters determined from

the analysis in [17]. In order to obtain real solutions and to

accommodate atmospheric conditions, it has been assumed

that k4 = 0, and a new parameter, k5, has been included in

the model to reflect the vertical wind velocity.

The boundary conditions applied to these elastic equations

arise from standard beam theory and are presented in (32).

EIw′′
L(t,0)+ γ2Iẇ′′

L(t,0) = 0,

EIw′′′
L (t,0)+ γ2Iẇ′′′

L (t,0) = 0,

EIw′′
R(t, ℓ1 + ℓM + ℓ2)+ γ2Iẇ′′

R(t, ℓ1 + ℓM + ℓ2) = 0,

EIw′′′
R (t, ℓ1 + ℓM + ℓ2)+ γ2Iẇ′′′

R (t, ℓ1 + ℓM + ℓ2) = 0,

wL(t, ℓ1)−wR(t, ℓ1 + ℓM) = 0,

w′
L(t, ℓ1)−w′

R(t, ℓ1 + ℓM) = 0,

−EIw′′
L(t, ℓ1)− γ2Iẇ′′

L(t, ℓ1)+ EIw′′
R(t, ℓ1 + ℓM)

+γ2Iẇ′′
R(t, ℓ1 + ℓM) = Izẅ

′
L(t, ℓ1),

EIw′′′
L (t, ℓ1)+ γ2Iẇ′′′

L (t, ℓ1)−EIw′′′
R (t, ℓ1 + ℓM)

−γ2Iẇ′′′
R (t, ℓ1 + ℓM) = mẅL(t, ℓ1).

(32)

Employing a standard Galerkin finite element approximation

(see [6] for details of the discretization), Equations (29) and
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(30) can be written as a first order system of the form

ẋ(t) = Ax(t)+ Bu(t)+ G+ F(x), (33)

where

A =

[

0 I

−M−1K −M−1D

]

, B =

[

0

M−1B̄

]

,

G =

[

0

M−1Ḡ

]

, F =

[

0

M−1F̄(x)

] (34)

Here, x(t) represents the state of the system, M, K, and D

are the corresponding mass, stiffness, and damping matrices,

B̄ is the control matrix, Ḡ contains the gravity dynamics, and

F̄(x) contains the aerodynamic lift function.

IV. NUMERICAL RESULTS

For reference, the uncontrolled state plots for position and

slope of the nonlinear system are given in Figure 2.

Fig. 2. Uncontrolled System: Position (left), Slope (right)

A. Feedback Linearization Results

Equations (33) and (34) are then employed for performing

a feedback linearization on the beam-mass-beam system.

Note that while (33) is nonlinear in the states, it is an input-

affine system. Treating the output of the system to be the

displacement and slope along the length of the beam and

the input to be provided by actuators that are distributed

throughout the length of the beam, (33) and (34) form a

square system (that has an equal number of inputs and

outputs). Since the input at each point directly influences

the second derivative of the output at that point, each such

output has a relative degree of two. Furthermore, it can be

seen that the discretized system has total relative degree equal

to the number of states, which implies that the system has

no internal dynamics [18]. Thus, input-output linearization

as well as input-state linearization can be simultaneously

achieved for the beam-mass-beam system.

Once the system has been feedback-linearized, we then

construct an outer-loop that comprises a sliding mode con-

troller, as discussed in an earlier section of this paper.

The desired morphing trajectory is depicted in Figure 3.

A convergent finite element approximation using Hermite

interpolating cubic polynomials of order N = 15 nodes for the

spatial discretization of the BMB system is used to simulate

(33), and the parameter values for the BMB system are

provided in Table I. Figure 4 shows the ensuing morphing

trajectory, while Figure 5 demonstrates the control effort.

Fig. 3. Desired State Target: Position (left), Slope (right)

Fig. 4. Feedback-linearized system: Position (Top Left), Slope (Top Right),
Velocity (Top Left), Angular Velocity (Top Right)

Fig. 5. Feedback-linearized system: Control Effort

B. Linear Quadratic Tracking Results

Before designing control for the system, we first obtain

a linear approximation for (29) and (30). The type of

linearization employed here is motivated by the fact that

the system sees two zero eigenvalues due to the free end

conditions for displacement and slope. In order to make the

A matrix from (33) aware of a weight force in the system,

mbg is approximated by the following

mbg ≈ mbẅ(t,s). (35)

Further, to provide the A matrix with knowledge of the

aerodynamic lift force, a linear approximation of Cℓ is

calculated using a Taylor series expansion about a zero angle
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of attack. Therefore for small angles of attack, the following

approximation is reasonable and applied here:

arctan

(

ẇ(t,s)+ k5

z

)

≈
ẇ(t,s)+ k5

z
. (36)

Making this substitution into (31), applying a Taylor expan-

sion, and keeping only the linear term yields the following:

Cℓ ≈
k2k3

z
ẇ(t,s). (37)

We then apply these substitutions to (29) and (30) and obtain

a Galerkin finite element approximation for the linearized

system, upon which control design is employed. The ap-

propriate control matrices are then applied to the nonlinear

system. Since one goal of this project is to gain insight into

optimal morphing trajectory, it is assumed that the controllers

act over the entire beam structure with constant control input

functions of the form

b(sL) = b(sR) = 1000, (38)

for 0 ≤ sL ≤ ℓ1 and ℓ1 + ℓM ≤ sR ≤ ℓ1 + ℓM + ℓ2, and

observations of the form

y(t) = 650w(t,s), (39)

for 0 ≤ sL ≤ ℓ1 and ℓ1 + ℓM ≤ sR ≤ ℓ1 + ℓM + ℓ2. The

magnitudes of the two functions in (38) and (39) were chosen

in order to alleviate overshoot in the LQG-controlled system.

However, it should be noted that controller multipliers chosen

two orders of magnitude less and measurement multipliers

chosen one order of magnitude less produce good results for

the LQR-controlled system, but some oscillatory behavior in

the LQG-controlled system.

Since this control approach specifies a trajectory for all

four states ([position; slope; velocity; angular velocity]), we

take initial conditions to be of the form: x(0) = [0;0;0;0].
For the coupled state and state estimate system, the initial

condition xc(0) = 0.75 ∗ x(0) is used. It should also be

noted that the balancing lift and weight forces are modeled

in the state estimate system as well. A convergent finite

element approximation using Hermite interpolating cubic

polynomials of order N = 31 nodes for the spatial dis-

cretization of the BMB system is used to simulate (33), and

the parameter values for the BMB system are provided in

Table I. Controlled results are presented in Figures 6 and

7, excluding noise. The corresponding controller plots are

shown in Figure 8. To obtain stabilizing solutions to the

algebraic Riccati equations, a Newton-Kleinman algorithm

was used. For the results presented here, it is assumed that

measurements are available for the position and slope states.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This work has considered a multiple component structure

consisting of two Euler-Bernoulli beams connected to a rigid

mass, used to model the heave dynamics of an aeroelas-

tic wing micro air vehicle. The vehicle is assumed to be

acted upon by a nonlinear aerodynamic lift force. We have

TABLE I

SYSTEM PARAMETERS

Parameter Value Units

ℓ1,2 0.6096 m

ℓM 0.0508 m

ρ 980 kg/m3

ŵ, width 0.127 m

h, height 0.0254 m

a = ŵh 0.032 m2

E 2.0×106 N/m2

I = (ŵh3)/12 1.734×10−7 m4

m 1.927 kg

mb 1.927 kg

γ1 0.025 kg/(m sec)

γ2 1×102 kg/(m5 sec)

Fig. 6. Controlled System: LQR Position (top left), LQR Slope (top right),
LQR Velocity (bottom left), LQR Angular Velocity (bottom right)

Fig. 7. Controlled System: LQG Position (top left), LQG Slope (top right),
LQG Velocity (bottom left), LQG Angular Velocity (bottom right)
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Fig. 8. Control Effort: LQG (left), LQR (right)

examined two different strategies for designing nonlinear

controllers that achieve specified wing morphing trajectories,

namely (a) linearization followed by linear quadratic tracking

and (b) a feedback linearization inner loop with sliding mode

outer loop.

With regard to the controllers designed using the feedback

linearization and linear quadratic strategies, we see that they

perform well and each system is able to morph to the desired

position and slope along the specified trajectory. The closed

loop state responses (those that are tracked) are quite similar

to each other, yet the control inputs of the linear quadratic

strategy are considerably different from those in the feedback

linearization strategy. This is likely to be expected for the

following reasons.

1) In LQR, the control across the whole BMB system is

scaled by a pre-defined constant and thus the BMB

is essentially modeled as a single input system, even

though the control is distributed, whereas in feedback

linearization the BMB is modeled as a true multiple

input multiple output (MIMO) system.

2) In LQR, the goal of the control is purely one of

tracking, whereas in feedback linearization the goal of

the control is both of canceling the nonlinearities in the

system as well as tracking. The feedback linearization

might thus be “over-reaching” in that in its goal to

make the closed loop linear, it might even be canceling

some “good” nonlinearities.

We see that both the LQR and LQG tracking perform

quite comparably except for the velocity and angular velocity

states, likely since we did not measure those states in the

LQG design, where we actually see growth in the velocity

and angular velocity near the free ends of the beams. The

unreasonably and unrealistically large angular velocity found

in the LQG controlled system is roughly twice the magnitude

of the angular velocity found in the LQR and feedback

linearized systems, and it does present a severe limitation

in the LQG compensator-based approach for control design

on this problem.

B. Future Work

Future work includes investigating optimal morphing tra-

jectories and applying realistic actuation to the model. Re-

sults with piezoceramic patch actuators attached to the beams

will be the subject of another paper. Theoretical analysis,

including model well-posedness and semigroup results, are

forthcoming in a separate paper as well.
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