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Abstract— This paper presents a control design methodology
for n-dimensional nonholonomic systems. The main idea is that,
given a nonholonomic system subject to κ Pfaffian constraints,
one can define a smooth, N-dimensional reference vector field
F, which is nonsingular everywhere except for a submanifold
containing the origin. The dimension N ≤ n of F depends
on the structure of the constraint equations, which induces
a foliation of the configuration space. This foliation, together
with the objective of having the system vector field aligned
with F, suggests a choice of Lyapunov-like functions V . The
proposed approach recasts the original nonholonomic control
problem into a lower-dimensional output regulation problem,
which although nontrivial, can more easily be tackled with
existing design and analysis tools. The methodology applies
to a wide class of nonholonomic systems, and its efficacy is
demonstrated through numerical simulations for the cases of the
unicycle and the n-dimensional chained systems, for n = 3, 4.

I. INTRODUCTION

Control of nonholonomic systems has been a field of

rigorous research, motivated by both theoretical and practical

considerations. From a practical viewpoint, nonholonomic

systems model a wide class of mechanical systems, bringing

thus the need for methodologies addressing stabilization,

path, and trajectory tracking problems. From a theoretical

viewpoint, Brockett’s condition [1] and the results in [2] have

established that nonholonomic systems can not be asymp-

totically stabilized to a single equilibrium using smooth, or

even continuous, time-invariant feedback. To overcome this

limitation, research has focused on solutions that can be

broadly classified into two groups, those that employ time-

varying feedback, either smooth [3]–[7], or non-smooth with

respect to (w.r.t.) the state [8]–[11], and those that use time-

invariant, non-smooth state feedback. The latter approach

includes piecewise continuous [2], [12], discontinuous [13]–

[19], and hybrid/switching control solutions [20]–[23].

Among the variety of nonholonomic systems, the class of

n-dimensional chained systems has received special atten-

tion, in part because they model the kinematics of underactu-

ated mechanical systems, for instance of unicycle or car-like

mobile robots pulling trailers. Numerous control solutions

have been proposed, either smooth and time-varying which

yield slow convergence, or non-smooth which yield fast

(exponential) convergence; for this reason, the latter solutions

are preferable in practical aspects. In the latter case, the

control design often employs nonlinear state transformations
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[13], [15], [18], [19], [24]–[26] and the control laws are

extracted in the new coordinate system, using either linear

or nonlinear techniques. However, the coordinate transforma-

tions are not always straightforward and thus the derivation

of the control laws in general remains non-trivial.

This paper provides a framework for the construction of

such control laws, building on the geometric generalization

of one of our prior control designs. The considered nonholo-

nomic systems fall into the general class of drift-free systems

q̇ =

m∑

i=1

gi(q)ui, (1)

where q ∈ C is the configuration (state) vector, C is the

configuration space (an n-dimensional smooth manifold), ui

are the control inputs, gi(q) are the control vector fields,

i = 1, . . . ,m, whereas the considered nonholonomic Pfaffian

constraints are of the form

A(q)q̇ = 0, (2)

with A(q) ∈ R
κ×n. The main idea of the approach is that

one can define a smooth, N-dimensional reference vector

field F(·), given by a family of vector fields with certain,

desired properties (see Section II, II-A). The dimension N ≤
n and the analytic form of the vector field F are specified

by the explicit form (2) of the constraints in the following

sense: depending on the structure of A(q), the configuration

space C is trivially decomposed into F = L × T , where

L is the “leaf” space, T is the “fiber” space, dimL = N,

satisfying n = dimL + dimT . In the sequel, the local

coordinates x ∈ R
N on the leaf are called leafwise states

and the local coordinates t ∈ R
n−N on the fiber are called

transverse states. The vector field F(·) is defined tangent to

L in terms of the leafwise states x, and is non-vanishing

everywhere on L except for the origin x = 0 of the local

coordinate system. For each t ∈ T , all integral curves of

F(·) contain the origin x = 0 of the coordinate system on

the leaf that corresponds to t. As a consequence of defining

N < n, F(·) is singular (i.e. vanishes) on a submanifold

A that contains the origin; this singularity may necessitate

switching for initial conditions qi ∈ A. Away from the

singularity submanifold, F serves as a velocity reference for

(1). This means that, at each q ∈ C, the system vector field

q̇ ∈ TqC is steered to be made parallel to the vector field

F(·). This in turn implies that the constraint equations (2)

take the form A(q)F(q) = 0; we say in this case that F(q)
satisfies, or is consistent with, the constraints at q ∈ C (see

Section II). In this sense, one can use the available control

authority to steer the system vector field into the tangent
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bundle of the integral curves of F, and “flow” in the direction

of the reference vector field on its way to the origin. In

the sections that follow we show that these two objectives

dictate the choice of particular functions V , and enable one

to establish convergence based on standard techniques.

In relation to the authors’ prior work [27], this paper

views some of the earlier results from the new geometric

perspective and suggests new control laws. The framework

presented here allows the extension of the methodology to

systems with κ > 1 Pfaffian constraints. As a case study,

we treat the case of n-dimensional chained systems, n ≥ 3,

which are subject to κ = n− 2 constraint equations. Also, a

new class of N-dimensional vector fields F is adopted, which

is of simpler analytic form compared to those in [27].

With respect to existing nonholonomic control methods,

the novelty of this approach is that it recasts the original

problem of steering the state to the origin into a lower-

dimensional output regulation problem, and although it pre-

serves the nonholonomic nature of the original problem,

it offers a more favorable ratio of inputs versus states,

and allows a uniform stability analysis with standard tools.

The new geometric perspective exposes the interdependence

of the state variables and highlights a potential time-scale

decomposition, which permits the use of additional analysis

techniques, such as those related to singular perturbations

and slowly varying systems. In view of Brockett’s condition,

the solutions cannot be stable in the Lyapunov sense.

The paper is organized as follows: Section II presents the

construction of the reference vector fields F and the control

design for the unicycle, which is an example of systems

with a single Pfaffian constraint. Section III illustrates how

the proposed framework extends to n-dimensional chained

systems, where κ ≥ 1 constraints apply. Our conclusions

and plans for future extensions are given in Section IV.

II. CONSTRUCTION OF THE VECTOR FIELDS

A vector field F(·) : C → TC is said to be consistent

with the nonholonomic constraints (2) at a point q ∈ C, or

that it satisfies the consistency condition at q, if it fulfils the

constraint equations at q, i.e. if

A(q)F(q) = 0. (3)

Since A(q) ∈ R
κ×n, it follows that in some local

coordinates, the vector field F =
∑n

j=1 Fj
∂

∂qj
, where

{
∂

∂q1
, . . . , ∂

∂qn

}

are the unit basis vectors of the tangent

space TqC, is in the representation of an n-dimensional

vector-valued map. The explicit form of the condition (3)

affects the analytic form of F. To see how, consider the

resulting linear (in terms of Fj) system:

a11 F1 +a12 F2 + . . .+ a1n Fn = 0,
...

aκ1 F1 +aκ2 F2 + . . .+ aκn Fn = 0;

then, if for example A(q) contains one zero column, i.e.

if
[
a1j(q) . . . aκj(q)

]
T = 0 for some j ∈ {1, . . . , n},

the corresponding component Fj of the vector field does not

affect whether the constraints are satisfied or not, because

the linear map always sends Fj to zero. One could therefore

define a vector field F in which Fj = 0. Thus, since the

reference vector field does not specify any motion along qj ,

it may as well be independent of this variable, and be defined

as an N = (n − 1) dimensional vector field. In general, if

A(q) has 0 ≤ n0 < n zero columns, the dimension of the

vector field F can be N = n− n0. Note, however, that this

simplification comes at a cost: dropping some of the state

variables from the definition of F permits the latter to be

singular in a whole submanifold which contains the origin,

and forces the designer to use switching control for the cases

when the system is initiated on this submanifold.

The control strategy we consider can be summarized as

follows: Given (1) subject to (2):

1) find an N-dimensional vector field F(·) : L → TL, the

integral curves of which contain the origin x = 0 of the

local coordinate system, and

2) design a feedback control scheme to align the system

vector field q̇ ∈ TqC with F, and “flow” along F ensuring

that q̇ is non-vanishing everywhere but the origin q = 0.

A. The unicycle: A first example

To illustrate the strategy, consider the unicycle, given by

q̇ =
[
cos θ sin θ 0

]
T u1 +

[
0 0 1

]
T u2, (4)

where q =
[
x y θ

]
T ∈ C is the configuration vector,

C is the configuration space, x, y, θ are the generalized

coordinates, with x, y being the position coordinates and θ

the orientation w.r.t. a global cartesian coordinate frame G,

and u1, u2 are the control inputs. The κ = 1 nonholonomic

constraint is written in Pfaffian form as
[
− sin θ cos θ 0

]
q̇ = 0 ⇔ 〈a T(q), q̇〉 = 0,

where 〈·, ·〉 stands for the inner product. For a vector field

F = Fx
∂
∂x

+ Fy
∂
∂y

+ Fθ
∂
∂θ

to satisfy the consistency

condition (3), it should satisfy

[− sin θ cos θ 0 ]
︸ ︷︷ ︸

a T(q)

[
Fx

Fy

Fθ

]

= 0 ⇒ Fy cos θ − Fx sin θ = 0. (5)

In this case, the constraint vector a T(q) contains n0 = 1
zero element and thus the component Fθ does not affect

whether the consistency condition (5) is satisfied. One can

define Fθ = 0, and search for an N = n − n0 = 2
dimensional vector field F(·), in terms of Fx, Fy only. From

a geometric point of view, setting Fθ = 0 implies that,

for each q ∈ C, the vector field F(·) should lie in the

subspace W =
{
w ∈ TqC | w =

[
wx wy 0

]
T
}

of the

tangent space TqC of C. Thus, the vector field F(·) should

be tangent to the submanifold S = R
2. The submanifold S

is a 2-dimensional leaf of a codimension-1 foliation F =
L× T of the configuration space into C = R

2 ×S
1 (Fig. 1).

Consequently, the vector field F(·) is tangent to the leafwise

directions L = R
2 of F .

Let us now find an analytic expression of the vector field

F(·) : C → R
2, i.e. of the components Fx, Fy , based on
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Fig. 1. The foliation F of the 3-dimensional configuration space C of the
unicycle into C = R

2 ×S
1

the consistency condition (5). For each θ ∈ S
1, the condition

(5) is a linear equation in Fx and Fy . We can pick Fx =
‖F‖ cosφ and Fy = ‖F‖ sinφ, where ‖F‖ is the Euclidean

norm of the vector field at q ∈ C, and φ is the direction

of the vector F(q) w.r.t. a global frame G. The consistency

condition (5) then becomes

〈a T(q),F〉 = ‖F‖ sin(φ− θ) = 0. (6)

For a nonsingular vector field F, (6) implies that sin(φ −
θ) = 0 ⇒ φ − θ = ξπ, ξ ∈ Z. Then, for q → 0, (6)

reads θ → 0 ⇒ φ → ξπ, ξ ∈ Z; i.e. the direction φ of the

nonsingular vector field F should converge to either φ = 0
or φ = ±π, as q → 0.

This requirement justifies the choice of the 2-dimensional

vector field E(r) of the electric point dipole as a reference

vector field for the case of the unicycle.1 In [27], the vector

field E(r) in a workspace Ω ⊆ R
2 was approximated as

F(r) = λ
(
p T r

)
r − p+ p e−‖r‖2

, (7)

where λ > 2, r =
[
x y

]
T, p ∈ R

2. The vector p is selected

depending on the structure of a(q) at the origin: p is required

to lie on the (local manifestation of the) constraint surface

at the origin, in order to be consistent with the constraints:

〈a T(0),p〉 = 0 ⇒ [− sin(0) cos(0) 0 ]
[ px
py
pθ

]

= 0, (8)

where pθ = 0, for the same reason that Fθ can be set to

zero. The condition (8) is satisfied for px ∈ R and py = 0,

and since p should be non-zero, we set p ,
[
px 0

]
T with

px 6= 0. The vector field components Fx, Fy in (7) read

Fx = λpxx
2 − px + pxe

−(x2+y2), Fy = λpxxy, (9)

where λ > 2. In (9), the exponential e−‖r‖2

complicates the

derivation of control laws, and motivates a slight modifica-

tion of E(r), in the form

Fx = 3pxx
2 − px(x

2 + y2), Fy = 3pxxy. (10)

The resulting vector field is shown in Fig. 2(a). The vector

field (10) has the same desirable properties as (9), namely,

1The flow lines of E(r, ϕ) = 2p cosϕ

4πǫ0r
3
r̂ + p sinϕ

4πǫ0r
3
ϕ̂ are given by r =

r0 sin2(ϕ − ϕ1), r0 > 0, where (r, ϕ) are the polar coordinates of the
position vector r =

[

x y
]

T and (p, ϕ1) are the polar coordinates of the

dipole moment p ∈ R
2. Set ϕ1 = 0, i.e. take p =

[

px 0
]

T, px 6= 0,
then r → 0 implies that sinϕ → 0 ⇒ ϕ → ξπ, ξ ∈ Z.
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(a) The vector field F(r) on R
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(b) The vector field F(r) on C

Fig. 2. The vector field F(r) in the case of the unicycle.

has integral lines which contain the origin r = 0 and satisfy

(6) there, yet it is much simpler compared to (9). It is easy

to verify that (10) is given by

F(r) = λ
(
p T r

)
r − p

(
r T r

)
, (11)

for λ = 3. As expected, the dimension N = 2 of the vector

field is the dimension of the leafwise direction L = R
2,

and the vector field is in terms of the leafwise states x, y.

Inspired by this, we propose the following general class of

N-dimensional vector fields

F(x) = λ
(
p T x

)
x− p

(
x T x

)
, (12)

where N ≤ n, x ∈ R
N is the vector of the leafwise states,

p ∈ R
N and λ ≥ 2, which we call the N-polar vector fields.

In the following sections, we show that (12) can be used to

design controllers for a wide class of nonholonomic systems.

Going back to the unicycle, since Fθ = 0, the vector field

(10) on C does not vary along the transverse direction of the

foliation F (Fig. 2(b)).

To enable the alignment of the system’s vector field with

F, we define the map h(·) : C → R

h(q) = 〈a T(q),F〉. (13)

If h(q) = 0, F locally belongs to the null space of the

constraint co-vector a T(q), and can therefore be realized

locally as a linear combination of the control vector fields

gi(q). Thus we can treat h(q) 6= 0 as an error variable, or

output, which should be regulated to zero. For a nonsingular

vector field F, h(q) = 0
(6)
⇔ {θ − φ = 0 or θ − φ = ±π}.

In this case, the orientation θ of the unicycle is tangent to

the integral line of the vector field (10).

Getting h(q) → 0 in the case of the unicycle is realized

by making θ → φ+ ξπ, ξ ∈ Z. Define the consistency error

s = θ − φ and force the dynamics ṡ = −ks, k > 0 on it,

by choosing u2 as

θ̇−φ̇ = −k(θ − φ)
(4)
⇒ u2 = −k(θ − φ) + φ̇, (14)

where φ̇ =
(3y Fx −4xFy) cos θ+(3xFx +2y Fy) sin θ

Fx
2+Fy

2 u1.

The quantity φ̇ is not defined when ‖F‖ = 0, i.e. at

the singular points of F on the submanifold A = {q ∈

2833



0 1 2 3 4 5
−2

−1

0

t

x

0 1 2 3 4 5
−1

−0.5

0

t

y

0 1 2 3 4 5
0

0.5

1

t

θ

(a) Unicycle trajectories

0 1 2 3 4 5
−2

−1

0

t

x
1

0 1 2 3 4 5
−2

0

2

t

x
2

0 1 2 3 4 5
−2

0

2

t

x
3

(b) 3-d chained trajectories

Fig. 3. System response for the unicycle and the 3-d chained system

C | q =
[
0 0 θ

]
T}, θ ∈ S

1. Thus if qi ∈ A, switching to a

different control law should occur, for instance to u2 = −kθ.

The conditions (13), (14) determine the motion of the

system in the transverse direction. With the choice of (14)

the unicycle aligns itself with F as it moves from leaf to leaf.

Along the leaves, on the other hand, the system should be

driven to the origin of each local (x, y) coordinate system.

In order to analyze the dynamics on the leaves, we consider

a continuously differentiable function V in terms of the

leafwise states x, y and the consistency error s

V =
1

2
(x2 + y2 + s2) =

1

2

(
x2 + y2 + (θ − φ)2

)
,

and take its time derivative along the system trajectories as

V̇
(14)
= (x cos θ + y sin θ)u1 − k(θ − φ)2. Then, choosing the

control input u1 as u1 = −k1 sgn(x cos θ+y sin θ)‖r‖, k1 >

0, where sgn(a) = 1 for a ≥ 0, and sgn(a) = −1 for a < 0,

yields V̇ = −k1(x cos θ+y sin θ) sgn(x cos θ+y sin θ)‖r‖−
k(θ−φ)2 ≤ 0. Then one has V̇ (0) = 0, since φ

∣
∣
x=0,y=0

= 0.

According to LaSalle’s invariance principle [28], and given

that V is positive definite, the system trajectories converge

to the largest invariant set contained in the set Ω = {q ∈
C | V̇ (q) = 0}. The set Ω is given as Ω = Ω1 ∨ Ω2,

where Ω1 = {q ∈ C | {x cos θ + y sin θ = 0} ∧ {θ = φ}}
and Ω2 = {q ∈ C | {x = y = 0} ∨ {θ = φ}}. After some

algebra, one gets Ω1 = {q ∈ C | {x = 0} ∧ {θ = π}}, and

Ω2 = {q = 0}. One can easily verify that Ω1 is not an

invariant set, since for qi =
[
0 y π

]
T the system has

u1 6= 0 and thus escapes Ω1, whereas Ω2 is an invariant set.

Consequently, the largest invariant set reduces to the origin,

and thus the system trajectories converge to Ω2 = {q = 0}.

The closed-loop trajectories are depicted in Fig. 3(a).

III. CHAINED SYSTEMS

Consider the n-dimensional chained system










ẋ1

ẋ2

ẋ3

...

ẋn










=










1
0
x2

...

xn−1










u1 +










0
1
0
...

0










u2, (15)

where q =
[
x1 x2 x3 . . . xn

]
T ∈ R

n the state vector

and u1, u2 the control inputs. The system is subject to κ =

n− 2 nonholonomic constraints, written in Pfaffian form as







−x2 0 1 0 . . . 0
−x3 0 0 1 . . . 0

...
...

...
...

. . .
...

−xn−1 0 0 0 . . . 1















ẋ1

ẋ2

...

ẋn







=








0
0
...

0







, (16)

where A(q) ∈ R
(n−2)×n. The constraint matrix A(q) has

n0 = 1 zero column, which is associated with the generalized

coordinate x2. In this case, one can define Fx2
= 0, and look

for an N = (n − 1) dimensional vector field F(·), in terms

of Fxj
, where j ∈ {1, 3, . . . , n}.

Thus, the configuration space R
n is foliated into R

N ×R,

where
[
x1 x3 . . . xn

]
T ∈ R

N are the leafwise states and

x2 ∈ R is the transverse state. The vector p ∈ R
N should

satisfy the constraints at the origin,

[ 0 0 1 0 ... 0
0 0 0 1 ... 0
...

...
...

. . .
...

0 0 0 0 ... 1

]

︸ ︷︷ ︸

A(0)∈R
κ×n






p1

0
p3

...
pn




 =

[ 0
0
...
0

]

⇒
p1 6= 0,

p3 = . . . = pn = 0

where by definition p2 = 0. Take p =
[
1 0 . . . 0

]
T ∈

R
N and λ = 3, then (12) yields

Fx1
= 2x1

2 − x3
2 − x4

2 − . . .− xn
2,

Fx3
= 3x1x3, Fx4

= 3x1x4, . . . , Fxn
= 3x1xn. (17)

Define the κ = (n − 2) maps hk(·) : R
n → R as hk(q) =

〈ak
T(q),F〉, where ak

T(q), k = 1, . . . , κ are the constraint

vectors. This results to

h1(q) = −x2 Fx1
+Fx3

, . . . , hκ(q) = −xn−1 Fx1
+Fxn

.

Each hk(q) 6= 0 is an output which should be regulated to

zero. This can be achieved if xn−1 →
Fxn

Fx1

, ∀n ≥ 3.

A. The n = 3 dimensional chained system

The derivation of the control laws u1, u2 can be simplified

if one considers the analytic expressions of the outputs

hk(q). Take for instance the n = 3 dimensional chained

system, and the corresponding κ = n− 2 = 1 map

h1(q) = −3x1(x1x2 − x3) + x2(x1
2 + x3

2).

One can require that each one of the terms of h1 converges

to zero. This occurs if, for instance, s1 , x1x2 − x3 → 0
and s2 , x1

2+x3
2 → 0. Then, one can take a continuously

differentiable function in terms of the errors s1, s2 and the

leafwise states x1, x3 as

V =
1

2
(x1x2 − x3)

2
+

1

2

(
x1

2 + x3
2
)
.

The time derivative of V along the system trajectories is

V̇
(15)
= x1(x1x2 − x3)u2 + (x1 + x3x2)u1. (18)

We would like to render V̇ negative semi-definite, and also

render the origin the largest invariant set contained in the set

Ω = {q ∈ R
3 | V̇ = 0}. Then, convergence of the system

trajectories to the origin can be established via LaSalle’s
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invariance principle, with the following caveat: the use of

the invariance principle requires that either V is radially

unbounded, or that the level surfaces of V are compact sets.

In this case neither of the two conditions are automatically

satisfied, since for x1 = x3 = 0, |x2| → ∞ ⇒ V = 0.

However, V is in fact radially unbounded as long as x1 6= 0;

then, if x1(0) 6= 0 and the system is controlled so that x1

maintains its sign and varies at a much slower time scale

compared to x2, x3, then the invariance principle applies.2

Thus, if x1 is assumed nonzero along the trajectories of (15),

the following positive definite function can be used

V1 =
1

2
(x1x2 − x3)

2 +
1

2
x3

2,

whose time derivative along the system trajectories is

V̇1
(15)
= x1(x1x2 − x3)u2 + x3x2u1. (19)

Then, if the control inputs u1, u2 are chosen so that the state

x1 converges to zero slowly, and also

V̇1 = −k2(x1x2 − x3)
2 − k3x3

2, (20)

for x1 6= 0 and k2, k3 > 0, the set where V̇1 vanishes is Ω1 =
{q|{x1x2 = x3} ∧ {x3 = 0}} ⇒ Ω1 = {q|x2 = x3 = 0}.

In order to design the control laws so that the above

analysis applies, one can first choose u1 = −k1x1, where k1
is a small positive scalar, to directly control the convergence

rate of the state x1. Then, combining (19), (20), one has

u2 = −k2(x2 −
x3

x1
) +

k1x3(x1x2 −
k3

k1

x3)

x1(x1x2 − x3)
. (21)

If one selects k3 = k1, (21) is further simplified to

u2 = −k2x2 + (k2 + k1)
x3

x1
, for x1 6= 0. (22)

For x1(0) 6= 0, ensuring that x1 converges to zero slower

than x2, one can have q(t) converge to the set Ω1. To tune the

gains k1, k2 so that this condition applies, consider that the

derivative (20) for k3 = k1 reads: V̇1 ≤ −2min{k2, k1}V1,

while the dynamics of x1 read: ẋ1 = −k1x1; picking k2 >

k1 implies that V1 vanishes at least twice faster than x1.

Finally, if x1(0) = 0 one needs to switch to a different

control strategy to drive the system away from the x1 = 0
surface, and then apply the scheme described above [30];

one option is u1(t) 6= 0, u2 = 0 for t < T , T > 0. The

closed-loop system trajectories of the 3-dimensional chained

system for k1 = 1, k2 = 2.5 are shown in Fig. 3(b).

B. The n > 3 dimensional chained system

The same guidelines can be applied to systems with κ > 1
constraint equations. In order to illustrate this, consider the

n = 4 dimensional chained system, and the N = n− 1 = 3
dimensional vector F(·) = Fx1

∂
∂x1

+ Fx3

∂
∂x3

+ Fx4

∂
∂x4

,

Fx1
= 2x1

2 − x3
2 − x4

2, Fx3
= 3x1x3, Fx4

= 3x1x4.

2Note that the requirement on a slowly-convergent x1 is frequently used
in the literature of chained systems [19], [29]. With this insight, we later
introduce a time-scale decomposition for the whole class of chained systems
which overcomes this limitation of the invariance principle and can bring
the analysis of these systems under a common framework.

Then, the corresponding κ = n− 2 = 2 maps are

h1(q) = −3x1(x1x2 − x3) + x2(x1
2 + x3

2 + x4
2),

h2(q) = −3x1(x1x3 − x4) + x3(x1
2 + x3

2 + x4
2).

Keeping in mind the (much simpler) structure of the outputs

hk in the n = 3 dimensional system, one could try to design

a control law by exploiting the existing lower dimensional

solution. To this end, note that for x4 = 0, the map h1(q)
coincides with the one in the n = 3 case, while the second

map reads h2(q) = −x3(2x1
2 − x3

2); then, x3 → 0 implies

that h2 → 0, while the convergence of x3 to zero is already

guaranteed for n = 3. Consequently, one could resort to

finding a way to force x4 → 0, while keeping the structure

of the control solution for the n = 3 case.

For the convergence of x4 to zero, one can require that

ẋ4 = −k4x4, k4 > 0. Substituting the system equation

yields x3u1 = −k4x4, which for the control input u1 =
−k1x1 reads k1x3x1 = k4x4. Taking x1 6= 0, for the same

reasons as in n = 3 case, one gets k1
x3

x1
= k4

x4

x1
2 ; if this

condition holds, then x4 → 0. Consequently, one has to

control so that the error s = k1
x3

x1

− k4
x4

x1
2 converges to

zero, while x1 converges slowly to zero using u1 = −k1x1.

In order to use the same control architecture as in the 3-

dimensional case, one can take u2

∣
∣
n=4

= u2

∣
∣
n=3

+ s ⇒

u2 = −k2x2 + (k2 + k1)
x3

x1
+ k1

x3

x1
− k4

x4

x1
2
⇒

u2 = −k2x2 + k3
x3

x1
− k4

x4

x1
2
, for x1 6= 0, (23)

where k3, k4 > k2. In order to study the convergence of

the overall system to the origin one can employ a singular

perturbation argument, and think of the system as decom-

posed into two subsystems with different time scales, where

the states z ,
[
x2 x3 x4

]
T constitute the boundary-layer

(fast) system, and the state x , x1 constitutes the reduced

(slow) system. Then, the closed-loop dynamics of the overall

system can be written as a singular perturbation model by

considering the (small) parameter ε = 1
k4

as

εẋ2 = −(1− a1ε)x2 + (1− a2ε)
x3

x1
−

x4

x1
2
,

εẋ3 = −εk1x1x2, εẋ4 = −εk1x1x3, ẋ1 = −k1x1,

where k2 = k4 − a1, k3 = k4 − a2. The boundary-layer

system has one isolated root, given for ε = 0 as x2 = x3

x1

−
x4

x1
2 . Taking y = x2 − (x3

x1
− x4

x1
2 ), one can easily verify that

dy
dτ

= −y, which implies that x2 converges exponentially and

at a very fast time scale to x3

x1
− x4

x1
2 . The remaining dynamics

of the boundary layer system then read ẋ3 = −k1x1x2 =
−k1x1(

x3

x1

− x4

x1
2 ) = −k1x3 + k1

x4

x1

, ẋ4 = −k1x1x3; for

x1 6= 0 a “frozen” parameter, the resulting linear subsystem

of x3, x4 has eigenvalues of negative real part, which are

independent of x1. Thus, with an appropriate choice of the

control gains where k4 sufficiently large so that ε → 0, one

has that the boundary layer system states converge to zero.

To tune the control gains, one can write the dynamics of the
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Fig. 4. The state trajectories of a 4-d chained system for k1 = 1, k2 = 10,
k3 = 42, k4 = 75.

boundary-layer states in matrix form




ẋ2

ẋ3

ẋ4



 =





−k2
k3

x1
− k4

x1
2

−k1x1 0 0
0 −k1x1 0









x2

x3

x4



 ⇒ ż = A1(x1)z,

and choose k1, k2, k3, k4 so that A1(x1) is a Hurwitz matrix,

and its eigenvalues are small compared to the eigenvalue of

the slow subsystem. The closed-loop system trajectories are

shown in Fig. 4. Note that the same procedure applies for

∀ n > 4 as well.

IV. CONCLUSIONS

This paper presented a control design framework for

n-dimensional nonholonomic systems, subject to κ ≥ 1
kinematic Pfaffian constraints. An N-dimensional vector field

F of the form (12) serves as reference to the system. The

dimension N ≤ n of F depends on the structure of the

constraints, and indicates a foliation F of the configura-

tion space. This foliation, along with aligning the system’s

vector field with F, indicates the choice of Lyapunov-like

functions V . Switching to different controllers occurs only

when the initial conditions belong into specific singularity

submanifolds A. The unicycle and chained systems for n =
3, 4 were considered as illustrative examples, and control

laws were constructed following the same guidelines. Future

work can be towards the extension of the methodology into

nonholonomic systems with dynamic Pfaffian constraints.
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