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Abstract— In this paper, a new fault tolerant control scheme
is proposed for systems where only output information is
available. The ideas of integral sliding mode control are used
to ensure robustness throughout the entire response of the
system, even in certain actuator fault/failure cases. This is
accomplished by integrating fixed control allocation within this
ISM framework. An unknown input observer is included in
the proposed scheme to estimate the states, as it is assumed
that there is no information of the true states or knowledge
of the faults or failures from a monitoring scheme. A rigorous
closed-loop stability analysis is presented, and in fact, a convex
representation of the problem is formulated to synthesize a
controller. Simulation results on a benchmark civil aircraft
model show good tracking of the commanded signals.

I. INTRODUCTION

Fault tolerant control (FTC) can improve the reliability of
safety critical systems. Many different control paradigms
have been adopted to tackle the problem, and it remains an
open area of research. Overviews of the development of FTC
schemes have been provided in the recent book chapter [21]
and the references therein.

Control allocation (CA) is one approach which has the
capability to effectively manage redundancy in over-actuated
systems [4], [13]. The benefit of using CA methods is that

they can be used in combination with other control design
paradigms to distribute the virtual control effort among the
actuators. For a detailed discussion of the advantages of using
CA in terms of FTC, see for example [5], [9].

Due to its inherent robustness properties against matched
uncertainties, sliding mode control (SMC) [10], [19] has
recently attracted much attention in the field of FTC. The
combination of traditional SMC with CA for fault tolerant
control has been previously explored in [1], [16] and [14]. In

all this work it was assumed that the system states are known
and that state feedback control schemes could be employed.
More recently a FTC approach has been proposed in [12],
which considers integral sliding mode (ISM) ideas to achieve
fault tolerance. The idea of ISM control originally proposed
in [20], [7] is to eliminate the reaching phase associated with
SMC schemes.

Early work on ISM assumed state information, but this has
been extended to the situation where only measured outputs
are available [3]. In [8] the state dependent method to design

the integral sliding surface from [6], was developed into
an output feedback framework. The main contribution of
this paper is to relax the assumption associated with [1],
[12] that state information is known, and to consider instead
the situation where only measured outputs are available.
The proposed scheme includes a full order linear unknown
input observer UIO, to estimate the system states used in

the design of the (virtual) controller. In the proposed FTC
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scheme, both actuator and component faults are considered.
As a consequence, the approach is different from the output
dependent ISM schemes proposed in [3]. It also allows the
presence of invariant zeros, which must be precluded in

the approach of [3]. In the scheme no attempt is made to
estimate the faults/failures (using an FDI scheme), instead
the robustness properties of the UIO coupled with the ISM
are relied upon. Although the approach here is similar
in spirit to [8] the technical details are different and the
control allocation context is new. A rigorous closed-loop

stability analysis is carried out to ensure the stability of the
sliding motion in the face of faults/failures, provided that
redundancy is available in the system.

II. PROBLEM FORMULATION

Consider an uncertain system with actuator faults or failures
and component faults written as

ẋ(t) = (A+Aδ )x(t)+Bu(t)−BKu(t) (1)

y(t) = Cx(t)

where A ∈ R
n×n is the state matrix, Aδ is parametric

uncertainty in the system matrix arising from faults at a
component level, B ∈R

n×m is the input distribution matrix
and C ∈R

p×n is the output distribution matrix. The diagonal
weighting matrix K = diag{k1, ..,km}, where the scalars
k1, ..,km, models the effectiveness level of the actuators. If

ki = 0, the corresponding ith actuator is fault free and is
working perfectly, whereas if 1 > ki > 0, an actuator fault
is present. The value ki = 1 indicates the ith actuator has
completely failed. It is assumed the outputs to be controlled
are given by yc(t) =Ccx(t) where Cc ∈R

l×n, where l < m.
It follows that there is redundancy in the system in terms
of the number of control inputs. This will be exploited to

achieve fault tolerance. To resolve this redundancy, as in [1],
it is assumed the matrix B can be partitioned such that

B =
[

BT
1 BT

2

]T
(2)

where B1 ∈ R
(n−l)×m and B2 ∈ R

l×m is of rank l < m. By
appropriate scaling of the last l states, it can be ensured

B2BT
2 = Il , which implies ‖B2‖ = 1. As in [1], it is further

assumed that ‖B1‖ ≪ ‖B2‖ = 1, so that B2 reflects that the
dominant control action contribution on the system acts in
the lower l channels of the system. As argued in [1], such a
partition can be achieved for aerospace systems for example.
Using (2), the system in (1) can be written as

ẋ(t) = (A+Aδ)x(t)+

[
B1

B2

]
(I −K)︸ ︷︷ ︸

W

u(t) (3)

Notice, by definition W := I−K is a diagonal matrix and its
diagonal elements wi satisfy 0 ≤ wi ≤ 1.
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The physical control law u(t) is realized by a so-called fixed
control allocation scheme of the form

u(t) = BT
2 ν(t) (4)

where ν(t) ∈R
l is the virtual control input. (In (4) the fact

that B2BT
2 = Il is exploited). Using (4), equation (3) can be

written as

ẋ(t) = (A+Aδ)x(t)+

[
B1WBT

2

B2WBT
2

]

︸ ︷︷ ︸
Bw

ν(t) (5)

In the nominal case, when there is no fault W = I and Aδ = 0,
using the fact that B2BT

2 = Il , equation (5) simplifies to

ẋ(t) = Ax(t)+

[
B1BT

2

Il

]

︸ ︷︷ ︸
Bν

ν(t) (6)

The following assumption will be made:

A1: The pair (A,Bν) is controllable.

The design of the virtual control law ν(t) will be based on

an estimate of the states x̂(t), rather than the true states x(t).

III. ISM CONTROLLER DESIGN

In this section, a step by step design procedure for the
synthesis of the virtual control ν(t) will be developed using
the estimated states x̂(t), which will be obtained from an
observer. As a first design step, an output and state estimate
dependent integral switching function is proposed of the form

σ(t) = Gy(t)−Gy(t0)+

∫ t

0
Fx̂(τ)dτ (7)

where G ∈ R
l×p is design freedom, and F ∈ R

l×n is a
feedback gain, which is to be designed to achieve appropriate
nominal closed-loop performance. The formulation in (7) is
similar to that proposed in [8] except here both F and G

depend on the dimension l rather than the number of control
inputs. The second design step is the creation of a control
law ν(t) to ensure the switching function is zero for all time.

In this paper, the full-order UIO developed in [15] is used to
estimate the system states. The term BKu(t) in (1) is regarded
as an unknown input since by assumption K is unknown.

Necessary and sufficient conditions for a linear UIO to exist
to ensure insensitivity to BKu(t) are

A2: rank(CB) = rank(B) = m

A3: the triple (A,B,C) is minimum phase

The structure of the full-order observer from [15] is

ż(t) = A0z(t)+TBu(t)+Ly(t) (8)

x̂(t) = z(t)+Hy(t) (9)

where x̂(t) is the estimated state, and A0,T,L and H are
matrices of appropriate dimension (and include design pa-
rameters). From [15], the matrix H ∈R

n×p is chosen so that

(I−HC)B = 0 (10)

As argued in [15], Assumption A2 is sufficient to solve
(10) and H = B((CB)TCB)−1(CB)T is an appropriate choice.
Once H is computed, the matrices

T := I−HC (11)

A0 := A−HCA︸ ︷︷ ︸
Ah

−L1C (12)

can be defined, where L1 ∈R
n×p is design freedom chosen

to make A0 Hurwitz. Finally

L2 := A0H (13)

and the gain L := L1 +L2.
Remarks:

• The approach in this paper can tolerate the presence of
stable invariant zeros associated with the triple (A,B,C)
as indicated in assumption A3. This precludes the use
of the strong stability approach in [3].

• In the original paper [15], the stated conditions
for solving (10)-(13) are that rank(CB) = rank(B)
and the pair (C,A1) is detectable where A1 = A −
B
(
(CB)TCB

)−1
(CB)TCA. It is argued in [18] these are

equivalent to A2 and A3.

If e(t) = x(t)− x̂(t), using the plant equation in (1), after
some algebra and simplifications based on (10)-(13), the
error dynamics can be written as

ė(t) = A0e(t)+TAδ e(t)+TAδ(x(t)− e(t))

= A0e(t)+TAδ x(t) (14)

The choice of G in (7) suggested in this paper is

G := B2

(
(CB)TCB

)−1
(CB)T (15)

where the existence of the inverse is guaranteed by assump-
tion A2. This choice of G is different to the suggested form
in [8], and the non-square term B2 must be included here to
account for the fact that CB ∈R

p×m, where m > l. Suppose a
control law can be designed to force σ = σ̇ = 0 for all time.

The equivalent control signal νeq(t) necessary to maintain
sliding is obtained from the equation σ̇ = 0 [10]. Taking the
time derivative of equation (7) yields

σ̇(t) = Gẏ(t)+Fx̂(t) (16)

and substituting from equation (5) into the above, and
equating σ̇(t) = 0, results in the expression

νeq(t) =−(GCBw)
−1
(
Fx̂(t)+GC(A+Aδ)x(t)

)
(17)

under the assumption det(GCBw) 6= 0. With the choice of
G in (15), GCBw = B2WBT

2 and with the assumption that
e(t) = x(t)− x̂(t), the expression in (17) becomes

νeq(t)=−(B2W BT
2 )

−1
(
Fx(t)−Fe(t)+GC(A+Aδ)x(t)

)
(18)

Substituting (18) into (5) to obtain the sliding dynamics
yields the expression

ẋ(t)=(A+Aδ )x(t)−Bm

(
Fx(t)−Fe(t)+GC(A+Aδ)x(t)

)
(19)

where the matrix

Bm :=

[
B1W BT

2 (B2WBT
2 )

−1

Il

]
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Define two matrices B̃1 =
[

In−l 0
]T

and B̃2 =
[

0 Il

]T

so that
[

B̃1 B̃2

]
= In. Since

Bm =

[
0

Il

]

︸ ︷︷ ︸
B̃2

+

[
In−l

0

]

︸ ︷︷ ︸
B̃1

B1WBT
2 (B2W BT

2 )
−1

︸ ︷︷ ︸
ψ(t)

(20)

the sliding dynamics in (19), can be written as

ẋ(t) = (A− B̃2F +Aδ )x(t)− B̃1ψ(t)Fx(t)+ B̃2Fe(t)

+B̃1ψ(t)Fe(t)− B̃2GCAx(t)− B̃2GCAδ x(t)

−B̃1ψ(t)GCAx(t)− B̃1ψ(t)GCAδ x(t)

= (A− B̃2F − B̃2GCA)x(t)− B̃1ψ(t)Fx(t)

−B̃1

(
ψ(t)GCAx(t)+ψ(t)GCAδ x(t)

)

+(I− B̃2GC)Aδ x(t)+B̃1ψ(t)Fe(t)+B̃2Fe(t) (21)

Combining equations (14) and (21), the closed-loop system
dynamics can be written as
[

ė(t)
ẋ(t)

]
=

[
A0 0

B̃2F Ac − B̃2F

]

︸ ︷︷ ︸
Aa

[
e(t)
x(t)

]

︸ ︷︷ ︸
xa

+Ba∆Ca

[
e(t)
x(t)

]
(22)

where

Ac := (I − B̃2GC)A (23)

Ba :=

[
T 0 0

(I − B̃2GC) −B̃1 −B̃1

]
(24)

Ca :=




0 I

−F GCA+F

0 I


 (25)

and the uncertainty

∆ := diag
[

Aδ ψ ψGCAδ
]

(26)

It is convenient to analyze (22) in the (e, x̂) coordinates. Since
[

e(t)
x̂(t)

]

︸ ︷︷ ︸
x̂a

=

[
I 0
−I I

]

︸ ︷︷ ︸
T̃

[
e(t)
x(t)

]
(27)

it follows

Ãa := T̃ AaT̃−1 =

[
A0 0

Ac −A0 Ac − B̃2F

]
(28)

B̃a := T̃ Ba =

[
T 0 0

(I − B̃2GC)−T −B̃1 −B̃1

]
(29)

C̃a := CaT̃−1 =




I I

GCA GCA+F

I I



 (30)

and in the (e, x̂) coordinates, equation (22) can be written as

˙̂xa(t) = Ãax̂a(t)+ B̃a∆C̃ax̂a(t) (31)

Now in order to determine that the term ψ(t) in (20) is

bounded, note that ψ(t) = B1B
†
2(t), where B

†
2(t) is a right

pseudo inverse of B2. Using the pseudo inverse properties in

[17], and arguing as in [1], there exists a scalar γ0 such that

‖B
†
2(t)‖ := ‖WBT

2 (B2W BT
2 )

−1‖< γ0 (32)

for all combinations of 0 < wi ≤ 1. Therefore

‖ψ(t)‖ ≤ γ1γ0 (33)

where γ1 = ‖B1‖, which is assumed to be small.

A4: It is assumed that the parametric uncertainty Aδ in
the system matrix A is bounded so that

‖∆‖< γa (34)

A. Closed-loop Stability Analysis

In the nominal case, i.e. when K = 0, and ∆ = 0, equation
(31) is stable by design. However for the fault/failure cases,
stability needs to be established. To this end define

γ2 = ‖G̃a(s)‖∞ (35)

where

G̃a(s) := C̃a(sI − Ãa)
−1B̃a (36)

Proposition 1: During fault or failure conditions, for any
0 ≤ ki < 1, the closed loop system will be stable if:

γ2γa < 1 (37)

Proof: The closed-loop system defined in (31), can also be

written as

˙̂xa(t) = Ãax̂a(t)+ B̃aũa(t) (38)

ỹa(t) = C̃ax̂a(t) (39)

where

ũa(t) = ∆ ỹa(t) (40)

In this form, equation (31), can be considered as the feedback

interconnection of the known linear system G̃a(s), and the
bounded uncertain system ∆. According to the small gain

theorem, the feedback interconnection of G̃a(s) and ∆, and
hence equation (31), will be stable if

γ2γa < 1 (41)

and the proof of this proposition is complete.

B. LMI Synthesis

This section considers the synthesis of the design gain L1

and F so that (37) is satisfied. For the triple (Ãa, B̃a,C̃a) the
Bounded Real Lemma (BRL) can be expressed in the form:

‖G̃a(s)‖∞ < γ2 where

G̃a(s) := C̃a(sI − Ãa)
−1B̃a (42)

iff there exists a s.p.d matrix X ∈ IR2n×2n such that




ÃaX +XÃT

a B̃a XC̃T
a

B̃T
a −γ2

2 I 0

C̃aX 0 −I



< 0 (43)

Here it is assumed that X = diag(X1,X2) where the two sub-
blocks X1,X2 ∈ IRn×n are s.p.d. As a result of this assumption

C̃aX =




X1 X2

GCAX1 GCAX2 +Y

X1 X2



 (44)
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where Y := FX2. The top left subblock in (43)

ÃaX +XÃT
a =

[
A0X1 +X1AT

0 X1AT
c −X1AT

0
AcX1 −A0X1 Θ

]
(45)

where Θ=AcX2+X2AT
c − B̃2Y −Y TB̃T

2 . Also write A0 = Ah−
L1C where Ah is from (12). To create a convex representation,
define the observer gain

L1 := β BE (46)

where β is a positive scalar and E ∈ IRm×p is chosen
so that (Ah,B,EC) is minimum phase. This is possible
if (A,B,C) is minimum phase [11]. Then as argued in
[11] it is possible to find an s.p.d matrix P which has a

structure P = NTdiag(P1,P2)N such that PB = (EC)T, where
N ∈ IRn×n is invertible and depends on E and the s.p.d.

matrices P1 ∈ IR(n−m)×(n−m),P2 ∈ IRm×m. The matrix N is
in fact associated with a linear change of coordinates to
force the triple (Ah,B,EC) into the canonical form proposed

in [11]. Define X11 = P−1
1 and X12 = P−1

2 . It follows that

L1C = β BEC = β BBTP and so if

X1 := P−1 = N−1diag(X11,X12)(N
−1)T > 0 (47)

then L1CX1 = β BBT and A0X1 = AhX1−β BBT. It follows the
BRL in (43) is affine with respect to the decision variables
X11,X12,X2,β ,Y and so the synthesis problem is convex.

For the nominal system in (6), when W = I and Aδ = 0,
the matrix F must be chosen to stabilize (A−BνF). Since
(A,Bν) is assumed to be controllable, an LQR formulation
will be adopted where F is chosen to minimize

J =

∫ ∞

0
(xT Qx+νT Rν)dt

where Q and R are symmetric positive definite design ma-
trices. This problem can be posed as an LMI optimization
Minimize trace(X−1

2 ) subject to
[

AX2 +X2AT −BνY −Y T BT
ν (QX2 −RY)T

QX2 −RY −I

]
< 0 (48)

For a given L2-gain γ2, the overall optimization problem
proposed in convex form becomes:

Minimize trace(Z) with respect to the decision variables
X11,X12,X2,β ,Y subject to

[
−Z In

In −X2

]
< 0 (49)

together with (43), (48), (47) and 49. The matrix Z is a slack

variable which satisfies Z > X−1
2 and therefore trace(Z) ≥

trace(X−1
2 ). Finally the gain can be recovered as F =YX−1

2 .

C. ISM Control Laws

The integral sliding mode control law, which is based on the

nominal system (6) and applied in (6) is defined as

ν(t) = νl(t)+νn(t) (50)

where the linear part, which is responsible for the nominal
performance of the system is given by

νl(t) =−Fx̂(t)−GCAx̂(t) (51)

and the nonlinear part, which induces sliding is defined as

νn(t) =−ρ
σ(t)

‖σ(t)‖ for σ(t) 6= 0 (52)

where ρ is a suitable scalar gain.

Now in the sequel, it is demonstrated that the control law

defined in (50) satisfies the standard reachability condition
[10]. To demonstrate this, by using the relation K = I −W ,
equation (16) can be written as

σ̇(t) = GC(A+Aδ )x(t)+(B2WBT
2 )ν(t)+Fx̂(t)

= GC(A+Aδ )x(t)+ν(t)−(I−B2WBT
2 )ν(t)+Fx̂(t)

= GC(A+Aδ )x(t)+ν(t)−(B2(I−W )BT
2 )ν(t)+Fx̂(t)

= GC(A+Aδ )x(t)+ν(t)−B2KBT
2 ν(t)+Fx̂(t) (53)

Substituting the control law (50)-(52), into the expression
above and exploiting the fact that e(t) = x(t)− x̂(t) yields

σ̇(t) = GCAδ x̂(t)+GCAδ e(t)+GCAe(t)

−(B2KBT
2 )(νl +νn)−ρ

σ(t)

‖σ(t)‖ (54)

Proposition 2: The control law defined in (50), ensures that
the system trajectories remain on the sliding surface, if the

modulation gain ρ(t) is defined as

ρ(t)>
‖GCAδ‖‖x̂‖+‖νl‖+(‖GCA‖+‖GCAδ‖)‖e‖+η

(1−λ0)
(55)

where η is a positive design scalar, and the fault associated
with the tuple (k1, . . . ,km) is assumed to belong to a set D =
{(k1, ...,km) : λmax(B2KBT

2 )< λ0 < 1}.
Proof: Taking the time derivative of the candidate Lyapunov
function V = 0.5σT σ and substituting from (54) yields

V̇ = σT
(
GCAδ x̂(t)+GCAδ e(t)+GCAe(t)

−(B2KBT
2 )(νl +νn)−ρ

σ(t)

‖σ(t)‖
)

≤ ‖σ‖
(
‖GCAδ‖‖x̂‖+(‖GCAδ‖+ ‖GCA‖)‖e‖

+‖B2KBT
2 ‖‖νl‖−ρ(1−‖B2KBT

2 ‖)
)

(56)

Since ‖B2KBT
2 ‖ ≤ 1, for a fault represented by (k1, . . .km) ∈

D , if the expression for ρ(t) in (55) holds, the inequality
(56) can be written as

V̇ ≤−η‖σ‖=−η
√

2V (57)

which is a standard reachability condition. This guarantees
that a sliding motion is maintained for all subsequent time.

Finally the physical control law u(t) is obtained by substi-
tuting equations (50)-(52) into (4) to obtain

u(t) = BT
2 (−Fx̂(t)−GCAx̂(t)−ρ

σ(t)

‖σ(t)‖) (58)

In order to get an expression for the upper bound of the
unknown signal e(t) in (54), equation (14) can be written as

ė(t) = (A0 +TAδ)e(t)+TAδ x̂(t) (59)
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Suppose ‖Aδ‖ is sufficiently small that for the Lyapunov
matrix P0 satisfying P0A0 + AT

0 P0 = −I, the uncertainty
satisfies

2‖P0‖‖TAδ‖< 1− µo where µo > 0 (60)

Then for V0 = eT P0e

V̇0 = e(P0A0 +AT
0 P0)e

T + 2eT P0TAδ e+ 2eT P0TAδ x̂

≤ −‖e‖2 + 2‖e‖2‖P0‖‖TAδ‖+ 2‖e‖‖P0‖‖TAδ‖‖x̂‖
and therefore

V̇0 ≤ −µ0‖e‖2 +(1− µ0)‖x̂‖‖e‖

≤ − µ0

λmax(P0)
V0 +

1− µ0√
λmax(P0)

‖x̂‖
√

V0 (61)

Define Ṽ =
√

V0, then (61) implies

˙̃
V ≤− µ0

2λmax(P0)
Ṽ +

1− µ0

2
√

λmax(P0)
‖x̂‖ (62)

For notational convenience write this as

˙̃
V ≤−m0Ṽ +m1‖x̂‖ (63)

where m0, and m1 are appropriately defined positive scalars.
Define

ṙ(t) =−m0r(t)+m1‖x̂(t)‖ (64)

Then if r(0)> Ṽ (0), it can be shown that r(t)> Ṽ (t) for all
t ≥ 0 and consequently

r(t)≥
√

λmax(P0)‖e(t)‖ for t ≥ 0 (65)

Therefore r(t) can be used as an upper bound on the
unknown signal e(t) in the control law. Clearly the filter
defined in (64) can be realized in real time, and hence r(t)
can be used as an upper bound on the unknown estimation
error e(t). Finally the modulation gain associated with the
unit vector in the control law in (54) is given by

ρ(t)=
‖GCAδ‖‖x̂‖+‖νl‖+r(t)(‖GCA‖+‖GCAδ‖)/‖P0‖+η

(1−λ0)
(66)

where r(t) is given by (64).

IV. SIMULATIONS

The civil aircraft benchmark model from [2] will be used
in simulation to demonstrate the effectiveness, and fault

tolerant nature of the proposed scheme. To design the linear
component of the controller in (51), the aircraft model has
been linearized around an operating condition of straight and
level flight with a mass of 263,000 Kg, 92.6m/s true airspeed,
and at an altitude of 600m based on 25.6% of maximum
thrust and at a 20 deg flap position. The linearized state

space model is given in [2].
In the simulations, only longitudinal control is considered.
The system states are x(t) = (q,Vtas,α,θ )T where q is the
pitch rate (rad/sec), Vtas is the true airspeed (m/sec), α is
the angle of attack (rad) and θ is the pitch angle (rad).
It is assumed that the measured system outputs available
for use in the control law are y = Cpx(t) = (q,Vtas,θ )

T .

The available control surfaces for the longitudinal control
are δlong = [δe,δs,δepr]

T which represent elevator deflection

(rad), horizontal stabilizer deflection (rad) and aggregated
longitudinal EPR (i.e. the four individual engine pressure
ratios (EPRs) aggregated to produce one control input). A
separate inner-loop Proportional Integral (PI) controller to
held true airspeed Vtas at a constant level is used which
uses the error in speed to manipulate EPR. It is assumed

the engines are fault free. Rewrite the linear model

ẋ(t) = Apx(t)+Bsu1 +Beδepr (67)

y = Cpx(t) (68)

where u1 = [δe,δs]
T . The matrices Bs ∈R

4×2 and Be ∈R
4×1

are the input distribution matrices associated with [δe,δs]
T

and δepr respectively. Define a new state associated with the
PI controller as

ẋr = Rr1
−C1x (69)

where Rr1
(t) is the reference signal for Vtas tracking and

C1 =
[

0 1 0 0
]
. The inner loop PI control is given by

δepr = Kp(Rr1
(t)−C1x(t))+Kixr(t), where the PI gains are

chosen as Kp = 0.2, and Ki = 0.1. Augmenting the plant in
(67) with xr(t) yields
[

ẋr

ẋ

]
=

[
0 −C1

BeKi (Ap −BeKpC1)

]

︸ ︷︷ ︸
A

[
xr

x

]

︸ ︷︷ ︸
xa(t)

+

[
0
Bs

]

︸ ︷︷ ︸
B

u1 +

[
I

BeKp

]

︸ ︷︷ ︸
Br

Rr1

(70)
The matrix B needs to be partitioned according to (2)
and further scaled to ensure that B2BT

2 = Il , where in this
example l = 1. It is assumed that xr(t) is available to

the control law for flight path and therefore y = Cxa(t)
where C = diag(1,Cp). The fault tolerant control design

will now be based on the system in (70) governed by the

triple (A,B,C). It can be verified Assumption A2 holds for
this example, since rank(CB) = rank(B) = 2. The triple
(A,B,C) has one stable invariant zero. The controlled
output for the FPA tracking is given by yc(t) = Ccx(t),
where Cc =

[
0 0 0 −1 1

]
. To introduce potential

faults which cause changes to the aerodynamics to the
aircraft, a 10% change in the aerodynamic coefficients
(due to airframe damage) is considered in the simulation.
For FPA tracking, the linear part of the virtual control
νl(t) in (51) is augmented with a feedforward term
LrRr2

(t) yielding νl(t) = LrRr2
(t) − Fx̂(t) − GCAx̂(t)

where Lr = Cc(BνF − A)−1Bν = 6.2281 and Rr2
(t)

is the FPA reference signal. The choice of G

using (15) is G =
[

0 0.6694 0 0
]
. For the

observer gain L1 in (46), E has been chosen such
that ECB = I, and (Ah,B,EC) is minimum phase
with stable zeros at {−1.0000,−0.6451,−1.0000}.
Choosing Q = diag(0.02,0.5,0.2,0.1,20) and R = 1
from (48) the feedback gain matrix F , obtained

by solving the associated LMIs is given by
F =

[
−0.0467 7.3038 −0.9965 −0.0371 10.9671

]
. In

the closed-loop stability analysis the engines thrust is
assumed to be fault free. Based on this assumption, using
a numerical search, it can be verified using (26) that the
value of γa in (34) is γa = 0.2314. To satisfy the closed-
loop stability condition in (37), the scalar γ2 must satisfy

γ2 < 1
0.2314

= 4.3215, which is satisfied through the design
of F and L1 in the proposed LMIs.
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A. Simulation Results

The effectiveness of the proposed FTC scheme is tested by
considering the performance of the linear civil aircraft model,
nominally (when there is no fault), and then through some
severe failure tests. To smooth the discontinuity due to the

nonlinear control term in (52), a sigmoidal approximation of
the form σ

‖σ‖+δ
has been used, where the value of the positive

scalar δ is chosen as δ = 0.01. The value of the modulation
gain is chosen here as ρ = 1. In Figure 1, good tracking
of the command signals is achieved. The initial conditions
for the plant and observer are taken as x0 = [0,0,0,0]T , and
x0obs

= [0,0,0,0,0.5(π/180)]T respectively. Figures 1 shows

the system performance, when an elevator jams at some
offset position. It can be seen that the proposed scheme
makes the horizontal stabilizer more active to keep the
performance close to nominal, by maintaining the sliding
motion. Also Figure 1 shows fast observer error convergence
to zero.

V. CONCLUSION

This paper introduces a new fault tolerant scheme for sys-

tems where only the system output information is available.
Furthermore the scheme does not assume knowledge of the
faults and failures from an FDI scheme. A linear unknown
input observer is incorporated in the proposed FTC scheme
to estimate the states, for use in the virtual control law. A
control allocation scheme is also incorporated for distributing
the virtual control effort. The closed-loop stability analysis

allows some level of perturbation in the system matrix (due to
airframe damage for example), and a convex representation
of the synthesis problem is formulated. Simulation results on
a benchmark aircraft model show good results.
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