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Abstract— This paper discusses the certification of Nesterov’s
fast gradient method for problems with a strongly convex
quadratic objective and a feasible set given as the intersection of
a parametrized affine set and a convex set. For this, we derive a
lower iteration bound for the solution of the dual problem that
is obtained from a partial Lagrange Relaxation and propose a
new constant step-size rule that we prove to be optimal under
mild assumptions. Finally, we apply the certification procedure
to a constrained MPC problem and show that the new step-size
rule improves performance significantly.

I. INTRODUCTION

The motivation of this work comes from model predictive
control (MPC). In MPC one utilizes a mathematical model of
the plant to determine an optimal sequence of inputs over a fi-
nite prediction horizon according to a specified objective [1].
The key strength of MPC is that physical constraints on the
plant’s state and the control inputs can be incorporated. For
linear, discrete-time systems with convex constraints on both
the inputs and the states and a convex objective, the MPC
problem is a convex optimization problem. In a receding
horizon control scheme, where only the first element of the
sequence of optimal inputs is applied to the plant, a solution
to this problem is required at every sampling instant when
new state information is available. So, more specific the
MPC problem can be considered a multi-parametric convex
optimization problem with the state as the parameter.

Convex optimization problems are solved by iterative
methods. This makes it challenging to deploy them in control
applications where the sampling rate of the feedback loop
imposes hard bounds on the solution time and only limited
computational resources are available. This paper addresses
the issue on how we can determine a priori a bound on the
number of iterations needed by a first order method to return
a solution with certified approximation error for any state
within a compact set. We refer to this as the computational
complexity certification problem.

In the authors’ previous work this problem was targeted
for the case of a convex quadratic objective and input
constraints only [2]. Therein an optimal first order method,
called the fast gradient method by Nesterov [3, §2.2], was
introduced and lower iteration bounds for cold- and warm-
starting derived. As shown in [2] the bounds are practically
relevant for many real-world problems and [4] reports a first
application of this certification scheme for power converters.
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at ETH Zürich, e-mail: richters|morari@ee.ethz.ch. C.N. Jones
is with the Automatic Control Laboratory at EPFL Lausanne, e-mail:
colin.jones@epfl.ch.

In [5] the certification problem is considered for general
conic convex programming using an interior point method.
The derived iteration bounds are off from the practically
observed number of iterations by two to three orders of
magnitude. More details and a discussion of the certification
issues of other methods can be found in the review in [2].

Since the fast gradient method relies on gradient infor-
mation only, it can exploit sparsity in the problem data. In
many cases it shows improved convergence over steepest
descent while having the same complexity per iteration. The
bottleneck of the method is the projection on the feasible set
that has to be performed in every iteration. Sets for which this
is viable with low computational cost are denoted as simple
sets and include, for example, the Euclidean ball, simplex,
box, hyperplane, halfspace, and some proper cones [6, §8.1].

MPC problems often come with simple input and state
constraints making the fast gradient method a viable solu-
tion method although care must be taken of the equality
constraints that stem from the state update equations. If only
input constraints are considered, the equality constraints can
be eliminated by expressing the states as a linear function of
the initial state and the sequence of inputs (condensing) [2].
The situation is more involved if state constraints are im-
posed since the simplicity property of the feasible set – which
now is the intersection of an affine set and a simple set – is
lost and cannot be recovered by condensing.

Motivated by the previous discussion we will use Lagrange
Relaxation [7] to make the fast gradient method applicable
for state and input constrained MPC and then derive lower
iteration bounds for the dual problem. Since we aim to keep
the results in this paper not solely restricted to MPC, we will
introduce a more general problem setup next.

Problem Setup and Notation

This paper investigates the computational complexity cer-
tification problem for the multi-parametric convex problem

f∗(y) , min
z∈K

f(z) =
1

2
zTHz + gT z (1)

s.t. Az = b(y) ,

which encompasses both offset/non-offset free linear
quadratic MPC regulation and tracking problems [1].

In (1) a convex quadratic function f : Rn → R is mini-
mized over the feasible set given as the intersection of a
parametrized affine set and a closed, convex and compact
set K ⊆ Rn. The parameter y from the compact set Y ⊆ Rp
changes the right hand side of the equality constraint via the
map b : Rp → Rm, while matrix A is in Rm×n.
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Contribution and Outline

The main contribution of this paper is the derivation and
– to the best of our knowledge – first computation of lower
iteration bounds for multi-parametric convex problems (1)
in a Lagrange Relaxation framework when using the fast
gradient method. In order to make the computation of the
bounds tractable for high dimensions (n > m� 1), we will
resort to conservatism where required. In turn, this will result
in lower iteration bounds that, as shown in the example in
Section V, may be far off the observed number of iterations.
Still, it is the first time that such bounds are reported and a
starting point for further research in this field.

We start our investigations with a short review of Lagrange
Relaxation and related work in Section II. Section III gives a
precise definition of the computational complexity certifica-
tion problem and, for the sake of clarity, states all the basic
assumptions that hold throughout the paper. Section IV dis-
cusses the required steps to compute lower iteration bounds
in detail. As an important ‘side product’ of this investigation
we will improve an established step-size rule and show that
the new rule is optimal under mild assumptions. Finally,
Section V gives a road map for certifying constrained MPC
problems and provides first numerical results which show
that the new step-size rule can improve the performance of
the fast gradient method significantly.

II. LAGRANGE RELAXATION AND RELATED WORK

In Lagrange Relaxation one defines the dual function as

d(λ; y) , min
z∈K

f(z) + λT (Az − b(y)) , (2)

with multiplier λ ∈ Rm. Note that we explicitly leave the set
constraint z ∈ K in this definition, an approach called partial
elimination [8, §4.2.2]. The dual problem to (1) is then to
maximize the concave dual function

d∗(y) , max
λ∈Rm

d(λ; y) . (3)

We denote the convex set of dual optimal solutions as

Λ∗(y) = arg max
λ∈Rm

d(λ; y) , (4)

and refer to λ∗(y) ∈ Λ∗(y) as a Lagrange multiplier. If
strong duality holds, we have f∗(y) = d∗(y) and the primal
optimizer can be recovered by z∗(λ∗(y)) where

z∗(λ) ∈ arg min
z∈K

f(z) + λT (Az − b(y)) , (5)

and Az∗(λ∗(y)) = b(y) [9, Prop. 5.3.3].
Thus, Lagrange Relaxation allows us to solve (1) via its

dual (3), which we will solve with the fast gradient method
in this paper. In order to do so, the gradient ∇d (λ; y) will
be obtained according to the next theorem.

Theorem 1 ([8, Prop. 6.1.1]): If z∗(λ) in (5) is unique
for all λ ∈ Rm, the dual function d(λ; y) is continuously
differentiable with gradient ∇d (λ; y) = Az∗(λ)− b(y).

So, in order to compute the gradient ∇d (λ; y), we first
need to solve problem (2), which is sometimes called the
inner problem in view of the outer problem (3).

In [10] the computational complexity of a similar setup
is investigated. For the case of a general smooth, convex
function f and a simple set K the authors derive lower
iteration bounds for an Augmented Lagrangian approach
that is used to ensure continuous differentiability of the
dual function without the assumption made in Theorem 1
(see e.g. [8, §4.2]). They assume that the inner problem is
solved by Nesterov’s fast gradient method whereas the outer
problem is solved by standard steepest ascent. For this setup
the derived bounds on the overall number of fast gradient
iterations hold under inexact gradients that emerge from
suboptimal solutions of the inner problem. A guess-and-
check procedure is provided to circumvent the computation
of the distance between the dual starting iterate and the set
of Lagrange multipliers, which is an important entity for the
computation of lower iteration bounds in this setting.

Another recent work on certification is [11] which investi-
gates the fast gradient method for convex problems in finite
and infinite dimensional spaces. It applies smoothing [12] to
make the dual function continuously differentiable and adds
another smoothing term rendering the dual function strongly
concave. Based on this double smoothing the authors derive
lower iteration bounds on the required fast gradient iterations
to obtain a nearly primal feasible, suboptimal solution where
the cost of solving the inner problems is neglected.

Note that neither [10] nor [11] consider multi-parametric
problems, such as encountered in MPC, or actually compute
lower iteration bounds. Also, the guess-and-check procedure
in [10] is inappropriate in real-time environments.

III. GENERAL ASSUMPTIONS AND DEFINITIONS

We will state the computational certification problem in
terms of a dual ε-solution and a lower iteration bound.

Definition 1 (Dual ε-Solution): Fix any parameter y ∈ Y.
For a specified ε > 0, a dual ε-solution λε ∈ Rm for the
dual problem (3) satisfies d∗(y)− d(λε; y) ≤ ε.

Definition 2 (Lower Iteration Bound): We denote imin a
lower iteration bound if for any number of iterations of
an iterative solution method, i ≥ imin, a dual ε-solution is
retrieved for every parameter y ∈ Y and a common ε > 0.

Definition 3 (Computational Complexity Certification):
Consists in finding a lower iteration bound imin.

Remark 1: We assume that an approximate primal solu-
tion is obtained from z∗(λε) according to (5). By nature
of the dual scheme, this solution is primal infeasible with
respect to the equality constraint in (1) in general.
Without exception we assume from here on for problem (1):

Assumption 1: Hessian H is positive definite.
Assumption 2: Matrix A has full row rank.
Assumption 3: For all y ∈ Y a Lagrange multiplier λ∗(y)

exists and strong duality holds.
Assumption 4: Inner problem (2) can be solved exactly.
Remark 2: Assumption 3 holds true, e.g., if set K is a

polytope and a feasible point exists [9, Prop. 5.3.6], whereas
Assumption 4 is satisfied for many practical MPC problems,
see Section V for an example. Also note that some of the
results later in the paper require additional assumptions.
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IV. COMPUTATION OF A LOWER ITERATION BOUND FOR
THE FAST GRADIENT METHOD

In this section we will derive a lower iteration bound for
the solution of the outer problem (3) when using the fast
gradient method. We will discuss the computation of the
entities that define this bound and reveal a new step-size
rule that can considerably improve performance.

The considered fast gradient method in Algorithm 1 is a
variant of the constant step-size scheme II in [3] where the
Lipschitz constant L of the gradient ∇d (λ; y) determines the
step-size in line 2. It can be computed as pointed out next.

Theorem 2 ([12, Theorem 1]): Let λmin(H) be the small-
est eigenvalue of the Hessian H . Then for each parameter
y ∈ Y it holds that

‖∇d (λ1; y)−∇d (λ2; y)‖ ≤ L ‖λ1 − λ2‖ , (6)

for any λ1, λ2 ∈ Rm with L = ‖A‖2/λmin(H), where ‖A‖
denotes the maximum singular value of matrix A.

The Lipschitz constant L is also a crucial entity in the
computation of the lower iteration bound as shown next.

Theorem 3: Assume that for all parameters y ∈ Y the
initial iterate is chosen as λ0 = 0. A lower iteration bound
according to Definition 2 for the fast gradient method in
Algorithm 1 is given by

imin = max

{⌈
2

√
L

ε
∆d − 2

⌉
, 0

}
,

where ∆d is defined as

∆d , max
y∈Y

min
λ∗(y)∈Λ∗(y)

‖λ∗(y)‖ . (7)

Proof: Follows from Theorem 2.2.3 in [3].
In view of Theorem 2 we conclude that the only missing

entity to compute a lower iteration bound imin is ∆d. We
will discuss this issue in detail in Section IV-B. Before we
will improve the Lipschitz constant given by Theorem 2.

A. Computing a Tight Lipschitz Constant

We will show in this section that under mild assumptions
on the problem data we can compute a Lipschitz constant
such that for some pair (λ̄1, λ̄2) inequality (6) is tight. Now,
the smaller the Lipschitz constant, the larger the step-size
and the smaller the lower iteration bound (cf. Theorem 3).
Hence, this investigation is crucial for the performance of
Algorithm 1 but also from a certification point of view.

We start with an important observation: Let us define a
change of variables for problem (2), i.e. z = Pw with
invertible matrix P ∈ Rn×n. According to Theorem 1 we
have ∇d (λ; y) = APw∗(λ) − b(y) = Az∗(λ) − b(y),
however, the Lipschitz constant according to Theorem 2
changes, since in general we have

‖A‖2

λmin(H)
6= ‖AP‖2

λmin(PTHP )
. (8)

By minimizing the right hand side of (8) over all invertible
matrices P we can get the smallest Lipschitz constant L∗

under a linear change of variables. This problem can be

Algorithm 1 Fast Gradient Method for the Dual Problem (3)
Require: Initial iterate λ0 ∈ Rm, µ0 = λ0,

α0 =
√

5−1
2 , Lipschitz constant of the gradient L

1: for i = 1→ imin do
2: λi+1 = µi + 1

L∇d (µi; y) {by Theorem 1}
3: αi+1 = αi

2

(√
α2
i + 4− αi

)
4: βi = αi(1−αi)

α2
i +αi+1

5: µi+1 = λi+1 + βi(λi+1 − λi)
6: end for

cast as a convex semi-definite program following [13, §3.1].
But L∗ can also be obtained analytically. In order to show
this we require the following lemma.

Lemma 1: It holds that

min
P invertible

‖AP‖2

λmin(PTP )
= ‖A‖2 .

Proof: For all invertible matrices P we have

λmin (PPT )wTAATw ≤ wTAPPTATw, ∀w ∈ Rn. (9)

This implies λmin (PPT ) ≤ ‖AP‖2 / ‖A‖2 and thus the
lower bound ‖A‖2 of the objective. It remains to note that
P = I attains the lower bound.

Theorem 4: The smallest Lipschitz constant of the gradi-
ent ∇d (λ; y) under a linear change of variables is

L∗ =
∥∥∥AH− 1

2

∥∥∥2

.

Proof: Let P = H−
1
2S, S invertible, and note that

min
P invertible

‖AP‖2

λmin(PTHP )
= min
S invertible

∥∥∥AH− 1
2S
∥∥∥2

λmin(STS)
,

which by Lemma 1 proves this theorem.
The next lemma indicates under which circumstance L∗

can be smaller than Lipschitz constant L of Theorem 2.
Lemma 2: If L∗ is the Lipschitz constant given by Theo-

rem 4 and L the Lipschitz constant by Theorem 2, then

‖A‖2

λmax(H)
≤ L∗ ≤ L .

Proof: L is an upper bound of L∗ by definition. Also,

‖AP‖2

λmin(PTHP )
≥ λmin(PTP ) ‖A‖2

λmin(PTHP )
≥ ‖A‖2

λmax(H)

by using (9) and λmin(PTHP ) ≤ λmax(H)λmin(PTP ).
By Lemma 2 and the definition of Lipschitz constant L

we infer that L∗ < L only if λmax(H) > λmin(H) which
is true whenever Hessian H is not a positive multiple of the
identity matrix. Also, L∗ is a tight Lipschitz constant under
a mild assumption on the problem data as proven next.

Theorem 5: If there exists a λ̄ ∈ Rm with z∗(λ̄) ∈ intK,
then L∗ given by Theorem 4 is a tight Lipschitz constant of
the gradient ∇d (λ; y) for every parameter y ∈ Y.

Proof: We prove that there exists a subset of Rm with
nonempty interior on which the Lipschitz constant of the
gradient of the dual function attains L∗.
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Fix any y ∈ Y. By the premise there exists a δ > 0
such that Z =

{
z ∈ Rn |

∥∥z − z∗(λ̄)
∥∥ ≤ δ} ⊆ K. Let set L

contain all multipliers λ with z∗(λ) ∈ int Z. This means that
set L contains all multipliers for which the minimizer of (5)
is free. In this case we can compute the minimizer explicitly
in terms of the multiplier, i.e. z∗(λ) = −H−1(g+ATλ) for
all λ ∈ L, thus, L =

{
λ ∈ Rm |

∥∥H−1AT (λ− λ̄)
∥∥ < δ

}
.

As set
{
λ ∈ Rm |

∥∥H−1AT
∥∥ ∥∥(λ− λ̄)

∥∥ < δ
}

is a full di-
mensional subset of L we conclude that set L has nonempty
interior. Now, since the dual function defined over set L

d(λ; y) = −1/2
(
g +ATλ

)T
H−1

(
g +ATλ

)
− λT b(y) ,

is twice continuously differentiable, the Lipschitz constant
of the gradient ∇d (λ; z) is equal to λmax(AH−1AT ) [3,
Lemma 1.2.2]. But this is equivalent to L∗ in Theorem 4.

Remark 3: A standard assumption in constrained MPC is
that the origin is contained in the interior of the input and
state sets [1]. Since in MPC there is no linear term in the
objective of (1), the premise of Theorem 5 is satisfied with
λ̄ = 0 as z∗(λ̄) = 0. So, for constrained MPC under standard
assumptions a tight Lipschitz constant can be obtained.

B. Upper-Bounding the Norm of Lagrange Multipliers
Besides the Lipschitz constant the largest norm of a

(minimum norm) Lagrange multiplier over all parameters,
∆d, is a crucial entity for the computation of a lower iteration
bound (cf. Theorem 3). This section elaborates on computing
an upper bound of ∆d. In order to do so we add another
assumption that holds true from here on.

Assumption 5: For all y ∈ Y the set of Lagrange multi-
pliers Λ∗(y) is compact.

Remark 4: Assumption 5 is fulfilled if set Y is such that

b(y) ∈ int dom p ∀y ∈ Y ,

with p(u) , min {f(z) |Az = u, z ∈ K} being the pertur-
bation function of problem (1). In order to see this, note
that −Λ∗(y) is the subdifferential of p at b(y) [8, §5.4.4].
Since the perturbation function p is convex and proper, the
subdifferential and thus Λ∗(y) is compact [9, Prop. 5.4.1].

Under Assumption 5 the upper bound of ∆d

∆d ≤ max
y∈Y, λ∗(y)∈Λ∗(y)

‖λ∗(y)‖ , ∆̄d (10)

is finite. An upper bound of ∆̄d can be derived by exploiting
a recent result in [11, Thm. 3 and Remark 4]. The following
theorem is a special case of the aforementioned result.

Theorem 6: For any y ∈ Y we have

‖λ∗(y)‖ ≤ v(y)

r(y)
∀λ∗(y) ∈ Λ∗(y) , (11)

with v(y), r(y) defined as

v(y) , max
z∈K

(Hz∗(y) + g)
T

(z − z∗(y)) , (12)

r(y) , max
B[b(y);r]⊆AK

r (13)

In (12) we let z∗(y) , z∗(λ∗(y)) with a slight abuse of
notation, whereas the set B [b(y); r] in (13) is the two-norm
ball in Rm, i.e. B [b(y); r] , {w ∈ Rm | ‖w − b(y)‖ ≤ r}.

Using Theorem 6 we are now ready to state an upper
bound of ∆̄d and thus of ∆d under additional assumptions.

Theorem 7: Let b : Rp → Rm be affine. The upper bound

∆d ≤
v̄max

rmin
,

is finite with v̄max and rmin defined as

v̄max , σK (−g) + σK (g) + max
z∈K

σK (Hz) , (14)

rmin , min
y∈Y

r(y) , (15)

where r(y) is a concave function. In (14) σK (.) denotes the
convex support function of set K, i.e.

σK (z) , max
z̄∈K

zT z̄ .

Proof: From (10) and (11) we conclude that

∆d ≤ ∆̄d ≤ max
y∈Y

v(y)

r(y)
≤ maxy∈Y v(y)

miny∈Y r(y)
,
vmax

rmin
.

Using (12) in the definition of vmax and considering that
Hessian H is positive definite, we obtain

vmax = max
y∈Y
−z∗(y)THz∗(y)− gT z∗(y) + σK (Hz∗(y) + g)

≤ max
y∈Y
−gT z∗(y) + max

y∈Y
σK (Hz∗(y) + g)

≤ max
z∈K
−gT z + σK (g) + max

z∈K
σK (Hz) = v̄max .

By compactness of K the value of v̄max is finite. Let us look
at r(y) next. Since K is closed and convex, we have by [9,
Proposition 1.4.13] that AK is also closed and convex. Let

H ,
{

(h, k) ∈ Rm × R |hTw ≤ k, ∀w ∈ AK
}

be the set of all pairs (h, k) that define closed halfspaces
containing AK. By [9, Proposition 1.5.4] we have

AK = {w ∈ Rm |hTw ≤ k, ∀(h, k) ∈ H} . (16)

Using representation (16) of set AK, we observe that

r(y) = min
(h,k)∈H

k − hT b(y)

‖h‖
, (17)

cf. [6, §4.3.1]. Since b(y) is affine by assumption, r(y) as
the minimum of affine functions is concave. Last, the value
of rmin is positive as r(y) > 0 for all y ∈ Y and set Y is
compact. So the bound given by the theorem is finite.

Remark 5: In MPC we often encounter input and state
sets that are boxes, so that K = {z ∈ Rn | ‖z‖∞ ≤ 1} if
we assume unit boxes. An upper bound of the expression
maxz∈K σK (Hz) in (14) is n‖H‖1, where ‖.‖1 denotes the
induced 1-norm. We conclude that an upper bound on v̄max

can be easily computed in this case, even for n� 1.
On the contrary, computation of rmin in (15) is a challeng-

ing problem in high dimensions as discussed next. However,
a lower bound of rmin is sufficient for deriving a lower iter-
ation bound imin. A computationally tractable lower bound
of rmin will be derived in the next section for polytopic sets
Y,K.
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Computing a Lower Bound of rmin for Polytopic Sets Y,K
The following corollary of Theorem 7 explains why it is

convenient to restrict to a polytopic set Y.
Corollary 1: Let b : Rp → Rm be affine. For a polytopic

set Y the value of rmin can be computed by considering only
the vertices of Y, i.e. let VY contain all vertices of Y, then

rmin = min
y∈VY

r(y) .

Proof: This follows from concavity of r(y).
For the computation of r(y) it is useful to restrict to a

polytopic set K too, since the image AK (cf. (13)) is again a
polytope as indicated by the next lemma and the computation
of r(y) according to (17) becomes straightforward then.

Lemma 3: Let K = {z ∈ Rn |Fz ≤ f} be a polytopic
set where matrix F ∈ Rq×n and vector f ∈ Rq . Set AK is
polytopic and obtained from a projection, i.e.

AK =
{
v ∈ Rm | ∃w ∈ Rn−m : FA†v + FNAw ≤ f

}
,

where A† denotes the pseudo-inverse of A and the columns
of matrix NA span the nullspace of A.

Proof: Let A[V1, V2] = U [S, 0] be the singular value
decomposition of A. The projection formulation comes from

AK = {v ∈ Rm | v = Az, Fz ≤ f, z = V1w1 + V2w2}
= {v | v = USw1, FV1w1 + FV2w2 ≤ f} ,

and eliminating w1 above. As A† = V1S
−1UT and NA = V2

the result follows. Also, since AK is the projection of a
polytope, it is also a polytope [14].

The projection of a polytope can be computed, e.g. by
Fourier-Motzkin Elimination [14], as implemented in the
Matlab toolbox MPT [15]. However, computation is tractable
only for dimensions m < n / 10. The next theorem
provides a lower bound on r(y) that comes without explicitly
computing the projection. For its proof the following remark,
which is easy to verify, is important.

Remark 6: If P is a polytope in Rn with the origin
contained in its interior, it can be represented as P = {z ∈
Rn |Ez ≤ 1}, where E is an appropriate matrix and 1
denotes the vector of ones.

Theorem 8: Let all of the assumptions of Lemma 3 hold
and define the polytope

P , {(v, w) ∈ Rn |FA†v + FNAw ≤ f} .

Let the translation of P by a vector (b(y), w(y)) ∈ intP be

P(y) = P−
[
b(y)
w(y)

]
,

represented as P(y) = {(v, w) ∈ Rn |C(y)v+D(y)w ≤ 1}.
Then for all parameters y ∈ Y it holds that

r(y) ≥ r̃(y) ,

where r̃(y) is given as

r̃(y) =

(
max
i=1,...,q

∥∥C(y)Ti
∥∥)−1

,

and vector C(y)Ti denotes the ith row of matrix C(y).

Proof: Denote πvP as the projection of set P onto the
v-space, i.e. πvP = {v ∈ Rm | ∃w ∈ Rn−m : (v, w) ∈ P}.
Then πvP = AK in view of Lemma 3. Starting from the
definition of r(y) in (13) we obtain

r(y) = max
B[b(y);r]⊆AK

r = max
B[0;r]⊆AK−b(y)

r

= max
B[0;r]⊆πvP−b(y)

r = max
B[0;r]⊆πvP(y)

r .

Since (b(y), w(y)) ∈ intP we have 0 ∈ intP(y). Thus,
by Remark 6, polytope P(y) can be represented by a finite
number of inequalities with all ones on the right hand side.
From the Projection Lemma [16] we have that

πvP(y) = {v ∈ Rm |uTC(y)v ≤ 1, ∀u ∈ U(y)} ,

where

U(y) , {u ∈ Rq |D(y)Tu = 0, u ≥ 0,1Tu = 1} .

By this characterization of the projection πvP(y) we can
derive the following equivalences

B [0; r] ⊆ πvP(y) ⇐⇒ max
v∈B[0;r]

uTC(y)v ≤ 1 ∀u ∈ U(y)

⇐⇒ r
∥∥C(y)Tu

∥∥ ≤ 1 ∀u ∈ U(y).

The latter inequality is tight at the maximum r(y), so

r(y) =

(
max
u∈U(y)

∥∥C(y)Tu
∥∥)−1

≥
(

max
u≥0,1Tu=1

∥∥C(y)Tu
∥∥)−1

.

Since in the previous problem the objective is convex, the
maximum is attained at one of the vertices of the feasible
set. But this set is the unit simplex in Rq with vertices ui ∈
Rq, i = 1, . . . q, where ui is the zero vector having a ‘1’ at
the ith component. This proves the theorem.

Remark 7: In Theorem 8 a vector w(y) ∈ Rn−m can be
computed, for instance, by computing the Chebyshev center
of polytope P with the first coordinates of the center fixed to
b(y). See e.g. [6, §4.3.1] for a reformulation of this problem
as a linear program.

Let us bring together the findings of this section next.
Corollary 2: Let sets Y,K be polytopic and map b :

Rp → Rm be affine. It holds that

rmin ≥ r̃min , min
y∈VY

r̃(y) ,

where r̃(y) is defined in Theorem 8 and set VY contains all
vertices of Y. Furthermore, we have

∆d ≤
v̄max

r̃min
,

with v̄max given by (14).
Proof: Follows from Theorem 8 and Corollary 1.

In the context of linear MPC with polytopic input and
state sets, Corollary 2 provides a practical way to derive an
upper bound on the value of ∆d. However, the lower iteration
bounds based on this corollary might be subject to a high
degree of conservatism as shown in the next section.
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V. COMPLEXITY CERTIFICATION FOR MPC

In this section we will summarize the steps required to
certify a constrained MPC problem according to the results
obtained so far. We assume that the dimension of the problem
does not allow the evaluation of the projection in Lemma 3
which is true for most practical MPC problems. Finally, we
will certify MPC for a ball on plate system.

Let us consider the problem of regulating a linear, time-
invariant system to the origin. The corresponding constrained
MPC problem at the current state x ∈ Rnx is formulated as

J∗(x) ,min
1

2
xTNQNxN +

1

2

N−1∑
k=0

xTkQxk + uTkRuk (18)

s.t. xk+1 = Adxk +Bduk, k = 0 . . . N − 1

(uk, xk) ∈ U× X, k = 0 . . . N − 1

xN ∈ Xf , x0 = x.

In accordance with the general problem formulation in (1)
we consider a quadratic objective in the states xk ∈ Rnx and
inputs uk ∈ Rnu , where N denotes the horizon length. The
penalty matrices Q, QN ∈ Rnx×nx and R ∈ Rnu×nu are
assumed to be positive definite. Both the input set U ⊂ Rnu

and the state set X ⊂ Rnx are compact convex sets, same as
the terminal set Xf ⊂ Rnx . Under these assumptions, (18)
is a multi-parametric convex optimization problem with the
current state x ∈ X0 ⊂ Rnx as the parameter.

In order to comply with the problem formulation (1) we
define z , (x0, x1, . . . , xN , u0, . . . , uN−1), parameter y , x
and set Y , X0 which leads to the matrices

H , blkdiag
(
Q, . . . , Q,QN , R, . . . , R

)
,

g , 0 ,

A , −


−I 0 · · · · · · 0 0 · · · · · · 0
Ad −I 0 · · · 0 Bd 0 · · · 0

0
. . . . . . . . .

... 0 Bd
. . .

...
...

. . . Ad −I 0
...

. . . . . . 0
0 · · · 0 Ad −I 0 · · · 0 Bd

 .

The parameter changes the right hand side of the equality
constraint by b(y) , By with B ,

(
I, 0, . . . , 0

)T
. The set

constraint is given as K , X× . . .×X×Xf ×U× . . .×U.
The following properties of the MPC problem data ensure

the validity of Assumptions 1-5.
• Assumption 1 is satisfied as penalty matrices Q,QN

and R are assumed positive definite.
• Assumption 2 is fulfilled by definition of A before.
• If X0 ⊆ int {x | (18) feasible at x} then Assumptions 3

and 5 hold true.
• Assumption 4 is satisfied if Q,R are positive definite

diagonal penalty matrices and sets U,X are box con-
straints. Additionally, the pair (QN ,Xf ) must comply
with one of the following cases:

(i) Xf is a level set of the terminal penalty function,
i.e. Xf =

{
xN ∈ Rnx | 1

2 x
T
NQNxN ≤ c

}
, c > 0.

(ii) Matrix QN is diagonal and Xf is a box constraint.

In both cases the inner problem (2) can be solved
exactly by a series of 2N projections on boxes and one
projection on either the two-norm ball or a box, all of
which can be easily computed.

Remark 8: Note that it is common practice to avoid a
formulation with an elliptic terminal set Xf as in case (i)
since this leads to a quadratically constrained QP (QCQP)
which requires different solver implementations than a stan-
dard QP. However, an elliptic terminal set is a more practical
choice than a polytopic approximation to the maximum
positively invariant set which is hard to compute in high
dimensional state spaces and might introduce a larger number
of constraints (see e.g. [5, §6.1] for details).

In the following we will report first certification results for
an MPC problem that meets the requirements of case (ii).

Example: Complexity Certification for a Ball on Plate System

In the ball on plate system a plate is tilted around two
axes to control the position of a ball. For small tilt angles
the dynamics of the system can be decoupled and each axis
controlled independently. We will consider the MPC control
of a single axis from here on. Assuming a sampling time of
Ts = 0.01s we obtain for the ball on plate system at the
Automatic Control Lab of ETH Zürich described in [17]

Ad =

[
1 0.01
0 1

]
, Bd =

[
−0.0004
−0.0701

]
,

with the ball position and velocity along a single axis as the
states and the tilt angle as the input. The weight matrices are
Q = [ 100 0

0 10 ], R = 1, QN = Q, and we assume input and
state confined to U = {u ∈ R | − 0.0524 ≤ u ≤ 0.0524}
and X =

{
x ∈ R2 |

[−0.2
−0.1

]
≤ x ≤ [ 0.01

0.1 ]
}

respectively. We
notice that the state set X has an upper limit on the ball’s
position close to the origin. The MPC regulation problem
in (18) naturally takes this constraint into account when
regulating the ball to the origin.

We will now certify the fast gradient method in Algo-
rithm 1 for the solution of the ball on plate MPC problem.
For this we assume a required accuracy of ε = 10−2 and
horizon lengths from N = 5 to N = 15. For any horizon
length we proceed as follows:

1) Compute Lipschitz constant L∗ (Theorem 4) and, for
comparison reasons, Lipschitz constant L (Theorem 2).

2) Compute an upper bound of v̄max following Remark 5.
3) Compute an upper bound of ∆d (Corollary 2).
4) Get lower iteration bounds from Theorem 3, using L∗

and L from 1)
The obtained lower iteration bounds are more descriptive,

if they are used to derive an expected solution time. Since
the problem matrices are sparse and structured, an iteration
of the fast gradient method in Algorithm 1 amounts to

nflops = 4Nn2
x + 4Nnxnu + 9Nnx + 2Nnu + 6nx

floating point operations (flops), which is linear in the hori-
zon. In the following we assume a computing performance
of 1 Gflops/s, for which the expected solution time follows
from the lower iteration bounds and nflops.
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Fig. 1. Illustration of sets for the certification of the ball on plate system.

The set of initial states X0 is obtained from scaling the
polytopic maximum admissible set for N = 15, Xa, as
depicted in Fig. 1. The dotted region is the set of initial
states for which no constraint is active at the solution.

The certification results in terms of lower iteration bounds
(solid) and expected solution times (dashed) are depicted in
Fig. 2. For validating the quality of the lower iteration bounds
the figure also shows the observed number of iterations
from sampling (103 samples) as a mean-max curve (dotted).
The minimum iteration count was ‘1’ in all scenarios while
Gurobi was chosen as the reference solver in Matlab [18] to
compute d∗(y).

In Fig. 2 the certification results are organized in two
groups, each consisting of three curves. The first group
(black, square) illustrates the results when using the original
Lipschitz constant L from Theorem 2, the second group
(gray, triangle) depicts the corresponding results for the
Lipschitz constant L∗ from Theorem 4.

Depending on the horizon, we obtain L ∈ [3.97, 3.99]
and L∗ ∈ [0.38, 0.40] in this example. As the Lipschitz
constants differ by a factor of about 10, the lower iteration
bounds corresponding to L∗ are smaller by a factor of about√

10 than the bounds obtained with L (cf. Theorem 3).
Interestingly, this is also the speedup in the observed number
of iterations. So, computing the Lipschitz constant according
to Theorem 4 not only gives smaller iteration bounds but also
improves the actual performance of the fast gradient method.

Unfortunately, the derived lower iteration bounds are off
by more than three orders of magnitude from the observed
number of iterations. The main reason for this discrepancy
is the conservative upper bound of ∆d given in Corollary 2.
This claim is justified by determining ∆d approximately by
sampling ‖λ∗(y)‖ (103 samples). The sampled bounds are
off by about one order of magnitude from the observed
number of iterations only (not shown in Fig. 2).

Note that in all scenarios the growth rate of the lower
iteration bounds is similar to the growth rate of the observed
number of iterations. We conclude that the fast gradient
method shows satisfying practical performance as it requires
a maximum number of 90−245 iterations (depending on the
horizon), if the tight Lipschitz constant L∗ is chosen. This
amounts to an expected solution time of 20− 165µs.
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Fig. 2. Certification of constrained MPC for a ball on plate system: Lower
iteration bound (solid), expected solution time assuming 1 Gflops/s (dashed)
and observed number of iterations from sampling (103 samples) as mean-
max curve (dotted). The group of black curves (square) illustrates the results
for Lipschitz constant L, whereas the group of gray curves (triangle) the
ones for Lipschitz constant L∗.
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