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Abstract— We present sufficient conditions for stabilizing a
scalar discrete-time LTI plant in the mean squared sense when
a sensor transmits the plant state information to a remotely
placed controller across a Gaussian product channel. The
Gaussian product channel models a continuous-time waveform
Gaussian channel, where the encoder transmits information to
the receiver across multiple noisy paths. It is known that linear
coding schemes may lead to overly restrictive stabilizability
conditions in such scenarios. We present a non-linear coding
scheme and present the resulting stablizability conditions. When
these conditions are satisfied with equality, the proposed coding
scheme transmits data across the product channel at a rate
equal to the capacity of the channel; thus, the conditions are
conjectured to be necessary as well.

I. INTRODUCTION

Networked control systems are now an active area of
research. The performance of such systems is adversely
affected by the detrimental effects such as random delays,
data loss, data corruption, and so on introduced by the
underlying communication network. The presence of var-
ious communication channel models in the control loop
has been considered, including channels that introduce data
loss (e.g., [5]), delay (e.g., [9]), digital noiseless channels
(e.g., [10]), additive white Gaussian noise (AWGN) channels
(e.g., [2]), etc.

In this paper, we are interested in stabilizability of a scalar
unstable linear time invariant (LTI) discrete time system
across a Gaussian product channel (also known as parallel
Gaussian channels). Stability conditions in the presence of
one AWGN channel are available (e.g., [2], [3]). Stabilizing
the plant across a Gaussian relay [7], broadcast and multiple
access channel [8] have also been considered. Interesting
parallels of the problem with schemes achieving the capacity
of a Gaussian channel with feedback through the Schalkwijk-
Kailath (SK) scheme [12] are known [4].

The Gaussian product channel models a continuous-time
waveform Gaussian channel in which the transmitter sends
information to the receiver across multiple parallel chan-
nels, each parallel channel being individually modeled by
an AWGN channel. The parallel channels may represent
different frequency bands, time instances, or in general
different “degrees of freedom”. Control across such a channel
is inherently more difficult than control across a single
channel. For instance, while it is known that for a single
AWGN channel, the optimal encoding policies are linear [1]–
[3], for the parallel channel case, Yüksel and Taikonda [6]
presented a counterexample which shows that in general
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linear encoding strategies may lead to overly restrictive
stabilizability conditions1. Since design of optimal non-linear
strategies is not trivial, analytical results and coding schemes
for this setup are largely lacking. The inadequacy of linear
controllers in achieving optimal stabilizability conditions or
performance for a parallel Gaussian channel was also noted
in [11]. However, neither [6] nor [11] proposed a non-linear
controller and encoder structure.

By constructing one particular stabilizing non-linear en-
coder and decoder structure, we present sufficient conditions
for stabilizing a scalar discrete-time LTI plant in the mean
squared sense when the sensor transmits information to a
remotely placed controller across a Gaussian product chan-
nel. When the sufficient conditions for stability using our
coding scheme are satisfied with equality, data about the
initial condition is transmitted at a rate equal to the capacity
of a Gaussian product channel; thus, the conditions may be
conjectured to be necessary as well.

II. PROBLEM SETUP

Consider the set-up shown in Fig. 1. The plant is described
by an open loop unstable scalar linear time invariant process
evolving as

S(k + 1) = aS(k) + U(k), (1)

where S(k) ∈ R is the state and U(k) ∈ R is the control
value. We assume that the initial condition S(0) is a random
variable uniformly distributed in the interval [c, d] with a
finite variance σ2

S(0) = (d−c)2
12 . For ease of exposition, and

without loss of generality, we assume that at every time
step a sensor observes the state of the process S(k) and
transmits information across the communication channel to
the controller. The controller calculates a control input U(k)
and applies it to the process in (1). The communication
channel from the plant to the controller is modeled as a
Gaussian product channel, while the communication from
the controller to the process is assumed to be perfect. The
input and output of the i-th channel is denoted by Xi and Yi
respectively. The noise corrupting the i-th channel is denoted
by Zi. The output of the i-th channel at time k is given by

Yi(k) = giXi(k) + Zi(k),

where gi is attenuation due to path loss. The noises Zi(k)
are modeled by a zero-mean AWGN with mean zero and
variance σ2

i . Moreover, the noises on the various links are
assumed to be mutually independent and white. We impose

1Note that while the general set-up in [6] considers a multi-sensor setting,
the specific numerical example they provide is identical to the case when
one sensor can transmit information across a Gaussian product channel with
two parallel channels.
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Fig. 1. Problem setup for an unstable plant being controlled by a controller
across a Gaussian product channel

three constraints on the encoder and controller design:
• Constraint C1: The control action must satisfy a con-

troller cost constraint,
∑∞
k=0 E[U(k)2] <∞.

• Constraint C2: There is an average power constraint
imposed on the signals transmitted by the encoders on
the different channels and a common power constraint
on the total power used. Thus, the encoding schemes
must be such that the transmitted signals satisfy

lim
n→∞

1

n

n−1∑
k=0

E[X2
i (k)] ≤ Pi, i = 1, 2, . . .m,

m∑
i=1

Pi ≤ P.

• Constraint C3: The encoders are assumed to be causal,
but otherwise unconstrained in terms of computation
and memory. The information structure at the encoders
is as follows. If hi be the encoding policy at the encoder
for the i-th input, then

Xi(k) = hi(S(0), . . . , S(k), U(0), . . . , U(k − 1)).

The problem we are interested in this paper is to design the
maps hi’s and controller U(k) so that the process (1) is mean
square stabilized, while satisfying the design constraints
C1, C2 and C3. The design of the encoder map involves
designing a scheme to divide the total power amongst the
various inputs X1, X2, . . . Xn in an optimal way. Recall that
a system is said to be stabilized in the mean squared sense if
and only if irrespective of the initial state S(0), the following
conditions are satisfied:

E[S(k)] = 0,

lim
k→∞

E[S(k)ST (k)] = 0. (2)

III. MAIN RESULTS

A. Preliminary Results
The encoders distribute the information about S(0)

amongst the various inputs X1(k), X2(k), . . . , Xm(k). Let
Si(k) be the information about S(0) transmitted through
the i-th (i ∈ {1, 2, . . . ,m}) channel. Xi(k) is calcu-
lated by scaling Si(k) to satisfy the power constraint
C2. The controller observes the outputs of the channels
Y1(k), Y2(k), . . . , Ym(k) and extracts relevant information
Ŝ1(k), Ŝ2(k), . . . , Ŝm(k). The estimate Ŝ(k) of the initial
state S(0) can be then calculated at the decoder as a function
of the information collected from different links, i.e.,

Ŝ(k) = f(k, Ŝ1(k), Ŝ2(k), . . . , Ŝm(k)).

We define the overall estimation error as

ε(k) := Ŝ(k)− S(0),

and estimation error for information sent through the i-th
channel as εi(k) := Ŝi(k) − Si(0). Let α(k) (resp. αi(k))
represent the variance of the estimation error ε(k) (resp.
εi(k)). The crucial property that needs to be satisfied for
mean square stability is that the estimate Ŝ(k) converges to
S(0) at a rapid enough rate as shown by the following result.

Lemma 1: The LTI system in (1) can be mean square
stabilized over a communication channel if the following
conditions are satisfied:

E[ε(k)] = 0,

lim
k→∞

a2kE[ε2(k)]] = 0. (3)
Proof: Since the controller does not know the state

value S(0) exactly, the controller takes actions using the
estimates Ŝ(k). The controller actions are defined as

U(k) :=

{
−aŜ(0), k = 0

−ak+1(Ŝ(k)− Ŝ(k − 1)), k ≥ 1.
(4)

Thus, the state S(k) and its moments evolve as

S(k + 1) = −ak+1
(
Ŝ(k)− S(0)

)
= −ak+1ε(k), (5)

E[S(k + 1)] = −ak+1E[ε(k)],

E[S2(k + 1)] = a2(k+1)E[ε2(k)].

Thus, if the conditions in (3) are satisfied, the process is
mean square stabilized.
The above result also presents the controller design. We will
now present our coding scheme and show that it does satisfy
the constraints in (3). We start with considering the special
case when we have only one channel (m = 1), then extend
it to the case when there are two channels (m = 2) and then
generalize it for m channels.

B. Special Case m = 1
The code for a setting with m = 1 works as follows. Note

that since there is only one channel, S1(0) = S(0), Ŝ1(k) =
Ŝ(k), ε1(k) = ε(k) and P1 = P .
Initialization: At time step k = 0, the encoder transmits

X1(0) =

√
P1

σ2
S1(0)

S1(0). (6)
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The decoder forms an estimate of S1(0) as follows:

Ŝ1(0) =
1

g1

√
σ2
S1(0)

P1
Y1(0).

The estimation error ε1(0) is given by

ε1(0) =
1

g1

√
σ2
S1(0)

P1
Z1(0).

Clearly, ε1(0) is zero-mean Gaussian with variance α1(0),
given by

α(0) = α1(0) =
σ2
S1(0)

σ2
1

g21P1
. (7)

The controller calculates the control U(0) according to (4)
and transmits its to the process.
Update: At each time step k ≥ 1, the encoder transmits

X1(k) =

√
P1

α1(k − 1)
ε1(k − 1). (8)

The decoder updates its estimate as follows. At time k ≥
1, the decoder calculates the linear minimum mean squared
error (MMSE) estimate of S1(0) given Y1(k) and Ŝ1(k− 1)
as

Ŝ1(k)= Ŝ1(k−1)−E[Y1(k)ε1(k−1)]

E[Y1
2(k)]

Y1(k). (9)

The controller calculates the control U(k) according to (4)
and transmits its to the process. Note that the input X1(k)
satisfies the respective power constraint and that subsequent
transmissions are orthogonal to each other (since the MMSE
estimation error ε1(k) is orthogonal to all observations).

It can be seen that the estimation error ε1(k) are Gaussian
with zero mean and variance α1(k). We now proceed to
evaluate the recursive expression for α1(k) as used in the
coding scheme presented above. Since ε1(k) is defined as
Ŝ1(k)− S1(0), from (9) we obtain

ε1(k) = ε1(k − 1)− E[Y1(k)ε1(k − 1)]

E[Y1
2(k)]

Y1(k). (10)

The variance of ε1(k) can be obtained as

α1(k) = E[ε21(k)] = α1(k−1)−E2[Y1(k)ε1(k − 1)]

E[Y1
2(k)]

, (11)

with the initial condition in (7). The terms in (11) can be
further evaluated to be

E[Y1
2(k)] = g21P1 + σ2

1 , (12)

and
E[Y1(k)ε1(k − 1)] = g1

√
P1α1(k − 1). (13)

Using (12) and (13) in (11), we obtain

α1(k) = α1(k − 1)r1, (14)

where r1 =
(

σ2
1

g21P1+σ2
1

)
. Note that since α(k) = α1(k) and

P1 = P ,

α(k) =
σ2
S(0)σ

2
1

g21P

(
σ2
1

g21P + σ2
1

)k
. (15)

We now present the stability conditions when the coding
scheme described above is used to stabilize the process (1).

Theorem 2: Consider the problem formulation presented
in Section II with the coding scheme presented above in
Section III-B for m = 1. The process (1) is mean square
stabilized over the point-to-point channel if

log(a) <
1

2
log

(
1 +

g21P

σ2
1

)
. (16)

Proof: It is easy to see that E[ε(0)] = 0. It is known
that the linear minimum mean squared error is an unbiased
estimator. Thus, E[ε(k)] = 0 for all k ≥ 0, which is the
first condition in (3). The theorem follows using the second
condition in (3) and (15).
Note that the right hand side of the condition in (16) is also
the maximum rate at which information can be transmitted
over a Gaussian point-to-point channel.

C. Special Case m=2

For pedagogical ease, we consider first the case when m =
2 before we present the scheme for arbitrary m. To develop
a coding scheme for the case when more than one channel
is present, we revisit a relevant result from information
theory [13], and recognized also in [6]. For a distributed
source-channel coding to be optimal in the information-
theoretic sense, two conditions need to be satisfied:
• The information transmitted on all the channels should

be independent.
• Capacity is utilized by all the channels (source-channel

needs to be matched).
It is not possible to make the signals transmitted on different
channels independent when linear schemes are used, which
implies that linear schemes are not optimal [6]. We develop
a non-linear encoding scheme which will ensure that we
transmit independent information over the two channels.

For transmission over the Gaussian product channel with
m = 2, consider the following construction. Recall that
S(0) is uniformly distributed over [c, d]. Divide the interval
[c, d] into M1 (we will define how to choose M1 later)
disjoint, equal-length message intervals as shown in Fig. 2.
Let cj where j ∈ {1, 2, . . . ,M1− 1} be the partition points.
Also define c0 := c and cM1

:= d. A point x is said to
be in the j-th interval Ij if x ∈ [cj−1, cj ]. The message
to be sent on the first channel corresponds to the output
of a quantizer Q1(·) which maps each point of the j-th
interval (j ∈ {1, 2, . . . ,m}), to the midpoint of that particular
interval. The message to be sent on the second channel
corresponds to the quantization error S(0)−Q1(S(0)). Thus
we design the quantizer Q1(·) as follows:

S̃1(0) = Q1(S(0))

= a+

(
j − 1

2

)
1

M1
if S(0) ∈ Ij ,

S̃2(0) = S(0)− S̃1(0). (17)

Lemma 3: The random variables S̃1 and S̃2 defined in
(17) are independent.
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Fig. 2. Generation of S̃1 and S̃2

Proof: Consider the conditional probability Pr(S̃2 =
γ|S̃1 ∈ Ij).

Pr(S̃2 =γ|S̃1 ∈ Ij)=
Pr(S̃2 =γ, S̃1 ∈ Ij)

Pr(S̃1 ∈ Ij)
=M1Pr(S̃2 =γ, S̃1 ∈ Ij)

=

M1∑
j=1

Pr(S̃2 =γ, S̃1 ∈ Ij)

=Pr(S̃2 =γ).

Thus, the random variables are independent.
Now, we define the messages to be sent on the parallel
channels as

S1(0) , S̃1(0), S2(0) ,M1S̃2(0).

It can be seen that both S1(0) takes values uniformly from a
set with M1 elements. The number of intervals M1 is related
the information rate R1 and number of channel uses k over
the first channel as

M1 = 2kR1 . (18)

Note also that S2(0) is uniformly distributed in the interval
[c, d] and thus has a variance σ2

S2(0)
= (d−c)2

12 .
Now we send the messages S1(0) and S2(0) over the two

channels recursively and independently of each other in the
same way as we sent S1(0) in Section III-B (See (6) and
(8)). The decoder forms estimates Ŝi(k) of Si(0), i = 1, 2,
the variances of which can written using (15) as

α1(k) =
σ2
S1(0)

σ2
1

g21P1

(
σ2
1

g21P1 + σ2
1

)k
, α1(0)rk1 , (19)

α2(k) =
σ2
S2(0)

σ2
2

g22P2

(
σ2
2

g22P2 + σ2
2

)k
, α2(0)rk2 . (20)

Note that the estimation error does not depend on the control
inputs, and hence does not effect the controller design. The
control input in this case is calculated as

U(k) =
[
U1(k), U2(k), U1(k) + U2(k)

M1

]T
, (21)

Ui(k) ,

{
−aŜi(0), k = 0

−ak+1(Ŝi(k)− Ŝi(k − 1)), k ≥ 1.
(22)

Note that T represents a transpose. The third component of
U(k) as defined above is extracted and applied to the process
(1), whereas the i-th component (i = 1, 2) is used by the

encoder i to update the i-th input, as given by equation (8).
Note that because of the construction described above (17),
the information sent on the parallel channels i = 1, 2, . . . ,m
are mutually independent. Also, except at time step k = 0,
the inputs to both channels have a Gaussian distribution and
are thus matched to the respective Gaussian channels.

Theorem 4: Consider the problem formulation presented
in Section II with the coding scheme presented above for
m = 2. The process (1) is mean square stabilized over the
Gaussian product channel with m = 2 if

log(a) < max∑2
i=1 Pi=P

2∑
i=1

1

2
log

(
1 +

g2i Pi
σ2
i

)
. (23)

Proof: It is easy to see that E[ε(0)] = E[ε1(0)+ ε2(0)
M1

] =
0. It is known that the linear minimum mean squared error
is an unbiased estimator. Thus, E[ε(k)] = 0 for all k ≥ 0,
which is the first condition in (3). To evaluate the estimation
error variance α(k), we write

E[ε2(k)]
(a)
= Pr(Ŝ1(k) 6=S1(0))E[ε2(k)|Ŝ1(k) 6=S1(0)]

+Pr(Ŝ1(k)=S1(0))E[ε2(k)|Ŝ1(k)=S1(0)]. (24)

The terms above can be written as follows.

Pr(Ŝ1(k) 6=S1(0)) ≤ Pr
[
|ε1(n)| > 1

2M1

]
= 2Q

(
1

2M1

√
α1(n)

)

(a)
= 2Q

2
k

(
R1− 1

2 log(1+
g21P1

σ21
)

)

2

√
σ2
S1(0)

σ2
1

g21P1

 ,

E[ε2(k)|Ŝ1(k) 6=S1(0)]
(b)

≤ (d− c)2,
P r(Ŝ1(k)=S1(0)) ≤ 1,

E[ε2(k)|Ŝ1(k)=S1(0)] =
α2(k)

M2
1

,

(c)
=

σ2
2

12g22P222kR1

(
σ2
2

g22P2 + σ2
2

)k
,

where Q(x) ,
∫∞
x

1√
2π

exp(−y22 ) dy, (a) follows from (18)
and (19), (b) follows using the fact the estimation error is
upper bounded by the maximum distance between any two
points on [d, c] and (c) follows from (18) and (20). Thus, we
can upper bound a2kE[ε2(k)] as

a2kE[ε2(k)] ≤ a2kQ

2
k

(
R1− 1

2 log(1+
g21P1

σ21
)

)

2

√
σ2
S1(0)

σ2
1

g21P1

 (d− c)

+
σ2
2

12g22P2

a2k

22kR1

(
σ2
2

g22P2 + σ2
2

)k
. (25)

Since Q(x) ∼ exp(−x
2

2 ) for large x, the Q(·) term in (25)
decreases doubly exponentially in k. On the other hand, the
term a2k increases exponentially. This implies that if R1 <
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1
2 log

(
1 +

g21P1

σ2
1

)
, the first term in (25) goes to zero as k →

∞ irrespective of the value of a. Moreover, if

log a < R1 +
1

2
log

(
1 +

g22P2

σ2
2

)
<

1

2
log

(
1 +

g21P1

σ2
1

)
+

1

2
log

(
1 +

g22P2

σ2
2

)
,

then the second term in (25) also approaches zero as k →∞.
Now since we are allowed to choose P1 and P2, we can
optimize the right hand side of the above equation to increase
the stability region. Thus, if the condition in (23) is satisfied,
then a2kα(k)→ 0 and mean square stability is obtained.
The optimization in (23) can be carried out using Lagrange
multipliers and is a standard result in information theory
[14, Chapter 10]. An interpretation of the optimization is
presented in Section III-F, after discussing the coding scheme
for the case when m > 2 channels are present.

D. General Case: Arbitrary value of m

For transmission over the Gaussian product channel with
m > 2 channels, consider the following construction. Divide
the interval [d, c] into M1 disjoint, equal-length message
intervals. Then divide each of these M1 intervals into a
further M2 subintervals and so on till Mm−1. Define Iij
to be the j-th interval (j ∈ {1, 2, . . . ,Mi}) for the i-th
(i ∈ {1, 2, . . . ,m−1}) level quantizer Qi. The message to be
sent on the i-th channel (i = 1, 2, . . . ,m−1) corresponds to
the output of the i-th quantizer Qi(·), which maps each point
of the interval Iij to the midpoint of that particular interval.
The message to be sent on the m-th channel corresponds
to the quantization error. Thus we design a set of m − 1
quantizers as follows:

S̃1(0) = Q1(S(0)),

S̃2(0) = Q2(S(0)− S̃1(0)),

...

S̃m−1(0) = Qm−1(S(0)−
m−2∑
i=1

S̃i(0)),

S̃m(0) = S(0)−
m−1∑
i=1

S̃i(0).

We have the following lemma which is a generalization of
Lemma 3 for arbitrary m.

Lemma 5: The random variables S̃i, i = 1, 2, . . . ,m
defined in (17) are mutually independent.

Proof: The proof is similar to the proof for Lemma 3
and has been omitted.
Now, we define the messages to be sent on the i-th (i =
1, . . . ,m) parallel channel as

Si(0) ,

i−1∏
j=1

Mj

 S̃i(0).

Note that Si(0), i = 1, 2, . . . ,m− 1 takes values uniformly
from a set with Mi elements. As before, Mi is related to the

information rate Ri and number of channel uses k over the
i-th channel as

Mi = 2kRi , i = 1, 2, . . . ,m− 1. (26)

Also, S̃m(0) is uniformly distributed in the interval [d, c] and
thus has a variance of (d−c)2

12 .
We send the messages Si(0), i = 1, 2, . . . ,m over the m

channels recursively in the same way as we sent S1(0) in
Section III-B (See (6) and (8)). The decoder forms estimates
Ŝi(k) of Si(0), i = 1, 2, . . . ,m, the variances of which can
written down using (15) as

αi(k) =
σ2
Si(0)

σ2
i

g2i Pi

(
σ2
i

g2i Pi + σ2
i

)k
, αi(0)rki . (27)

The controller design is as follow. The controller calculates
and transmits the input

U(k) =
[
U1(k), . . . , Um(k),

∑m
i=1

Ui∏i−1
j=1Mj

]T
, (28)

Ui(k) ,

{
−aŜi(0), k = 0

−ak+1(Ŝi(k)− Ŝi(k − 1)), k ≥ 1.
(29)

The m+ 1-th component of U(k) defined above is extracted
and applied to the process (1), whereas the i-th component
(1 ≤ i ≤ m) is used by the encoder i to update the i-th input.
Note that because of the construction described above, the
information sent on the parallel channels i = 1, 2, . . . ,m are
mutually independent. Also, except at time step k = 0, the
inputs to both channels have a Gaussian distribution and are
thus matched to the respective Gaussian channels. We have
the following theorem on stability.

Theorem 6: Consider the problem formulation presented
in Section II with the coding scheme presented above for
arbitrary m. The process (1) is mean square stabilized over
the Gaussian product channel if

log(a) < max∑m
i=1 Pi=P

m∑
i=1

1

2
log

(
1 +

g2i Pi
σ2
i

)
. (30)

Proof: It is easy to see that E[ε(0)] = 0. It is known
that the linear minimum mean squared error is an unbiased
estimator. Thus, E[ε(k)] = 0 for all k ≥ 0, which is the
first condition in (3). Define the event E := (Ŝ1(k) =
S1(0), Ŝ2(k) = S2(0), . . . , Ŝm−1(k) = Sm−1(0)). We can
write the estimation error variance α(k) as

E[ε2(k)]=Pr(Ē)E[ε2(k)|Ē] + Pr(E)E[ε2(k)|E]

⇒ a2kE[ε2(k)]=a2k(Pr(Ē)E[ε2(k)|Ē]+Pr(E)E[ε2(k)|E])
(31)

Using arguments similar to the proof of Theorem 4, we can
prove that the first term in (31) goes to zero irrespective
of the value of a if the following conditions are satisfied
simultaneously.

Ri <
1

2
log

(
1 +

g2i Pi
σ2
i

)
∀i = 1, 2, . . . ,m− 1. (32)
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To obtain a condition for the second term to approach zero,
rewrite

a2kPr(E)E[ε2(k)|E] ≤ a2kE[ε2(k)|E] =
a2kαm(k)∏m−1
i=1 Mi

=
σ2
m

12g2mPm

a2k∏m−1
i=1 22kRi

(
σ2
m

g2mPm + σ2
m

)k
.

Thus, a sufficient condition for the term to approach zero is
that

log a <

m−1∑
i=1

Ri +
1

2
log

(
1 +

g2mPm
σ2
m

)
<

m∑
i=1

1

2
log

(
1 +

g2i Pi
σ2
i

)
,

where the last inequality follows using (32). Now since we
are allowed to choose Pi, we can optimize the right hand
side of the above equation to increase the stability region.
Thus, if the condition in (30) is satisfied, then a2kα(k)→ 0
and mean square stability is obtained.

E. Constraint C1

The constraints C2 and C3 are satisfied by construction of
the coding scheme. We can also show that the constraint C1

is satisfied by the proposed design.
Proposition 7: The controller satisfies the cost constraint∑∞
k=0 E[U2(k)] <∞.

Proof: From (29) and (9), we can write

Ui(k) = ak+1E[Yi(k)εi(k − 1)]

E[Yi
2(k)]

Yi(k)

⇒ E[U2
i (k)] = a2α(0)

g2i Pi
σ2
i

k−1∏
j=0

[
a2

σ2
i

g2i Pi + σ2
i

]
.

Using (30), it can seen that
∑∞
k=0 E[U2

i (k)] < ∞ for all
i = 1, 2, . . . ,m. Thus the result follows.

F. Water-filling Solution

The optimization problem in (23) or (30) can be solved
using Lagrange multipliers and has a well known interpreta-
tion. The solution is given by [14, Chapter 10]

Pi =

(
λ− σ2

i

g2i

)+

= max

{
λ− σ2

i

g2i
, 0

}
,

where the Lagrange multiplier λ is chosen to satisfy
m∑
i=1

(
λ− σ2

i

g2i

)+

= P.

The optimal solution has the water-filling interpretation as
shown in Fig. 3. The vertical levels indicate the noise levels
in the various channels. As the power P is increased, power
is first alloted to the channel with lowest noise, then the
next lowest and so on. This power distribution is identical
to the way water fills itself in a container, hence the name
“water-filling”.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we derived sufficient conditions for mean
square stabilizability of a scalar linear time invariant open
loop unstable plant over a Gaussian product channel. When
the sufficient conditions for stability using our coding scheme
are satisfied with equality, data about the initial condition is
being transmitted at a rate equal to the capacity of a Gaussian
product channel, which suggests that our scheme might be
optimal.

An immediate extension of this work would be to consider
a vector plant. Similarly, the effect of process or (and) sensor
noise in (1) can be considered. Generalizing the result for
other probability distributions of the initial condition S(0) is
also an interesting direction for future work.
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