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Abstract— An input-output approach to the stability and
stabilization of Takagi-Sugeno (T-S) fuzzy system with time-
varying delay is proposed in this paper. A novel method is
employed to approximate the time-varying delay. Thus the
considered system can be formulated into a feedback intercon-
nection form, which contains a constant time-delayed forward
subsystem. Then based on the scaled small gain theorem, the
problem reduces to studies of the bounded real property and
H∞ control problem of the scaled forward subsystem. Some
effective techniques used to be applied to the constant time
delay systems are now utilized to solve the time-varying case. By
virtue of this conversion, less-conservative stability criteria and
stabilization methods via Parallel Distributed Compensation
(PDC) scheme are obtained. Numerical experiments are per-
formed to illustrate the advantage of the proposed techniques.

I. INTRODUCTION

Recent years have witnessed growing interests and ex-
tensive studies of the Takagi-Sugeno (T-S) fuzzy systems
[13]. The T-S fuzzy modeling approach has been widely
accepted as 1) powerful tool for approximating nonlinear
systems and 2) a flexible framework to fully take advantage
of the advances in linear system theories. On another aspect,
it’s well know that time-delay can be source of instability or
performance degradation and it is still a challenging problem
when facing engineering and communications applications.
In view of these considerations, T-S fuzzy modeling ap-
proach has been extended to tackle the analysis and synthesis
of nonlinear systems with time delay.

Since that time, a systematical investigation of the time-
delayed T-S fuzzy system has been conducted by virtue of
the optimality of linear matrix inequalities (LMIs) technique
(see [7] and the references therein). Generally, most of the
approaches involve a simple Lyapunov Krasovskii Functional
(LKF) [4], [6], [8], [11], and directly apply some more or
less tight techniques, such as Moon’s inequality [9], free-
weighting matrix [15], or use Jensen’s inequality [2], to
derive the stability criteria for the time-delayed T-S fuzzy
system. These choices of over-bounding techniques are the
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origin of conservatism. Among all the simple LKF based
articles, a more effective technique is the delay partitioning
[18].

In this paper, an indirect approach, namely, the input-
output (IO) approach is introduced to deal with the stability
analysis and control design of the T-S fuzzy systems with
time-varying delay. In retrospect, this approach initially
prevailed in the robust stability analysis field [19], then it
has been employed to study the linear time-invariant (LTI)
delay systems in [16] and further to time-varying delay
systems in [2] to cope with the delay ”uncertainty”. Recently,
[5] extended the approach to deal with the discrete-time
systems with time-varying delay. However, to the best of our
knowledge, it hasn’t been found any literature concerning the
delayed T-S fuzzy systems via this approach.

The main procedures of the IO approach involve a model
transformation of the original system into feedback intercon-
nection formulation, which contains a constant time-delayed
forward subsystem and a ”delay uncertainty” feedback sub-
system. Then by applying the scaled small gain theorem,
only the forward subsystem needs to be considered to ensure
the stability of the original systems. An essential problem
in the above procedures which is directly related to the
conservatism is to find a proper approximation for x(t−d(t)),
such that the approximation error is as small as possible,
where d(t) is the time-varying delay but the delay rate
information may be unavailable. Specifically, both the two
cases ḋ(t) < 1 (slowly varying delay) and ḋ(t) = ∞ (fast
varying delay) can be handled by the proposed methods.
Moreover, the two-term approximation method is used to
give the approximation for x(t−d(t)), which has been briefly
discussed in [3] for LTI delay systems and proved to be more
precise than other approximation methods. Besides, some
useful techniques like fuzzy weighting-dependent LKF and
delay partitioning are also incorporated. As a result, the new
method essentially improves the existing results for T-S fuzzy
system with time-varying delay.

Notations: Rn, Rm×n, and Sn represent the set of real
n-vector, m × n matrices, and n × n symmetric positive
definite matrices, respectively. G1 ◦G2 represents the series
connection of mapping G1 and G2. In denotes an identity
matrix with dimension n and 0m,n denotes an m × n
dimension zero matrix. We use ”∗” to denote the symmetric
terms in a block matrix P , sym(P ) to abbreviate P + PT

and diag{· · · } to express a block-diagonal matrix. ∥G∥∞
denotes the l2-induced norm of a transfer function matrix or
a general operator. R denotes the set {1, 2 . . . r}. Finally, C1

denotes the class of continuously differentiable functions.
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II. PRELIMINARIES

Consider a nonlinear system represented by a delayed T-S
fuzzy model:

Plant Rule i: IF θ1(t) is Mi1 and θ2(t) is Mi2 and . . .and
θp(t) is Mip, THEN

ẋ(t) = Aix(t) +Adix(t− d(t)) +Biu(t), (1)

with the vector-valued initial condition ϕ(t) ∈ Rn, for all
t ∈ [−h2, 0] and i ∈ R. The matrices Ai, Adi, Bi are known
constant matrices with appropriate dimensions. Mij is the
fuzzy set, r is the number of IF-THEN rules, and θ(t) =
[θ1(t), θ2(t), · · · θp(t)] are the premise variables which do
not depend on the input u(t) ∈ Rnu . The time varying delay
d(t) satisfies 0 < h1 ≤ d(t) ≤ h2. Denoting τ = ḋ(t), the
cases of τ < 1 and τ = ∞ will be considered.

The overall fuzzy system is inferred as

ẋ(t) = A(t)x(t) +Ad(t)x(t− d(t)) +B(t)u(t)

=

r∑
i=1

λi(t) [Aix(t) +Adix(t− d(t)) +Biu(t)] , (2)

where
r∑

i=1

λi(t) = 1, λi(t) = ωi(θ(t))/
∑r

i=1 ωi(θ(t)) ≥ 0

and ωi(θ(t)) =
r

Π
i=1
Mij(θj(t)) with Mij(θj(t)) representing

the grade of membership of θj(t) in Mij .
Note that in this paper, we simplify the traditional deno-

tation of λi(θ(t)) as λi(t), where no confusion should be so
caused.

The stabilization problem is investigated under the PDC
scheme, where the controller rule shares the same fuzzy sets
with the T-S model, that is,

Controller Rule i: IF θ1(t) is Mi1 and θ2(t) is Mi2 and
. . .and θp(t) is Mip, THEN

u(t) = Kix(t)+
1

2
Kdix(t−h1)+

1

2
Kd̄ix(t−h2), i ∈ R (3)

The state feedback control law inferred is

u(t) =

r∑
i=1

λi(t)[Kix(t) +
1

2
Ki

dx(t− h1) +
1

2
Ki

d̄x(t− h2)]

≜ K(t)x(t) +
1

2
Kd(t)x(t− h1) +

1

2
Kd̄(t)x(t− h2),

It is worth noting that the proposed control law takes
advantages of the lower and upper bounds of the time varying
delay d(t). Thus it can be applied to the case where the
time delay is not on-line measurable. Moreover, it covers the
special cases of the memoryless control where Ki

d = Ki
d̄
= 0

and the purely delayed control where Ki = 0.
Then the closed loop system is obtained as

ẋ(t) = Ā(t)x(t) +Ad(t)x(t− d(t)) +
1

2
B(t)

×[Kd(t)x(t− h1) +Kd̄(t)x(t− h2)], (4)

where Ā(t) = A(t) +B(t)K(t).
The objective of this paper is to determine the stability and

stabilization conditions for system (4) via an IO approach.

This approach actually utilizes the Scaled Small Gain theo-
rem (SSG). To apply this theorem, the original system is first
converted into feedback interconnection formulation, where
the ”delay uncertainty” is pulled out to form the feedback
loop. Then we prove that the obtained feedback subsystem
satisfies a certain SSG condition. Therefore, according to
SSG theorem, the rest of the work is to derive the sufficient
conditions for the forward subsystem to satisfy the comple-
mentary SSG condition.

So the most elemental notion on SSG theorem is briefly
recalled here and we refer readers to Chapter 8 of [2] for
more information.

Consider an interconnected system consisting of two sub-
systems:

(S1) : z(t) = Gω(t), (S2) : ω(t) = ∆z(t), (5)

where the forward S1 is a known linear time-invariant system
(LTI) with operator G mapping ω to z, the feedback S2 is
an unknown linear time-varying one with operator ∆ ∈ D ≜
{∆: ∥∆∥∞ ≤ 1} and z(t) ∈ Rz, ω(t) ∈ Rω . As a direct
result of the small gain theorem [19], a sufficient condition
for the robustly asymptotic stability of the interconnection
in (5) is given as follows.

Lemma 1 (SSG Theorem): Consider (5) and assume S1 is
internally stable. The closed-loop system formed by S1 and
S2 is robustly asymptotically stable for all ∆ ∈ D if there
exist matrices {Tω, Tz} ∈ T with

T ≜
{
{Tω, Tz} ∈ Rω×ω × Rz×z :

Tw, Tz nonsingular;
∥∥Tω ◦∆ ◦ T−1

z

∥∥
∞ ≤ 1

}
,

such that the following condition holds:∥∥Tz ◦G ◦ T−1
ω

∥∥
∞ < 1. (6)

In the above formulation, one critical issue closely related
to the reduction of the conservatism is how to pull out the
“delay uncertainty”, or more specifically, to what degree of
precision can one estimate the uncertain delay d(t). The re-
cent work of [3] proposes a two-term approximation method
which gives better estimation of the time varying delay d(t).
And this method constitutes our main technique to achieve
less-conservative conditions. Besides, other effective ways
to further reduce the conservatism are also employed, one of
which is to select the fuzzy weighting-dependent Lyapunov
function (FWLF)

P (t) =
r∑

i=1

λi(t)Pi > 0, (7)

other than the traditional quadratic Lyapunov function. Some
other fuzzy weighting-dependent matrices have also been
introduced to further reduce the conservatism in the sequent
derivation. Since the time-derivative of (7) requires that of
λi(t), the following assumption is made:
(A) :Assume that λi(t) ∈ C1, i = 1, 2 . . . r. and |λ̇i(t)| ≤

βi with βi ≥ 0.
For the fuzzy models constructed using the sector non-

linearity approach [13], the assumption λi(t) ∈ C1 is met.
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However, the bounds of λ̇i(t) may not be directly acquired
in the practical application. One way to avoid using this
information is to construct another kind of FWLF with a
special structure in each Pi [12].

III. MAIN RESULTS

In this section, we first transform the delayed T-S fuzzy
system (2) into the interconnection of two subsystems as in
(5) and then analyzing the SSG of S1. By virtue of the two-
term approximation method, the obtained S1 is a constant
time-delay T-S fuzzy system which can be treated in many
ways. So delay partitioning technique is further employed to
analyze the SSG of S1. The stability and the stabilization
problems are elaborated sequentially.

A. Model Transformation

Considering system (2) with input vector u(t) = 0, we
now estimate the time varying delay d(t) using its lower and
upper bounds. The two term approximation 1

2 [x(t − h1) +
x(t− h2)] results in the estimation error

ω0(t) = x(t− d(t))− 1

2
[x(t− h1) + x(t− h2)]

=
1

2

∫ −d(t)

−h2

ẋ(t+ ζ)dζ − 1

2

∫ −h1

−d(t)

ẋ(t+ ζ)dζ

≜ 1

2

∫ −h1

−h2

k(ζ)z(t+ ζ)dζ, (8)

where z(t) = ẋ(t) = A(t)x(t) +Ad(t)x(t− d(t)) and

k(ξ) =

{
1, ζ ≤ −d(t);
−1, ζ > −d(t).

Then system (2) may be written as a feedback system with
S1and S2 are

(S1) :


ẋ(t) = A(t)x(t) + 1

2Ad(t)[x(t− h1) + x(t− h2)]

+h12

2 Ad(t)ω(t),

z(t) = ẋ(t),

(S2) :ω(t) = ∆dz(t) =
1

h12

∫ −h1

−h2

k(ζ)z(t+ ζ)dζ,

respectively, where h12 ≜ h2 − h1 and operator ∆d :z 7→ ω
are defined. Note that in the above formulation, ω(t) is
the normalization of ω0(t) by multiplying 2

h12
. Then the

following result can be concluded which, in the meantime,
provides a possible choice of the scaling matrices {Tω, Tz} ∈
T.

Lemma 2: X is a general invertible matrix, and then the
operator ∆d : z 7→ ω satisfies

∥∥X ◦∆d ◦X−1
∥∥
∞ ≤ 1.

Proof: Denote

I =

∫ t

0

ωT (ζ)Sω(ζ)dζ

= (
1

h12
)2

∫ t

0

[∫ −h1

−h2

k(α)z(ζ + α)dα

]T

×S

[∫ −h1

−h2

k(α)z(ζ + α)dα

]
dζ,

where S = XTX ∈ Sn. Then using Jensen inequality
(Appendix B.6 in [2]), considering zero initial condition and
exchanging the order of integration, it follows

I ≤ 1

h212

∫ t

0

h12

∫ −h1

−h2

zT (ζ + α)Sz(ζ + α)dαdζ

=
1

h12

∫ −h1

−h2

∫ t

0

zT (ζ + α)Sz(ζ + α)dζdα

=
1

h12

∫ −h1

−h2

∫ t+α

α

zT (ζ)Sz(ζ)dζdα

≤ 1

h12

∫ −h1

−h2

∫ t

0

zT (ζ)Sz(ζ)dζdα

=

∫ t

0

zT (ζ)Sz(ζ)dζ,

which implies
∥∥X ◦∆d ◦X−1

∥∥
∞ ≤ 1.

Remark 1: Note that {X,X} ∈ T is the scaling matrix
in the SSG analysis. Then according to lemma 1, to ensure
that the system (2) is input-output stable, the main task is
to verify that S1 is internally stable and there exists X such
that the SSG condition

∥∥X ◦Gzω ◦X−1
∥∥
∞ < 1 holds. This

leads to the new bounded real lemma (BRL) for T-S fuzzy
systems with two constant time delays.

B. Stability Analysis via BRL Condition

Considering the subsystem S1 subject to the scaling ma-
nipulation, we have

(Sx) :


ẋ(t) = A(t)x(t) + 1

2Ad(t)[x(t− h1) + x(t− h2)]

+h12

2 Ad(t)X
−1ω̃(t),

z̃(t) = Xẋ(t),

where z̃(t) = Xz(t), ω̃(t) = Xω(t).
Let V (t) be a LKF, which guarantees the stability of the

forward subsystem of Sx. Then it’s well-known that the
following condition along (Sx):

W ≜ V̇ (t) + z̃T (t)z̃(t)− ω̃T (t)ω̃(t)

< −ε(∥x(t)∥2 + ∥ω̃(t)∥2), ε > 0, (9)

guarantees that the H∞ norm of Sx is less than 1. Therefore,
(9) is a sufficient condition for the BRL problem.

The following results related to the stability criterion of
(2) is presented first.

Theorem 1: Consider the scaled subsystem (Sx) con-
verted from (2) and assume (A) holds. Given an integer
m ≥ 1 and scalars h2 > h1 > 0, τ < 1, the original time-
delayed T-S fuzzy system (2) with u(t) = 0 is asymptotically
stable if there exist matrices S, Pi, T, W , Ei, R, Q ∈ Sn
and Ui ∈ Smn such that

Pi > Pr, i = 1, 2 . . . r − 1 (10)
ψiilk < 0, i, l, k ∈ R (11)

ψijlk + ψjilk < 0, i < j, i, j, l, k ∈ R (12)
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where

ψijlk =

[
Π̃ijlk

{
W̃Pi

}T

1
S

∗ −S

]
, P̄i =

[
0 Pi

Pi 0

]
,

Π̃ijlk = W̃T
PiP̄jW̃Pi + W̃T

RiR̄W̃Rj + W̄T
U ŪilkW̄U + Λ̄,

W̃Pi =

[
Ai 0n,(m−1)n

1
2
Adi

1
2
Adi

h12
2
Adi

In 0n,(m+2)n

]
,

W̃Ri =


Ai 0n,(m−1)n

1
2
Adi

1
2
Adi

h12
2
Adi

In −In 0n,(m+1)n

In 0n,mn −In 0n
0n,mn In −In 0n
0n,mn

In
2

In
2

h12
2
In

 ,
W̄U =

[
WU 02n(m+1),n

]
, Λ̄ = diag

{
0n(m+2),−S

}
,

WU =

 Imn 0mn,2n

0mn,n Imn 0mn,n

In 0n,(m+1)n

0n,(m+1)n In

 ,
R̄ = diag

{
(
h1

m
)2R+ (h2)

2Q+ (h12)
2W,−R,

−Q, −W, −(1− τ)T
}
,

Ūilk = diag {Ui, −Ul, Ei +Θ, −Ek} ,

Θ =

r−1∑
ρ=1

βρ(Pρ − Pr) + T. (13)

Proof: Omitted here for the length limitation of the
paper. Interested readers could refer to [17] for detailed
derivation.

Remark 2: Note that the current proposed theorems deal
with the case where the delay rate τ < 1. However, it can be
easily extended to fit the τ = ∞ case. To do so, simply set
τ ≥ 1 in conditions (11)-(12), then the associated matrix T
will be automatically optimized to be close to zero matrix,
that is, the ”T” related items have no effect on the final
results of the LMI conditions within the numerical precision
of calculations.

For systems which are asymptotically stable under zero
time-delay, the simple LKF based stability criterion in The-
orem 1 is valid. However, if the system is unstable under
zero time-delay, this method is not applicable. The alternative
method to test the latter situation is to employ the “Complete
LKF” [2]. Besides, it is also possible to enhance the stability
or stabilize this kind of systems via a feedback mechanism.
The next subsection discusses this issue.

C. Stabilization via H∞ control

This section is dedicated to the state-feedback controller
design problem. In order to obtain a tractable solution of the
controller gain matrices, some additional matrix variables are
introduced. Then by using the Finsler’s Lemma, decoupling
between the system matrices and the FWLKF matrices has
been achieved. Finsler’s Lemma is stated as follows:

Lemma 3 (Finsler’s Lemma[1]): Let ω ∈ Rs, Q ∈ Ss and
B ∈ Rq×s, such that rank(B) < s. The following statements
are equivalent

1) ω
′Qω < 0, ∀Bω = 0, ω ̸= 0

2) ∃X ∈ Rs×q : Q+XB + B′
X

′
< 0

In the previous control literature, the Finsler’s Lemma has
been mainly used to eliminate variables in certain matrix

inequalities. It is closely related to the S-procedure. In recent
literature [10], this lemma has been extended to prove the
equivalence between several techniques which are used to
achieve the decoupling effect in the context of fuzzy Lya-
punov functions. Thus decoupling is the converse application
of Finsler’s Lemma as opposed to its elimination usage. And
we follow the work of [10] to derive the existence condition
of the state-feedback controllers with the form of (3).

Consider the closed-loop system (4). Use the two-term
approximation method again, yielding the following scaled
forward subsystem,

(Sc) :


ẋ(t) = Ā(t)x(t) + 1

2Ad(t)x(t− h1)

+ 1
2Ad̄(t)x(t− h2) +

h12

2 Ad(t)X
−1ω̃(t),

z̃(t) = Xẋ(t),

where Ad(t) = Ad(t) + B(t)Kd(t) and Ad̄(t) = Ad(t) +
B(t)Kd̄(t).

According to the SSG theorem in lemma 1, to stabilize
the closed loop system (4), we only need to consider the
standard H∞ control problem of (Sc) with the performance
index γ = 1. The latter is much easier to deal with, since
(Sc) only includes two constant time delays.

Theorem 2: Consider the scaled subsystem (Sc) converted
from (4) and assume (A) holds. Given an integer m ≥ 1
and scalars h2 > h1 > 0, δ ̸= 0, the original closed-loop
time-delayed T-S fuzzy system (4) using the control law (3)
is asymptotically stable if there exist matrices S, P i

Y , WY ,
Ei

Y , RY , QY ∈ Sn, Ȳ ∈ Rn×n, U i
Y ∈ Smn and general

matrices K̄i, K̄i
d, K̄i

d̄
∈ Rnu×n for i ∈ R such that

P i
Y > P r

Y , i = 1, 2 . . . r − 1 (14)
ψ̄iilk < 0, i, l, k ∈ R (15)

ψ̄ijlk + ψ̄jilk < 0, i < j, i, j, l, k ∈ R (16)

where

ψ̄ijlk =

[
Ψ̄ijlk NTS
∗ −S

]
,

N =
[
0n,(m+2)n In 0n

]
,

Ψ̄ijlk = ŴT
P P̃iŴP + ŴT

R R̃ŴR + ŴT
U ŨilkŴU

+sym(C̄D̄ij) + diag
{
0(m+3)n,−S

}
,

Ũilk = diag
{
U i

Y , −U l
Y , E

i
Y +ΘY , −Ek

Y

}
,

R̃ = diag
{
(
h1

m
)2RY + h2

2QY + h2
12WY ,

−RY , −QY , −WY ,
}
,

D̄ij =
[
AiȲ +BiK̄j 0n,(m−1)n

1
2
(AdiȲ +BiK̄

j
d)

1
2
(AdiȲ +BiK̄

j

d̄
) −Ȳ h12

2
Adi

]
,

C̄ =
[
In

m+1︷ ︸︸ ︷
0n · · · 0n δIn 0n

]
ŴP =

[
0n,(m+2)n In 0n

In 0n,(m+3)n

]
,

P̃i =

[
0 P i

Y

P i
Y 0

]
,
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ŴR =

 0n,(m+2)n In 0n
In −In 0n,(m+2)n

In 0n,mn −In 0n,2n

0n,mn In −In 0n,2n

 ,
ŴU =

[
WU 02n(m+1),2n

]
,

ΘY =

r−1∑
ρ=1

βρ(P
ρ
Y − P r

Y ). (17)

Moreover, if the above conditions have feasible solutions,
the controller gain matrices in (3) are given by

Ki = K̄iȲ
−1, Ki

d = K̄i
dȲ

−1, Ki
d̄ = K̄i

d̄Ȳ
−1.

Proof: Omitted here for the length limitation of the
paper. Interested readers could refer to [17] for detailed
derivation.

Remark 3: Make the linear transformation ra =
h1+h2

2 , rd = h2−h1

2 , then ra and rd represent the center and
the radius of the delay range respectively. Given rd > 0
as a sufficiently small scalar and ra > rd, the proposed
theorems can be applied to the constant time delay case. In
this situation, two-term approximation technique contributes
little to reduce the conservatism, while the delay partitioning
technique mainly accounts for the conservatism reduction.
Thus, the proposed methods work efficiently not only for
time varying delay case but also for constant time delay case.

Remark 4: If the assumption (A) cannot be met, that is ,
λ̇i(t) is unavailable, the above theorems can also be adapted
to be independent of λ̇i(t). One only need to set Pi = P in
Theorem 1 or similarly P i

Y = P in Theorem 2 and at the
same time, take the invalidate constraints (10) and (14) off
the two theorems respectively.

IV. SIMULATION RESULTS AND COMPARISONS

In this section, numerical simulations of two examples
are presented to illustrate the effectiveness of the proposed
methods. And comparisons with existing results in recent
publications are also demonstrated.

Example 1: (Stability Analysis) Consider the following
fuzzy system with a time-varying delay, which has been used
in many papers:

ẋ(t) =
2∑

i=1

λi(t) [Aix(t) +Adix(t− d(t))] ,

where Ai and Bi (i = 1, 2) are given as

A1 =

[
−2 0
0 −0.9

]
, A2 =

[
−1 0.5
0.1 −1

]
,

Ad1 =

[
−1 0
−1 −1

]
, Ad2 =

[
−1 0
0.1 −1

]
.

The calculated maximum allowable upper bound (MAUB)
h2 are tabulated in Table I under different values of lower
bound h1 and βi.

Applying Theorem 1 with Remark 3, the constant time
delay case (h1 = h2) has been investigated through using
Theorem 1. The last column of Table I shows that the
proposed IO approach is less conservative than the previous
results even in the large value βi and non-fractioning (m =

1) setting. Moreover, when delay rate upper bounds βi is
small and m > 1, significant improvement can be observed.

When considering the fast varying delay case (τ = ∞), the
2nd through 5th columns of Table I list the MAUBs derived
from [4], [6], [14], [11] comparing with the method using
Theorem 1 with Remark 2 under different values of h1. It’s
obvious that our method is superior than the previous ones.

To further illustrate the advantages of the proposed
method, Figure 1 draws the stability region in terms of h1 and
h2 according the data in Table I. The dash line represents
the border of h1 = h2. And the space between different
decorated lines and the border are regions where the system
is asymptotically stable. Note that the highest line which uses
Theorem 1 with βi = 0.5 and m = 3 apparently outperforms
all of the other methods. And another merit of the proposed
method lies in that the larger h1 is, the less conservative the
criterion is. This is ascribed to the fractioning of h1 and is
well illustrated by the slopes of the different lines. Note that
the slope of the top line obtained using Theorem 1 increases
as the lower bound h1 becoming larger. In contrast, other
lines almost keep the same slopes.

Table II compares the results of the slowly varying delay
case where h2 = 0.4 and τ = 0.1. It’s clear that Theorem
1 in this paper achieves better results than [4], [6], and far
better than the fast varying case (2nd column of Table I).

Example 2: (Controller Design) Consider the T-S system
in (2) with the following parameters, as in [18]:

A1 =

[
0 0.6
0 1

]
, A2 =

[
1 0
1 0

]
,

Ad1 =

[
0.5 0.9
0 2

]
, Ad2 =

[
0.9 0
1 1.6

]
.

and B1 = B2 = [1, 1]T , where the delay is considered as
time invariant.
This example is mainly used to compare the performances
under different feedback controllers. The results are obtained
using Theorem 2 with the delay partitioning number m = 3,
the tuning parameter δ = 1, and for different values of βi. To
allow this versatility in Theorem 2, simply set K̄i

d = K̄i
d̄
= 0

for the memoryless control or K̄i = 0 for the purely delayed
control.

The 2nd row shows the results of memory control where
both x(t− h1) and x(t− h2) are employed to feedback the
open-loop system in addition to the non-delay states x(t).
Therefore, the memory control strategy achieves the least
conservatism compared to memoryless control and purely
delayed control (4th row).

Note that the same example has been investigated in [14],
[18] and the reference therein. However, the best result
among these papers is 0.8420 of [18], which is conservative
than the memoryless control and even more conservative than
the memory control used here.
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TABLE I
COMPARISONS OF MAUB h2

THE FAST VARYING DELAY CASE

Method \ h1 0.4 0.8 1.2 h2

Lien et al. [6] 0.8829 1.0677 1.3181 1.5974
Tien et al. [14] 0.883 1.093 1.336 1.5974

Li et al. [4] 1.038 1.158 1.359 1.5974
Peng et al. [11] 1.1622 1.2808 1.4288 1.5974
Th. 1 m = 1 1.3428 1.3607 1.4499 1.6183

βi = 0.5 m = 3 1.3802 1.4627 1.6066 2.1563
βi = 5× 10k m = 1 1.2713 1.2962 1.4215 1.6008
k = 0, 1 m = 3 1.2988 1.3965 1.5603 2.0836

0 0.4 0.8 1.2 1.5974 2.1563 2.5
0

0.5

1

1.5

2

2.5

h
1

h 2

 

 

Theorem 1

Tian et al.

Lien et al.

Li et al.

Peng et al.

Fig. 1. Different Methods Comparing with Th. 1

V. CONCLUSION

This paper proposes an input-output framework for anal-
ysis and synthesis of T-S fuzzy systems with time varying
delay. A novel approximation method has been employed
to convert the original system into feedback interconnection
form. Based on the scaled small gain theorem, new delay-
range-dependent stability and stabilization conditions have
been derived by studying the bounded real property and H∞
control problem of the scaled forward subsystem. The given
numerical examples demonstrated the advantages and less-
conservatism over the existing results.

TABLE II
COMPARISONS OF MAUB h2

THE SLOWLY VARYING DELAY CASE WITH τ = 0.1

Method h1 = 0.4

Lien et al. [6] 1.4841
Li et al. [4] 1.4849

Th. 1 m = 1 1.5211
βi = 0.5 m = 3 1.5465

βi = 5× 10k m = 1 1.4943
with k = 0, 1 . . . 3 m = 3 1.5145

TABLE III
MAXIMUM ALLOWABLE CONSTANT TIME DELAY d

Controller βi = 0.01 βi = 0.1 βi = 10k, k = 0, 1

K, Kd, Kd̄ 1.432 1.400 1.397
K 1.414 1.382 1.366
Kd, Kd̄ 0.371 0.368 0.365
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