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Abstract— We consider mobile sensing agents taking mea-
surements along their trajectories and navigating in a noisy
scalar field. Not knowing the field value at its location, each
agent decides its motion based on sensor measurements. When
an agent changes its position, both the sensor measurement and
the field value at its location change. If the change of the field
value is not consistent with the change of the measurement,
we say the agent performs a false-walk. We establish the
notion of local explorability for the noisy scalar field to analyze
the tendency that such field will induce false-walks for a
sensing agent. We show that, a field being locally explorable
is the sufficient and necessary condition for the probability of
inducing a false-walk to be less than a certain threshold. We then
connect explorability with the noise reduction capability using
multiple sensing agents, and compute the minimum number of
agents necessary to ensure explorability.

I. INTRODUCTION

Exploration of an unknown scalar field is one of the
fundamental problems in mobile robotics. Various types
of exploration missions are investigated in literature, such
as climbing or descending gradients [1]–[4], tracking level
sets [5]–[7], cooperative path following [8] and monitoring
environmental boundaries [9], [10]. To efficiently and suc-
cessfully explore an unknown field, some works deal with the
development and improvement of the algorithms using one
agent [11]–[15], while recent attentions have been paid to
using multiple agents to perform cooperative exploration [6],
[16], [17] due to its advantages over individual exploration
in certain contexts. The problem of exploring unknown fields
is also related to map making [18], [19].

Most existing works concern the design of exploring
strategies. In this paper, we look into the exploration problem
from the analytic point of view, that is, whether a field is
difficult to be explored or not. To address this problem,
we first propose a concept of “false-walk” performed by a
sensing agent moving in a field and taking measurements
of the field. A false-walk happens when the sensor reading
of an agent increases(decreases) while the mean field value
decreases(increases). Then we introduce the definition of
“local explorability” of a field, which gives an indicator on
how easy a false-walk can happen. We relate the explorable
probability with the noise properties of a field, which pro-
vides a way to check the explorability if the field is known.

Based on the definition of explorable fields, we analyze
an algorithm that attempts to direct an agent to decrease its
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measured field. We prove that, if a field is locally explorable,
then under certain extra conditions, the agent moves in the
correct direction with probability larger than 1

2 .
In typical scenarios, multiple agents that are collaborating

are expected to perform better than a single agent in terms of
adaptiveness and efficiency [20], [21]. And, as the number
of agents increases, the noise reduction capability increases
due to cooperative filtering algorithms performed [6], [7],
[22], [23]. However, in practice, we can not deploy infinite
number of agents due to the increasing cost and complexity
in control, communications and computations. Therefore,
given a cooperative filtering algorithm, we need to find
out how many agents are necessary to explore a field. To
address this problem in the context of explorability, we look
into an example introduced in [6], in which a cooperative
Kalman filter is computed by a formation formed by N agents
to provide estimated field values at the formation center.
The trace of the error covariance matrix of the cooperative
Kalman filter provides a measure on the noise reduction
capabilities with N agents [6]. Therefore, by relating the error
covariance matrix to the explorable probability of the field,
we can compute the minimum number of agents necessary
to achieve a certain explorable probability.

The rest of the paper is organized as follows. In section
II, we introduce the definition of local explorability and
discuss the properties of explorable fields. In section III, we
analyze an algorithm that is to direct an agent to decrease its
measured field value in explorable fields. In section IV, we
discuss the cooperative filtering and explorability. In section
V, simulation results are provided. Concluding remarks are
presented in section VII.

II. LOCAL EXPLORABILITY

In this section, we introduce the definitions of false-
walk and local explorability and discuss the properties of
explorable fields.

A. Definitions

Consider a noisy scalar field Y (x) : Rn → R, where x ∈
Rn is a position in the field. Let F(x) be the mean field
F(x) = µ(Y (x)). Suppose F(x) is smooth. Define the noise
of the field to be the difference between Y (x) and F(x), that
is W (x) = Y (x)−F(x). For Y (x) and W (x), we use upper
cases to denote random variables and lower cases to denote
values of random variables.

Suppose a sensing agent is moving in the field while taking
measurements of the field discretely. We have the following
assumptions throughout the paper:
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1. Each sensing agent takes one measurement of the field
value at each time instant tk.

2. The field noise is zero-mean and independent, which
gives

E(W (xk)) = 0,

E(W (xk+1)W (xk)) = E(W (xk+1))E(W (xk)) = 0. (1)

At any time instant tk, the measurement taken by the agent
can be written as

y(xk) = F(xk)+w(xk). (2)

The problem we are investigating into is whether the agent
is able to explore the field Y (x) based on its measurements
y(xk) and how difficult the field is to be explored. Examples
of explorative behaviors can be climbing the local gradient,
following a level curve, or simply increasing or decreasing
the sensor measurements. To address this problem, we first
introduce a concept of “false-walk”.

Suppose x0 ∈ Rn is a regular point of F(x), which indi-
cates that dF(x0) 6= 0, e.g. ∇F(x0) 6= 0. Define the sets

U+(ε) = {x|F(x)−F(x0) > ε},
U−(ε) = {x|F(x)−F(x0) <−ε},
U0(ε) = {x||F(x)−F(x0)| ≤ ε}. (3)

And
B(δ1) = {x| ‖ x−x0 ‖≤ δ1}, (4)

where ε > 0 and δ1 > 0 are two constants. We have the
following definition.

Definition 2.1: A false-walk is a movement performed by
a sensing agent from x0 to x, such that one of the following
conditions is satisfied:

1. If x ∈U+(ε), then y(x)≤ y(x0)+ ε;
2. If x ∈U−(ε), then y(x)≥ y(x0)− ε;
3. If x ∈U0(ε), then |y(x)− y(x0)|> ε .
A false-walk happens when the changes of the sensor

readings are not consistent with the changes of the mean
field values. In a successful exploration mission, it is desired
that the probability of false-walks (denoted by Pr(FW)) to
be small. To study the relationships between the probability
of false-walks and the properties of a field, we propose the
following definition of “local explorability”.

Definition 2.2: Given ε > 0 and 0 < p < 1, we say the
field Y (x) is locally (p,ε) explorable at x0 (or x0 is (p,ε)
explorable) if for ∀δ1 > 0 satisfying

(U+(ε)∪U−(ε))∩B(δ1) 6= ∅, (5)

the following conditions are satisfied:
1. If x ∈U+(ε)∩B(δ1), then

Pr(Y (x) > Y (x0)+ ε) >
1+ p

2
; (6)

2. If x ∈U−(ε)∩B(δ1), then

Pr(Y (x) < Y (x0)− ε) >
1+ p

2
; (7)

3. If x ∈U0(ε)∩B(δ1), then

Pr(|Y (x)−Y (x0)| ≤ ε) >
1+ p

2
. (8)

Moreover, Y (x) is (p,ε) explorable on an open set C(x)
where measurements are taken, s.t. for every x0 ∈C(x), Y (x)
is locally (p,ε) explorable at x0. We call p the “explorable
probability” and ε the “resolution” of the sensor. The pa-
rameter δ1 represents the distance between the starting and
ending positions of the agent.

Given the definitions of false-walk and local explorability,
we now show that a field being (p,ε) explorable is the
sufficient and necessary condition for the probability of a
false-walk Pr(FW ) < 1−p

2 .
Proposition 2.3: Given ε > 0. Suppose an agent moves a

distance δ1 from x0 to x in a randomly selected direction in a
noisy field Y (x). The distance δ1 satisfies (U+(ε)∪U−(ε))∩
B(δ1) 6= ∅. The probability of a false-walk Pr(FW ) < 1−p

2
if and only if the field is locally (p,ε) explorable at x0.

Proof: We first prove the sufficient condition. Suppose
x0 is (p,ε) explorable. From the definition, if x ∈U+(ε)∩
B(δ1), Pr(Y (x) > Y (x0) + ε) > 1+p

2 . Therefore, Pr(Y (x) ≤
Y (x0)+ε) < 1− 1+p

2 = 1−p
2 . Similarly, if x∈U−(ε)∩B(δ1),

we can calculate that Pr(Y (x)≥Y (x0)−ε) < 1−p
2 . And if x∈

U0(ε)∩B(δ1), we can obtain that Pr(|Y (x)−Y (x0)|> ε) <
1−p

2 . Therefore, the probability of a false-walk Pr(FW ) <
1−p

2 if x0 is (p,ε) explorable.
For the necessary condition, suppose the probability of

a false-walk Pr(FW ) < 1−p
2 . If x ∈ U+(ε) ∩ B(δ1), then

the probability of a false-walk is Pr(Y (x) ≤ Y (x0) + ε) <
1−p

2 , which gives Pr(Y (x) > Y (x0) + ε)) > 1+p
2 . Similarly,

if x ∈U−(ε)∩B(δ1), then the probability of a false-walk is
Pr(Y (x)≥Y (x0)−ε) < 1−p

2 , which gives Pr(Y (x) <Y (x0)−
ε)) > 1+p

2 . And if x ∈U0(ε)∩B(δ1), then the probability of
a false-walk is Pr(|Y (x)−Y (x0)| > ε) < 1−p

2 , which gives
Pr(|Y (x)−Y (x0)| ≤ ε) > 1+p

2 . According to the definition,
the field is locally (p,ε) explorable at x0.

B. Explorable Fields

Given the definition of local explorability, we want to
study the relationships between the explorable probability
p and the noise properties of the field and in the measuring
process.

Given two positions in the field x0 and x, we can define
a new random variable Z(x) = W (x)−W (x0). Then we can
calculate that

Pr(Y (x) < Y (x0)− ε)
= Pr(F(x)−F(x0)+W (x)−W (x0) <−ε)
= Pr(W (x)−W (x0) <−ε− (F(x)−F(x0)))

=
∫ −ε−(F(x)−F(x0))

−∞

f (z)dz, (9)

where f (z) is the p.d.f of the random variable Z(x). Similarly,

Pr(Y (x) > Y (x0)+ ε) = 1−
∫

ε−(F(x)−F(x0))

−∞

f (z)dz. (10)

6440



According to the definition, if x ∈ U−(ε) ∩ B(δ1), we
require that Pr(Y (x) <Y (x0)−ε) > 1+p

2 . And if x∈U+(ε)∩
B(δ1), we require that Pr(Y (x) > Y (x0)+ ε) > 1+p

2 . We can
calculate the probability only when we know the p.d.f of the
noises. Let’s consider a specially case where the noise is i.i.d
Gaussian.

Example 2.4: Suppose W (x) is i.i.d Gaussian noise with
zero mean. So W (x)∼N (0,σ2). Hence, Z(x)∼N (0,2σ2).

When x∈U−(ε)∩B(δ1), we can calculate that

Pr(Y (x) < Y (x0)− ε)

=
1√

4πσ2

∫ −ε−(F(x)−F(x0))

−∞

e−
z2

4σ2 dz

=
1
2
(1+ erf(

−ε− (F(x)−F(x0))
2σ

)). (11)

Similarly, when x∈U+(ε)∩B(δ1), we can derive

Pr(Y (x) > Y (x0)+ ε)

= 1− 1
2
(1+ erf(

ε− (F(x)−F(x0))
2σ

)). (12)

From the symmetry of the Gaussian distribution and the
fact that F(x)− F(x0) < −ε when x∈U−(ε)∩B(δ1) and
F(x)−F(x0) > ε when x∈U+(ε)∩B(δ1), we can see that
the probabilities in equation (11) and (12) are larger than 1

2 ,
and as the variance σ2 increases, the probabilities decrease.
For the probability to be larger than 1+p

2 , σ should satisfy

σ <
|ε−|F(x)−F(x0)||

2erf−1(p)
. (13)

The above example verifies the intuition that when the
noise strength gets lower, a higher explorable probability
can be achieved. If we have the knowledge of the noise
distribution and the sensor resolution ε , then from equation
(13), we can check the explorable probability of a field at
each position based on the field values F(x) and F(x0). In
this way, we can tell if a field is difficult to be explored or
not.

III. REDUCING SENSOR READINGS

In this section, we introduce and analyze an exploration
algorithm that attempts to direct an agent to move in direc-
tions that reduce the sensor readings in the context of local
explorability.

Let C(x) where x∈R2 be a bounded open set that contains
only regular points of F(x). Since F(x) is assumed to be
smooth, for the position x in the field, we have

lim
δ1→0

(F(x+δ1h)−F(x)) = lim
δ1→0

(F(x)−F(x−δ1h)). (14)

By the definition of the limit, the above equation is equivalent
to given ε2 > 0, there exists δ2(ε2) > 0, such that ∀δ1 <
δ2(ε2), we have

|(F(x+δ1h)−F(x))− (F(x)−F(x−δ1h))|< ε2. (15)

The exploration algorithm is as follows:
Algorithm 3.1: Given (p,ε), where ε > 0 and 0 < p < 1.

Suppose a sensing agent is taking measurements of a noisy

scalar field Y (x) discretely. Set ε2 = 1
8 ε p, and choose 0 <

δ1 < δ2(ε2).
S1. Let i = 0. Set the initial position of the agent to be

x0 ∈C(x), and the agent takes a measurement y(x0).
S2. The agent moves to a randomly selected direction from

x0 to x1 for a distance of δ1 and obtains y(x1). Set i = 1.
S3. Define the unit direction vector h = xi−xi−1

‖xi−xi−1‖
.

1. If y(xi) < y(xi−1)− ε , the agent moves along the
direction of h for a distance of δ1 and reaches xi+1.

2. If y(xi) > y(xi−1) + ε , the agent moves along the
direction of −h for a distance of δ1 and reaches
xi+1.

3. If |y(xi)− y(xi−1)| ≤ ε , the agent randomly selects
a direction h⊥, which satisfies E(h · h⊥) = 0 and
moves a distance of δ1 along it to reach xi+1. The
probability distribution of this random selection
satisfies Pr(x ∈ U+(ε)∪x ∈ U−(ε)) > 1

2 .
S4. Let i = i+1, go to step S3.

Based on the above algorithm, we have the following
proposition.

Proposition 3.2: Consider a noisy field Y (x) where x ∈
R2. Suppose a sensing agent is moving in the field according
to Algorithm (3.1). If

1. The positions on the trajectory {xi}, i ∈ (1,2, · · ·) are
(p,ε) explorable.

2. When xi ∈U0(ε)∩B(δ1), we have

|Pr(Y (xi)<Y (xi−1)−ε)−Pr(Y (xi)>Y (xi−1)+ε)|< 1
2

p.

(16)
then

Pr(E(Y (xi+1)|y(xi)) < y(xi)) >
1
2
. (17)

Note that in the proposition, E(·) represents the expecta-
tion of a random variable.

Proof: Since the measurement of the agent at step i+1
depends on the measurements at steps i and i− 1, based
on the law of total expectation, the conditional expectation
E(Y (xi+1)|y(xi)) can be written as

E(Y (xi+1)|y(xi))
= E(Y (xi+1)|y(xi),y(xi−1) > y(xi)+ ε)Pr(Y (xi−1) > Y (xi)+ ε)
+E(Y (xi+1)|y(xi),y(xi−1) < y(xi)− ε)Pr(Y (xi−1) < Y (xi)− ε)
+E(Y (xi+1)|y(xi),y(xi)− ε≤y(xi−1)≤y(xi)+ ε)
·Pr(Y (xi)− ε≤Y (xi−1)≤Y (xi)+ ε). (18)

For simplicity, we denote the event Y (xi−1) > Y (xi) +
ε as e1, Y (xi−1) < Y (xi) − ε as e2 and Y (xi) −
ε≤Y (xi−1)≤Y (xi) + ε as e3. Then the above equation can
be re-written as

E(Y (xi+1)|y(xi)) = E(Y (xi+1)|y(xi),e1)Pr(e1)
+E(Y (xi+1)|y(xi),e2)Pr(e2)+E(Y (xi+1)|y(xi),e3)Pr(e3).

(19)

Since we have

Y (xi+1) = F(xi+1)+W (xi+1),
y(xi) = F(xi)+w(xi). (20)
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Therefore,

Y (xi+1) = y(xi)+F(xi+1)−F(xi)+W (xi+1)−w(xi), (21)

We discuss three cases separately.
1. If y(xi−1) > y(xi)+ ε , according to the algorithm, the

agent moves along the direction of h for δ1 and reaches xi+1.
Hence,

F(xi+1) = F(xi +δ1h). (22)

Then

E(Y (xi+1)|y(xi),e1) = y(xi)+F(xi +δ1h)−F(xi)−w(xi).
(23)

2. If y(xi−1) < y(xi) − ε , the agent moves along the
direction of −h for δ1 and reaches xi+1. So

F(xi+1) = F(xi−δ1h). (24)

Similarly, we can obtain

E(Y (xi+1)|y(xi),e2) = y(xi)+F(xi−δ1h)−F(xi)−w(xi).
(25)

3. If y(xi)− ε≤y(xi−1)≤y(xi) + ε , the agent randomly
selects h⊥ satisfying E(h · h⊥) = 0 and moves along it to
reach xi+1. Hence,

E(Y (xi+1)|y(xi),e3)= y(xi)+E(F(xi +δ1h⊥))−F(xi)−w(xi).
(26)

In 2D, there are only two choices of h⊥, which can be
denoted by h+

⊥ and h−⊥, where h+
⊥ is to the right of h⊥ and

h−⊥ is to the left of h⊥. The probability of the choices are
Pr(h+

⊥) = Pr(h−⊥) = 1
2 . Note that h+

⊥ = −h−⊥. Therefore, we
can calculate that

E(F(xi +δ1h⊥))
= F(xi +δ1h+

⊥)Pr(h+
⊥)+F(xi +δ1h−⊥)Pr(h−⊥)

=
1
2

F(xi +δ1h+
⊥)+

1
2

F(xi−δ1h+
⊥) = F(xi), (27)

which gives

E(Y (xi+1)|y(xi),e3) = y(xi)−w(xi). (28)

Combine the three cases together, we have

E(Y (xi+1)|y(xi))
=(y(xi)+F(xi +δ1h)−F(xi)−w(xi))Pr(e1)

+(y(xi)+F(xi−δ1h)−F(xi)−w(xi))Pr(e2)
+(y(xi)−w(xi))Pr(e3)

=y(xi)−w(xi)+(F(xi +δ1h)−F(xi))Pr(e1)
− (F(xi)−F(xi−δ1h))Pr(e2). (29)

Based on equation (15), we can calculate that for δ1 <
δ2(ε2), equation (29) becomes

E(Y (xi+1)|y(xi))
< y(xi)−w(xi)+(F(xi)−F(xi−δ1h))(Pr(e1)−Pr(e2))
+Kε2Pr(e1)
= y(xi)−w(xi)+A+B, (30)

where A = (F(xi) − F(xi − δ1h))(Pr(e1) − Pr(e2)), B =
Kε2Pr(e1) and −1 < K < 1. Therefore,

Pr(E(Y (xi+1)|y(xi)) < y(xi)) = Pr(A+B−W (xi) < 0)
= Pr(W (xi) > A+B). (31)

There are also three cases.
1. If xi−1 ∈U+(ε), which means F(xi)−F(xi−1) < −ε ,

then according to the definition, Pr(e1) > 1+p
2 and Pr(e2) <

1− 1+p
2 . Therefore, Pr(e1)−Pr(e2) > p. Hence

A+B <−ε p+Kε2Pr(e1). (32)

2. If xi−1 ∈ U−(ε), which means F(xi)− F(xi−1) > ε ,
then Pr(e2) > 1+p

2 and Pr(e1) < 1− 1+p
2 . Therefore, Pr(e1)−

Pr(e2) <−p. We can also obtain A+B <−ε p+Kε2Pr(e1).
3. If xi−1 ∈ U0(ε), which means |F(xi)−F(xi−1)| ≤ ε .

Then |Pr(e1))−Pr(e2)|< 1
2 p. Hence

−1
2

pε +Kε2Pr(e1) < A+B <
1
2

pε +Kε2Pr(e1). (33)

Considering the three cases and based on the law of total
probability, we can obtain

A+B = E(A+B|xi ∈U−(ε))Pr(xi ∈U−(ε))
+E(A+B|xi ∈U+(ε))Pr(xi ∈U+(ε))

+E(A+B|xi ∈U0(ε))Pr(xi ∈U0(ε))
<−ε p(Pr(xi ∈U−(ε))+Pr(xi ∈U+(ε)))

+
1
2

pεPr(xi ∈U0(ε))+Kε2Pr(e1). (34)

From the algorithm, we have Pr(xi ∈ U−(ε)) + Pr(xi ∈
U+(ε)) > 1

2 , which gives Pr(xi ∈U0(ε)) < 1
2 . We also have

KPr(e1) < 1. Plug ε2 = 1
8 ε p into equation (34), we can obtain

A+B <−1
2

ε p+
1
4

ε p+
1
8

ε p =−1
8

ε p. (35)

Since the noise term w(xi) is zero mean, therefore

Pr(W (xi) > A+B) > Pr(W (xi) >−1
8

ε p) >
1
2
. (36)

Therefore,

Pr(E(Y (xk+1)|yk) < y(xk)) >
1
2
. (37)

According to Proposition 3.2, at each time instant, the
probability of an agent moving in a direction that would
reduce the sensor reading is larger than 1

2 if the current
position of the agent is (p,ε) explorable.

IV. COOPERATIVE FILTERING AND EXPLORABILITY

The concept of local explorability can be applied to
determine how many agents are necessary to cooperatively
explore a noisy field. As discussed previously, if at each time
instant, one measurement y(x) is taken at the position x, the
explorable probability p varies with the change of the noise
variance σ2. As σ2 increases, the explorable probability de-
creases. Suppose we are using N agents forming a formation
to take measurements of the field and produce the estimates
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of the field value at the formation center with a cooperative
filter [6]. Intuitively, the estimated field values should contain
less noises compared to the direct measurements at the
formation center, which means the noise variance σ ′2 that
is present to the formation is less than σ2. Consequently,
the explorable probability p should increase.

To verify the intuition, let’s take a look at an example
described in [6]. Suppose a cooperative Kalman filter is
computed by a group of N agents forming a formation.
The agents are taking measurements of the field discretely.
Denote the position of the ith agent at the kth time step
as ri,k, the measurement taken by the agent as pi,k, where
i = 1, · · · ,N. Define the position of the formation center
at the kth step as rc,k = 1

N ∑ri,k and the field value at
the position center as zc,k. Choose the state to be sk =
(zc,k,∇zT

c,k)
T where ∇zc,k is the gradient at the formation

center. Define Ak−1 =
(

1 (rc,k− rc,k−1)T

0 I3×3

)
and hk−1 =

(0,E[Hc,k−1(rc,k − rc,k−1)]T )T , where Hc,k−1 is the estimate
of the Hessian at the formation center. Let Ck be the N×3
matrix with its ith row defined by [1,(ri,k − rc,k)T ] for
i = 1,2, ...,N and Dk be the N × 4 matrix with its ith row
vector defined by the Kronecker product 1

2 ((ri,k − rc,k)⊗
(ri,k − rc,k))T . Define the N × 1 measurement vector pk =
[pi,k]. Then we can write down the state equation and the
measurement equation:

sk = Ak−1sk−1 +hk−1 +vk−1, (38)

pk = Cksk +Dk~Hc,k +wk. (39)

where vk−1 is the noise vector which accounts for positioning
errors, estimation errors for the Hessians, and errors caused
by higher-order terms omitted from the Taylor expansion.
wk represents the measurement noise vector. Based on the
state equation and the measurement equation, a cooperative
Kalman filter can be constructed. Readers can refer to [6]
for details.

Let Vk = E[vkvT
k ], and Wk = E[wkwT

k ]. We can calculate
that, as k → ∞, the error covariance matrix satisfies

P−1 = [APAT +V ]−1 +CTW−1C. (40)

For simplicity, we drop the subscript ∞ in the above equation
and in the following expressions.

Suppose v(x) and w(x) are i.i.d Gaussian noises with zero
mean and variances σ2

1 and σ2
2 . As k →∞, Ak → I3×3, Vk →

σ2
1 I3×3 and Wk → σ2

2 I3×3. Assume that the agents form a
symmetric formation and the distance from each agent to
the formation center is a, which means ‖ ri,k − rc,k ‖= a.
Then we can calculate that [23]

CTW−1C =
1

σ2
2

diag(N,
1
2

a2N,
1
2

a2N). (41)

Hence,

P = diag(−1
2

σ
2
1 +

σ1

2

√
σ2

1 +
4σ2

2
N

,

− 1
2

σ
2
1 +

σ1

2

√
σ2

1 +
8σ2

2
a2N

,−1
2

σ
2
1 +

σ1

2

√
σ2

1 +
8σ2

2
a2N

)

= diag(P(1),P(2),P(3)), (42)

where P(1) can be considered as the error covariance of
the field value estimation at the formation center and P(2)
and P(3) correspond to the error covariance of the field
gradient estimation at the formation center. Suppose we have
σ1 = 1

2 σ2. Then we need to compare σ ′2 = P(1) in the
cooperative exploration case with σ2 = σ2

2 in the single agent
case as described in Section II-B. According to equation (13),
if σ ′ < σ , a higher explorable probability p can be achieved.
We can tell from equation (42) that when the number of
agents N increases, the trace of the error covariance matrix P
decreases. Consequently, we can achieve a higher explorable
probability with more agents.

Example 4.1: Suppose we are using N agents forming
a symmetric formation to take measurements in a field
F(x,y) = x2 + y2 with v ∼ N (0,σ2

1 ) and w ∼ N (0,σ2
2 ).

We would like to determine the minimum value of N.
Assume that we know σ1 = 0.8 and σ2 = 1.6. If we choose
ε = 1, and choose two points in the field x0 = [1,1]T and
x = [1.1,1.1]T as the consecutive positions of the formation
center, then F(x)− F(x0) = 2.42. Suppose we want the
explorable probability to be larger than 0.95, which means
p > 0.9. Then according to equation (13), we can calculate
that σ ′ should satisfy σ ′ < 0.8663. If we only use one
agent, σ = σ2 = 1.6, which means we can not achieve 0.95
explorable probability. However, according to equation (42),
we can calculate that when N > 1.5701, P(1) < 0.86632.
Therefore, we can deploy N ≥ 2 agents in the field to perform
the exploration task.

V. SIMULATION RESULTS

To justify our algorithm, we compare one agent and a
group of three collaborative agents moving in a noisy scalar
field according to Algorithm 3.1. The field is generated by
the equation Y (x,y) = (x−10)2 +2(y−10)2 +W (x,y) where
the noise term W (x,y) is i.i.d Gaussian with zero mean and
variance σ2 = 1.62. In the cooperative exploration case, the
variance of the modeling error v(x,y) is assumed to have
σ1 = 0.8. If we choose ε = 1 and p = 0.9, then according to
the algorithm, we can set ε2 = 1

8 ε p, and δ2(ε) = Kε where
K = 1. Then we can choose the step size δ1 = δ2(ε) = 1

8 ε p.
Fig. 1 and Fig. 2 show the trajectories of a single agent

and the center of the formation formed by three agents,
respectively. Fig. 3 indicates the measurements taken by the
single agent (the red line) and the estimates of the field value
at the formation center (the blue line). We can tell from
Fig. 3 that, under the same settings, multiple agents that are
performing cooperative exploration converge faster than a
single agent.
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Fig. 1. The trajectory of a sensing agent.

Fig. 2. The trajectory of the center of three agents.

To verify Algorithm 3.1, we can obtain the differences
of the measurements between two adjacent steps, which are
denoted by yd(i) = y(i)−y(i−1), where i = 1, · · · . We count
the number of occasions that yd(i) < 0, and calculate the
probability that Pr(yd(i) < 0). From Fig. 3, we can tell that
the sensor readings of the single agent converge in around
400 steps. We obtain that there are 234 out of 400 steps that
yd(i) < 0, which gives that Pr(yd(i) < 0) = 0.585 > 0.5. In
the cooperative exploration case, the estimates of the field
values at the formation center converge in around 200 steps.
And in 138 out of 200 steps, yd(i) < 0, which gives that
Pr(yd(i) < 0) = 0.69 > 0.5. This fact also justifies that the
cooperative exploration using multiple agents increases the
explorative probability.

VI. CONCLUSIONS

We provide a definition of local explorability of a field
which is used to analyze the tendency that a field will
induce false-walks for a sensing agent. The relationships
between the explorable probability and the noise properties
of a field are studied. We also discuss the noise reduction
capabilities of using multiple agents to explore a field, and
the relationships between the number of agents and the
explorable probability.

Fig. 3. Measurements of the field taken by a single agent (red line) and
estimated field values at the center of a formation (blue line).
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