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Simulation of open quantum dynamics in Markovian environment
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Abstract

Although conditions for controllability of quantum sys-
tems are well studied, most of them consider the infi-
nite time horizon, i.e., whether certain operations are
possible given enough time. In this article, I propose a
framework studying all the possible operations one can
generate at given finite time on a quantum system in
Markovian environment. I give a complete characteri-
zation of the operations one can simulate at any given
time on a qubit in unital Markovian environment and
discuss possible extensions.

1. Introduction

Simulation of quantum systems have been an im-
portant subject since it was first suggested by Feyn-
man in early 1980’s [1]. Now for closed quantum sys-
tem, the condition for universal quantum simulation and
computation is well understood, basically for a finite-
dimensional quantum system, the repeated application
of a small set of basic coherent control operations al-
lows one to enforce any desired unitary transformation
on the system [2, 3]. However the real systems are usu-
ally coupled to the environment, which leads to the open
quantum dynamics. One fundamental question thus is
what coherent control can do on open systems, i.e.,
given a system coupled to the environment, what kind
of operations one can generate on the system when one
can only apply coherent control on the system? More
specifically, considering the open system described by
the Lindblad equation

o1
p=—ilH(),p]+ ) Yap(FapFg — E{F[}Fmp}), ()
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where H = H is the effective system Hamiltonian(the
natural Hamiltonian possibly renormalized by a Lamb-
shift term), {F } are the basis for the space of bounded
traceless operators on the system. I' =TT = {Yap} is

a positive semidefinite matrix. And suppose we have
the ability to change the Hamiltonian H(z) to gener-
ate any unitary operators on the system, then at a given
time T, what is all the possible operations one can sim-
ulate on the system? This problem of finding all the
possible operations one can simulate at any given time
is closely related to the time optimal control problem,
i.e., to find out the time optimal way generating a de-
sired operator, which is another important subject and
quite a few works have been done on closed quantum
systems[6, 7, 8, 9, 10, 11, 12], and on state transfer-
ring of some open quantum systems[13, 14, 15]. In
this article I will study the finite time simulation, i.e.,
to find all the possible operations one can simulate at
any given time with open-loop coherent control. T will
give a complete characterization of the operations that
one can generate on a single qubit in unital[18] Marko-
vian environment and discuss possible extension along
this direction. The result is expected to be helpful for
studying quantum noise processes [16] and quantum er-
ror correcting [17].

The article is organized as following: in section 2,
some mathematics tools on majorization are reviewed;
in section 3, the simulations of a qubit in unital Marko-
vian environment is studied, and a complete character-
ization of the operations one can simulate by applying
coherent control on the qubit is given; section 4 makes
some extensions and concludes.

2. Preliminary

In this section, I give a brief review on majoriza-
tion, interested readers can find more details in [25, 26].

For an element x = (x1,...,x;)” of R¥ we denote by
xb = (x{,..,x;)" a permutation of x so that x/ > x! if
i<j,wherel <i j<k.

Definition 1 (majorization) A vector x € R* is ma-
jorized by a vector y € R¥ (denoted x < y), if
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ford=1,...,k—1, and the inequality holds with equal-
ity when d = k.

Proposition 1 x < y iff x lies in the convex hull of y
and all its permutations P;y, where P; are permutation
matrices.

Proposition 2 (additive) If x! < y! and r! < s!, then
x4t <yt sk,

This can be easily proved from the definition.
Definition 2 (log majorization) For 0 < x,y € R¥, xis

log majorized by y (denoted x <, ), iff logx < logy.
This is equivalent to requiring

T
[T <11

= A

3

ford =1,...,k—1, and the inequality holds with equal-
ity when d = k.

Proposition 3 (log additive) If xh < log yL and r! <log
st, then [(xh)i(r1)i] <1og [(¥1)i(s1)] (Here we use [x;] to
denote a vector whose ith entry is x;).

This is a direct extension of Proposition 2.

Proposition 4 [2]] For any matrices M and N,
[5i(MN)] <i0g [sil(M)sil(N)], here we use s;(M) to de-
note the ith singular value of M.

3. Simulation of open quantum system

Let p denote the density matrix of an open quantum
system, it evolves under the Lindblad equation, which
takes the form

pzfi[H(t)ap}+L(p)v “4)
where —i[H, p] is the unitary evolution of the quantum
system and L(p) is the dissipative part of the evolution.

The term L(p) is linear in p and takes the Lindblad form
[20, 24]

|-
L(p) =} Yap(FapFy — 5 {Fg Foup}).
of

where Fg,Fp are linear basis of traceless operators
on the density matrix. For single qubit, we can take
the basis {Fy} as normalized Pauli spin operators
%{Gx,cy,cz} and the coefficient matrix T' = {y,p}
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known as the GKS(Gorini, Kossakowski and Sudar-
shan) matrix [23], is semi-positive definite. For the sin-
gle qubit case, it takes the form

Yo Yo Y
=1 % % %
Yo Yo Ye

If the Markovian quantum dynamics is unital, i.e.,
L(I) =0, then for the single qubit case, all the entries of
I" are real numbers[4].

Following [22], we assume that the action of the
control Hamiltonian can be produced on a time scale
fast compared with dissipation. If we denote 75 as the
time scale over which the reservoir correlation func-
tions decay, and 7¢ as the time scale for coherent con-
trol, and Tr as the time scale of the dissipation, then
we are working in the regime of Tp << T¢c << 17, for
example, nuclear magnetic resonance satisfies this con-
dition. We assume that the system is unitarily control-
lable, i.e., any unitary transformation U € SU(2) on
the 2—level system can be produced. Combining these
two assumptions we have that any unitary transforma-
tion can be produced on the system in negligible time
compared to the dissipation. It is convenient to rewrite
the master equation (4) in terms of the Bloch vector
d = (ay,ay,a;)7, where

1 1
p= §I+ i(axcrx +a,0y+a;0;).
Substituting into the master equation (4) and taking the
trace with o; then leads to the equivalent Bloch equa-
tion:

i @ ay
o) -uorn| o |+n ©
az az

where A(t) comes from the transformation of the uni-
tary part —i[H(z),p], since we assume we can produce
any unitary matrix in negligible time, A(¢) can be cho-
sen as any antisymmetric matrix. B and p comes from
the dissipative part L(p), if the dynamics is unital, i.e.,
L(I) =0, then p = 0[4] and

REa
2

which is symmetric with eigenvalues A; > A, > A3:

B

—Tr(D)I,

M= —(U + U3),
Ay = — (1 + u3), (6)
A3 =—( + W),

where L; are eigenvalues of the GKS matrix I" arranged
in decreasing order.



The operator dynamics in the Bloch representation
is just the uplift of the density matrix dynamics, for the
unital case it takes the form

0 =[A(t) +B|O, )

where O is now a 3 X 3 matrix. Now the problem is to
find out all the possible operators O one can generate at
time T under the dynamics [7].

Theorem 1 For unital markovian master equation as in
Eq.( 4), all the operators one can generate at time T,
written in the Bloch representation (as in Eq.(7)), are

Kiexp[diag(cy,ca,c3)|Ka,
where K1,K, € SO(3) and (c1,¢2,¢3) < (A1,A2,A3)T.

To show this, first approximate the function A(¢) by
a piece-wise constant function, and use the fact that

n_ e(A+B)5t

b

the evolution of the operator can then be approximated
arbitrary close by alternating between the dissipative
part and the unitary control

O(T) = Sy41€" 8,18, - S3¢"25,e"151 Sy,

where S; = ¢% € SO(3),i € {0,1,--- ,n} are generated
by the unitary part and takes negligible time.
Rearrange the above sequence

O(T) :S11+leBtnSn€Bt"_1Sn_1 .- 'S3€Bt2526311SISO

n+1

:(H Sl.)e(ﬂ,"zl ST Bta ([T S:)
=1

ST ST By (T2 1)

®)

T T
o o(5251)" Ba$) Sy ) BiSig,

n—1

—g . es;,TBrns; es;[ \Btu_1S,
n

/1T /T /
. .esz BtZSZeSI Btlsl SO

T T
Now let M, = €52 8252 and M, = &5 B151 apply theo-
rem 4, we get

(5 (MaM)] =10 [si (Ma)s} (M1))],

where [sll (M5)] and [sll (M,)] are singular values of M,
and M respectively:

[ (My)] = (M2, P22, 22,

s ()] = (111,21, ean)
l i b bl
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50 [si(MaM))] <10 (ell(11+12)’elz(llJrlz)’els(flﬂz)). Us-
ing the log additive property of majorization( Proposi-
tion 3) and applying it recursively, we get

O(T) = S, CSo.

where [5;(C)] <iog
i.e.,

(eMT T T where T = Yo,

C = Ky expldiag(ci,c2,¢3)|Ka
while K1,K> € SO(3) and

(c1,02,¢3) < (A1, 42, 43)T.

Absorb S; 41 and Sp into K and K; respectively, at time
T the operators we can generate are of the form

Kjexpldiag(ci,c2,¢3)|Ka

where
(c1,¢2,¢3) < (A1,A2,43)T.

This is also a complete characterization, i.e., any oper-
ator satisfies this condition can be generated at time T:
suppose O = K| exp|diag(ci,ca,c3)]K, while

(c1,62,¢3) < (A1, A2, M3)T,

then (cy,c2,¢3) lies in the convex hull of the six permu-
tations of (A1, A,,43)T (Proposition 1), i.e.,

gk

(c1,e2,¢3) = ) i Ag (1), Agy(2) Amy(3)) T

i=1

where 0 < ¢¢; <1 and Z?:l a; = 1, m; are permutations
on {1,2,3}, one then can construct a sequence generat-
ing this operator:

T T T T
0= Kl eSG Bt6S6eS5 Bt5Ss . eSZ BtzSzeSI Bt Sy K27

where we choose S;,i € {1,2,3,4,5,6} such that
SiTBS,' = diag(lm(l)’km(Z)’Am@)) and t; = o4 T, easy to
see that this generates the desired operator, which con-
cludes the proof.

The physics of this characterization is that basically
the coherent controls are rotating the dissipative axis, at
each time instant, one can use the coherent controls to
change the dissipative axis thus change the dissipative
rates on different subspaces, but the total effects lie in
some convex hull which is captured by the majorization
condition.

4. Possible extensions and further studies

4.1. Non-unital dynamics on single qubit

We have studied all the possible operators on a
qubit one can simulate by using open-loop coherent



controls in the unital open dynamics and given a sim-
ple and complete characterization. One immediate ex-
tension of this result is to consider a qubit in non-unital
dynamics. There in the Bloch representation

1
B (axo—x +ay0y + asz)a

the Lindblad equation will have an affine term, i.e.,

L
P=3

d ay Ax
o |=B0+B| o |+p  ©
a az

where p = 2(Im(},y),Im(%,),Im(x))T, which is not
zero for non-unital dynamics. In this case, we can in-
clude %1 into the Bloch equation to get a homogenous
linear equation, denote ay = %I , then

ap ap
d | a | __ 0 0 0 0 ay
dr | a _[(O A(t)>+<p B” ay
a az

And the operator dynamics is just the uplift of this equa-

tion,
%N(t)z K 8 A(()t) >+< 2 g )}N(r) (10)

The solution of this equation is

1 0
N(T) = 11
D= jroapas otm )
where O(t) is the solution of equation ( 7), and has
to satisfy the majorization constrain, here O(7) and
O(T — ) are correlated.

4.2. Higher dimension systems

For higher(m > 3) dimensional systems, consider a
basis for traceless operators {Fy } that is Hermitian and
trace orthonormal. Then we can express a density ma-
trix as p = pol + Yo PaFu Where po, py are real num-
bers. If we put py into a vector @, then the master equa-
tion becomes

()= 1A() + Bla+ p (12)
where A(t) and B are (m* — 1) x (m> — 1) matrices, A(t)
is antisymmetric, lies in so(m? — 1) and B is symmetric,
pisa (m*—1)-dimension vector. First consider the case
that p = 0, in this case, the operator dynamics can be
obtained by uplifting the dynamics of d,

d

—O(t) =[A(¢) + B]O

dr (13)
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Using the same argument, one can show that

O(T) = Sl exp[diag(c1 , €y 7Cm27])]SO
where Sy,S) € SO(m* — 1) and
(Clac2a"' ,sz_1> < (}1'17)’2a"' 7a’;n2—1)T7

A; are eigenvalues of B. For the case of p # 0, one can
get a similar expression as equation (11). This gives a
necessary condition on what operators one can simulate
at time 7 for high dimensional systems, but different
from single qubit case, this is not a complete charac-
terization, i.e., not all the operators satisfy this condi-
tion can be generated, as for higher(m > 3) dimension,
coherent controls can not generate the whole group of
SO(m? — 1) (as opposed to the single qubit case, coher-
ent controls can generate the whole SO(3) in the Bloch
representation), so it is not always possible to diago-
nalize B and permuting the diagonal entries. Further
studies are needed for a complete characterization for
higher dimensional systems.

4.3. Beyond open-loop coherent control

While in this article I consider open-loop coherent
controls, one can also consider the closed loop controls
and other possible resources, which is beyond the scope
of this article, interested readers are referred to some
works[4, 5] on those directions.

5. Conclusion

In this article I considered simulation of open quan-
tum system in Markovian environment, particularly
simulation of single qubit for unital quantum dynamics.
With coherent control on system, I studied the possible
operations one can simulate on the system at any given
time. A simple and complete characterization is found
for single qubit in unital quantum dynamics, and possi-
ble extensions on general systems are discussed along
this direction. I hope this result will be helpful in better
understanding open quantum dynamics.
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