
 

 

 

 

Abstract- This paper proposes a distributed algorithm 

(Feasible Cooperation based Model Predictive Control, FC-

MPC) for the control of freeway traffic systems. FC-MPC will 

be tested and compared with global, local and communicative 

MPC techniques in a traffic network of 18 segments with ITS 

(Intelligent Transport Systems) control signals: ramp meters 

and variable speed limits. It will be shown that local techniques 

have a suboptimal behavior and that centralized techniques are 

very difficult, if not impossible, to implement in real time. 

Communicative MPC improves the behavior of the controlled 

system versus the decentralized one. However, the solution is 

still suboptimal with respect to the centralized performance. 

On the other hand, FC-MPC is closed to the centralized 

behavior and has a much lower computational effort that the 

centralized one. 

 

 
Fig.1. Instant of 3D freeway traffic simulation with ITS signals (ramp 

metering and variable speed limits) using Aimsun 6.0 

I. INTRODUCTION 

OWADAYS, the fuel economy, the reduction of the 

atmospheric emissions and the reduction of the traffic 

accidents are important issues of the government policies in 

the first world. Freeway traffic causes a significant part of 

the CO2 emissions, fuel consumption and road accidents in 

advanced societies. Over the last years, much research has 

been focused on solving these problems. Since the 

construction of new freeways is not always a viable option, 

or it is not economic, other solutions are needed.  In these 

cases, dynamic traffic control (the application of ITS control 

signals) may be a solution.  Dynamic traffic control measure 

the state of the traffic (densities, velocities and queues) over 

time and computes control signals that change the response 
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of the traffic system modifying its performance. Most useful 

control signals are “ramps metering” and “variable speed 

limits” (VSL) because they are easy to implement, relatively 

low cost and they allow a significant improvements in the 

Total Time Spent (TTS) by the drivers. Ramp metering and 

VSL have been already implemented successfully in USA, 

Germany, Spain, Netherlands and other countries [1] [2]. 

Nowadays, most of dynamic traffic control systems 

operate according to a linear and local control loop. 

However, the use of appropriate non-local and multivariable 

techniques will improve the reduction in the time spent by 

the drivers. Nonlinear centralized MPC is probably the best 

control algorithm choice for a small network as can be seen 

on [3]. The main problem of nonlinear centralized MPC is 

that the computational time quickly increases with the size 

of the network. Thus, centralized MPC could be impossible 

to apply for large networks. A possible solution is to 

consider the network as a set of subsystems controlling each 

subsystem by one independent MPC (i.e. to use a 

decentralized control scheme).  

The main objective of this paper is to design a control 

algorithm that can be implemented in real time for a large 

enough traffic network minimizing the total time spent by 

the drivers. In other to test its performance, the proposed 

algorithm will be compared with other possible solutions 

(decentralized MPC, centralized MPC, and communicative 

MPC) in a simulated freeway. 

II. METANET MODEL 

The model used for the design of the controller is the 

macroscopic traffic flow model METANET [4]. The 

METANET model is a second-order model that is discrete in 

both space and time. The METANET model represents a 

network as a graph where the links (m) corresponds to 

freeway stretches. Each link m is divided into Nm segments 

(i) of length Lm. Each segment is characterized dynamically 

by the traffic density     ( )and the mean speed     ( ) 

where k is the instant t=kT. T is the simulation time step (10 

s).     ( ) is the traffic flow which can be computed for 

each time step using: 

    ( )      ( )    ( )                           (1) 

 The system dynamics are described by two equations. The 

first one expresses the conservation of vehicles: 

    (   )      ( )  
 

    
(      ( )      ( ))      (2) 
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The second one expresses the mean speed as a sum of the 

previous mean speed (3), a relaxation term (4), a convection 

term (5) and an anticipation term (6): 
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Where  (    ( )) is the desired velocity of the drivers. 

The desired velocity models the static characteristic of the 

traffic system. In this equation appears the effect of the 

VSLs in the control variable             ( ): 
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In order to compute the flow that enters from a ramp 

metering the following equation is used: 

 

  ( )       ( (  ( )  
  ( )

 
)  

    ( )   (         ( )) (            ))              (8) 

 

Where   ( ) is the ramp flow demand,   ( ) is the 

control variable of the ramp metering and   ( ) is the queue 

of the ramp. The queue is a new dynamic variable 

characterized by   (   )    ( )   (  ( )    ( )) 

Moreover, when a ramp enters in a freeway a penalization 

term has to be added into velocity equation (3): 

 

     ( )    ( )     (    ( )   )            (9) 

 

For the first segment of the network, it has been 

considered than the upstream velocity       ( ) is equal to 

the current velocity     ( ). The same consideration is used 

for the density downstream the last segment. 

 

III. MODEL PREDICTIVE CONTROL (MPC) IN 

TRAFFIC CONTROL SYSTEMS 

A. Introduction 

  Model Predictive Control [5] is a flexible approach 

towards the dynamic traffic control problem that optimizes a 

cost function using a model in a receding horizon 

framework. In traffic control, the cost function minimizes 

the total time spent by all the drivers (or other performance o 

safety criteria) and the model used to be a macroscopic 

traffic model like METANET. By merely changing the cost 

function, the implemented policy can be changed. Moreover, 

MPC can take constraint into account and deal with slow 

changes in the behavior of the traffic systems. 

B. Quick description of model predictive control 

  MPC originated in the late seventies and has been 

developed considerably since them. The main ideas of model 

predictive control are basically: 

--Explicit use of a model to predict the process output at 

future time instants (prediction horizon) 

--Calculation of a control sequence minimizing an 

objective function 

--Receding strategy, so that at each instant the horizon is 

displaced towards the future, which involves the application 

of the first control signal of the sequence computed at each 

step. 

The various MPC algorithms only differ amongst 

themselves in the model used to represent the process and 

the cost function to be minimized. 

The main advantages of MPC are that it is very intuitive 

(during the design and the tuning), it can deal with complex 

model (for example, nor linear or multivariable models), it 

has compensation for dead times intrinsically, it can use 

future references… 

The main disadvantage is the computational time needed, 

especially for nor-linear multivariable cases. 

C. Previous works on MPC for traffic systems 

  MPC have been successfully tested in simulations in 

traffic systems. In [6], 2 simulations using ramp metering 

with ALINEA, most implemented local control algorithm in 

the computation of the ramp metering rates, or MPC control 

algorithm are compared obtaining a decrease of 1.3% in the 

ALINEA case and 6.9% in the MPC case. In [7], VSL are 

previously determined without an optimization of a 

macroscopic model (taking account of factors as maximize a 

bottleneck flow, the limits on queues lengths…). After this, 

the ramps metering are computed using MPC.  In [8], Ramp 

metering rates are computed previously with a given strategy 

(for example, ALINEA). Following, VSL are calculated 

using MPC with a simplified METANET model. Using this 

algorithm, a reduction of the 31,8 % in the TTS is  obtained 

in a simulation for a real network. In [3], it is demonstrated 

that the use of speed limits in a MPC control framework for 

traffic systems with ramps metering and VSLs can 

substantially improve the network performance.  The 

improvement of the network simulated in the TTS is a 

14.3% being just a 5.3% if only ramps metering are used.  In 

[9], a comparison between decentralized and centralized 

MPC algorithm is done concluding that the decentralized 

options are quite suboptimal (6.5 % against 26,4 %) and that 

the centralized MPC is impossible to implement in real time 

for a large traffic network.  

It is important to note that the reduction of the TTS 

strongly depends on the traffic condition. In order to 

properly compare two algorithms, they must be simulated in 

the same network and conditions. 

D. Distributed MPC 

  Most standard model predictive control implementations 

divide the system into several parts and apply MPC 

individually to the units. It is know that such a completely 

decentralized control strategy may result in unacceptable 
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control performance, especially if the units interact strongly 

as in control traffic systems. Completely centralized control 

of large networks is viewed by most practitioners as 

impractical and unrealistic. 

Distributed MPC algorithms [10] try to solve the problem 

in a parallel computation using the communication and 

cooperation between the different MPC controllers in order 

to achieve the centralized performance.   

In communicative MPC, the interactions between systems 

are modeled in order to that each controller takes account of 

the actions of its neighbors. In each interaction, the predicted 

trajectories are exchanged between controllers and the 

optimization is repeated with the new values of the control 

signal profiles of its neighbors. If the algorithm converges 

(proved for linear systems), the “Nash Equilibrium” is 

reached. However, the “Nash Equilibrium” is suboptimal for 

many systems such as the traffic system. 

In order to improve the behavior, cooperative MPC can be 

used. This technique modifies the objective functions of the 

local MPCs including also the objective functions of near 

agents properly weighted. The iterations and the exchange of 

information are done in the same way that communicative 

MPC. In feasible cooperation based MPC (FC-MPC), only 

the local variables corresponding to each controller are used 

as decision variables.  In [10], it is proven that FC-MPC 

converges to the optimal centralized MPC control (Pareto-

optimum). There are no proven results for non-linear cases. 

However, in this paper is possible to see how for traffic 

systems the centralized MPC behavior can be roughly 

reached using FC-MPC. 

IV. BENCHMARK 

A. Benchmark 

  In order to analyze the different controllers designed (on 

following sections) the network of Fig.2 has been analyzed.  

 
Fig.2. Traffic Network simulated.  

   The network is an 18 kms freeway with 3 Ramp 

Metering and 6 Variables Speed Limits. The freeway is 

discretized in 18 segments of 1000 meters (L) with 2 lanes 

( ). All the model parameters are considered equals for all 

the segments. The remaining model parameters are as 

follow: 
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  The input flow demands are chosen in order to obtain a 

simulation with a high density where the traffic control can 

improve substantially the behavior of the system. The 

simulation time chosen is two and half hour that corresponds 

to 75 controller sample time and 900 simulation steps. 

   In a small network, a centralized MPC could be 

computed in less time than the controller sample time 

allowing implementing the control signal in real time. 

However, the network analyzed is big enough to make 

impracticable a centralized controller. 

  Since there is only one destination, the biggest traffic 

density will appear in the last link. The control actions in 

links 1 and 2 will have a large effect in the third link that 

could increase the traffic jam in this link. Therefore, in this 

network (as happens in real traffic networks), the 

consideration of the effects of the neighboring controllers 

will be a critical issue. 

V. LOCAL AND GLOBAL MPC  

A. Local MPC 

  In order to design a local MPC controller, just one link 

has been considered as the full network. In this case, the 

three links have the same structure and, therefore, only will 

be necessary to design one controller which will be used in 

each link. The geometry of each link can be seen on Fig. 3. 

 
Fig.3. Stretch used in the local MPC 

 

 Since there is no communication between controllers, the 

future disturbances (estimation of upstream velocity and 

flow and downstream density) are defined by the simulation 

of the no-control case for any of the agents, which is 

obviously unreal. There are 3 control signals: VSLs on 

segments 3 and 4 and a ramp metering in segment 5. 

Thirteen variables are measured at each sample time (mean 

density and velocity of each segment and queue of the ramp) 

and used for the computation of the control signals. 
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  In this section, the main particularities of the MPC 

controller designed are explained (All the aspects which are 

not explained here have the general structure of a nonlinear 

MPC as in [5]): 

--The controlled system is subject to constraints in the 

maximum and minimum values of density, velocity, queue, 

control velocities of the VSLs and ramp metering rate.  

--The cost function used by the controller is the following: 

 

 (  )                               

∑   ∑ (  ( )   
     )    ( ) 

 (     )  

     
                           (10) 

   ∑  ‖ ( |  )   (   |  )‖
        

                                (11) 

+   ‖ (  |  )   (    |  )‖
                                      (12) 

 

Where    is the control step time t=     with   =120 s. 

The controller step time must be higher (in this case, 12 

times higher) that the simulation step time in order to have 

enough time for the computation of the optimization. The 

first term (10) of the cost function expresses the total time 

spent (TTS) by all the drivers during the prediction horizon. 

The second term (11) and the third term (12) express the 

variations of the control signals.  

 --The function “fmincon” of the Optimization Toolbox of 

Matlab have been used in order to compute the optimization. 

This function uses SQP optimization techniques. If all the 

variables (16*Np) with its respective constraints are 

considered, the optimization cannot be computed in a 

reasonable time. For this reason, only the control variables 

are included in the optimization explicitly. The constraints in 

velocity, density and queue are made soft including 

penalization terms in the cost function. 

--In order to try to avoid that the algorithm falls in a local 

minimum, an “evaluation procedure” is run before the 

optimization. During it, the TTS is evaluated for a grid of 

control values. The minimum value obtained in this 

evaluation is taken as initial value for the optimization. 

During the tuning of the controller, all the cost parameters 

have been set in order to obtain the minimum TTS. The 

results are very sensitive with the tuning and, therefore, a 

meticulous tuning procedure has to be done for each 

network. Especially important are the set of   (i.e. the 

parameters that multiply the penalization in the changes in 

the control signals).  

In theory, the penalization factors which multiply the soft 

constraints of density, velocity and queues have to be large. 

However, in practice, these factors cannot be too large or 

numerical problem will appear during the optimization. 

An increase in the horizons will improve the behavior and, 

at the same time, will increase the computational time 

needed. A good trade-off between cost and behavior is to 

choose the prediction horizon between 3 and 7. In general, 

the horizons size will depend on the size of the network. For 

a large network, more decrease in the TTS will be obtained 

increasing the horizons but more critical will be the 

computational time. It is important to note that the difference 

between the control horizon and the prediction horizon has 

to be small or 0, in order to obtain a good behavior. It 

happens because does not make sense to consider constant 

the control input during a long final period due to the system 

does not tend to an equilibrium point. If we set an (Np – Nc) 

too large, the system takes too much into account the final 

values of the control signal causing a suboptimal behavior. 

In this paper, Np = Nc = 3 for all the controllers. 

B. Centralized (global) MPC  

  The centralized MPC is a controller that optimizes the 

full network (18 kms) for a given prediction and control 

horizons. It has the same structure that local MPC but 

increasing the size of the network (i.e. the number of 

variables and constraints). The behavior of the network must 

be better or equal than any nor-centralized controller.  

  The main problem of this controller is that the number of 

decision variables is increased critically. In this case, the full 

network has 9 variables that need to be implemented at each 

time. Taking account of the control horizon, the optimization 

problem will need to find 9*Nc decision variables. Since the 

METANET model has 2 (or 3 in ramps) non-linear 

equations for each segment and for each time, the 

computational time needed will increase critically with the 

size of the network. In practice, a centralized MPC for a 

large scale traffic network will be impossible to implement 

in real time. 

VI. DISTRIBUTED MPC SOLUTIONS 

A. Local MPC with Communication after Sample 

   As can be seen on equation (2) and equation terms (5) 

and (6), the upstream flow and velocity and the downstream 

density is necessary in order to model a segment. Therefore, 

each MPC controller will need the current and future values 

of these variables. These variables can be seen as estimable 

disturbances. The communication between controllers after 

any sample will allow to local MPC to use an estimation of 

these disturbances that are defined by the predicted values of 

the adjacent MPC controllers (Fig. 4).  

 
 Fig.4. Controller interconnection structure. Where the variables are sent 

between controllers, also the predicted values of them during the prediction 
horizon are sent. 

 

  After any sample time, a controller will send to the 

previous controller the future predicted values of the density 

of its first segment and to the following controller will send 

the future predicted values of its output flows and of the 

velocity of the last segment. It will allow the others 

controllers to use a more real prediction of the disturbances 

(input flow and downstream density). However, the 

controllers will not take into account the effects of their acts 
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in the others parts of the networks. Thus, it can be said that 

this controller communicate but not cooperate with their 

neighbors. 

B. Communicative MPC 

  Communicative MPC uses the same procedure that the 

“Local MPC with Communication after Sample” but doing 

the process “communication + optimization” many times 

inside a controller step time. In this paper, 4 iterations were 

used and it was enough in the majority of the cases to 

converge to an equilibrium point, which is the Nash 

Equilibrium. This control technique has the same problem 

explained previously: the controllers do not cooperate and, 

therefore, two controllers could be counteracting. 

C. Cooperative MPC (Feasible Cooperation Based MPC) 

   In the cooperative MPC the local cost function of each 

controller is replaced by a global cost function (in this case, 

the TTS of the 18 segments). In order to reduce the 

computation effort, only the control signals of each part of 

the network (in this case, two VSLs and one ramp metering) 

are considered as decision variables. Therefore, the 

following cost function is considered: 

 

 (  )                              

∑ [ ∑ (    ( )(   )       ∑   ( )   ]
 (     )  

     
    (13)  

 ∑  ‖ ( |  )  (   |  )‖
        

                (14) 

+  ‖ (  |  )   (    |  )‖
             (15) 

 

  Where   is the full network (in a bigger network,   would 

be the part of the  network corresponding to the controller 

adding some upstream and  downstream parts) and O is the 

set of all origins. The first term of the cost function (13) 

considers the TTS of the full network (18 segments) and the 

second (14) and third term (15) expresses the variables of the 

control signals considered in each controller. In Cooperative 

MPC, all the variables contained in I could be optimized. 

However, it will increase the computational time since we 

are solving the centralized MPC in each iteration. FC-MPC 

tries to solve this problem reducing the decision variables to 

the local variables of the controller. Therefore, the 

optimization variables are: 

 

 ( |  )                                                                          (16)  

                
( |  ),               

( |  ),      
( |  )  

 

  In this simulation, FC-MPC uses only 4 iterations as 

Communicative MPC. In the majority of the sample times, it 

is enough to converge. It is important to note that the 

computational time required for each iteration rapidly 

decrease. It happens because we start each optimization in 

the optimum obtained in the previous iteration. As the 

optimization problem changes just a little bit when the 

variables are exchange, the optimization algorithm does not 

need to move to a very far point. 

 

VII. CONTROLLERS SUMMARY AND RESULTS 

A. Summary of the cost functions and decision variables 

 The various controllers use different cost function:    is 

the cost function associated to link i and   is the cost 

function associated to the full network (see Fig.5). 

 Fig.5. Local and Global TTS cost functions in the network. 

 

  In Table I the cost function and the decision variables 

used by each controller are summarized. The term         

expresses that the controllers are using the past values of the 

control variables of the link i but not the value that will be 

implemented in the current sample time. 
 

TABLE I 

SUMMARY OF THE DIFFERENT CONTROLLERS 

 Controller 1 Controller 2 Controller 3 

Local MPC     
  

  (  )    
  

  (  )    
  

  (  ) 

Local MPC 

with 

communication 

after sample 

   
  

  (    

               ) 

 

   
  

  (    

               ) 

 

   
  

  (    

               ) 

 

Communicative 

MPC 

   
  

  (       

  ) 

   
  

  (       

  ) 

   
  

  (       

  ) 

FC-MPC 
   
  

 (    

     ) 

   
  

 (    

     ) 

   
  

 (    

     ) 

Centralized 

MPC 
           

 (        ) 

 

B. Results 

  The controllers have been simulated using Aimsun 6.0 

software (see Fig. 6) supposing that the system response as a 

METANET model. In this program, it is also possible to use 

a microscopic model for the response of the system. 

However, it would be necessary a long calibration procedure 

and it is not clear that a microscopic model obtains more 

realistic results than a macroscopic model. 

 
Fig.6. Instant of 2D Simulation with Aimsun 6.0 of the controlled (using 

FC-MPC) and uncontrolled cases. 
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 The results of Table II have been obtained assuming that 

the real system responses according to the macroscopic 

METANET model used as control model. As can be seen on 

results, all the controllers reduce the TTS (Red is the 

reduction of the TTS in percentage with respect to the non-

linear case). At the same time, all the controllers keep the 

variables inside the constraints. In the table, MCT shows the 

maximum computation time (in the local case, MCT have 

been taken from the worst cases, i.e. more restrictive cases, 

of the 3 controllers). 
 

TABLE II 
RESULTS OF THE IMPLEMENTATION OF THE DIFFERENT CONTROLLERS 

 Hc Hp TTS Red MCT 

Uncontrolled system -- -- 1684 0 -- 

Local MPC without 

communication 
3 3 1573.6 6.5 51.6 

Local MPC with communication 

after sample 
3 3 1493.4 11.3 29.1 

Communicative MPC 3 3 1455.8 13.6 45.1 

Cooperative MPC (FC-MPC) 3 3 1262 25.1 55.1 

 5 7 1247.2 25.9 237.7 

Centralized MPC 3 3 1252.8 25.6 231.5 

 5 7 1238.8 26.4 1103.9 

 

Analyzing the results of the local MPC, it can be seen 

how the communication after sample increase substantially 

the reduction of the TTS (from 6.5% to 11.31%). 

If the communication is done inside the sample time the 

reduction in the TTS increase just from 11.31 % to 13.55 %. 

However, if cooperation is considered (using FC-MPC) the 

reduction achieves the 25.06 % (really close to the 25.6 % of 

the centralized MPC).  It shows that the Nash Equilibrium is 

quite suboptimal in freeway traffic systems using 

METANET model. The reason is that a good traffic control 

system needs to the take into account the effects of the own 

traffic control system in other parts of the network. Without 

this consideration, solving a traffic jam in one part of the 

network could increase the number of vehicles that arrive to 

a bigger traffic jam, getting worse the global behavior of the 

network. 

On the other hand, it can be seen how the FC-MPC 

approximates the centralized behavior in just a few iterations 

(4 in this case) showing the Pareto-Optimum can be reached. 

 Looking the computational time needed it is possible to 

see how the centralized controller cannot be implemented in 

real time for all sample even with a small horizons such as 3. 

However, decentralized computations requires between a 

third and fifth of the computational effort making them 

implementable in real time. For higher horizons (5-7), the 

reduction of the TTS is increased a small percentage but the 

computational time is highly increased.  

It is important to note that the minimization of the TTS is 

just a criterion for the operation of the traffic system. Other 

objectives can be considered as the reduction of emission, 

the homogenization of the traffic flows or the minimization 

of fuel consumption. This is one of main advantages of 

Model Predictive Control; the policy can be changed just 

modifying the cost function without changing any other part 

of the controller.  

VIII. CONCLUSION 

 In this paper, an 18 km freeway has been simulated for 

some different control techniques. The first conclusion is 

that a fully decentralized controller for a traffic network is 

quite suboptimal (6.5 % against 26.4 % in the reduction of 

the TTS) and that centralized NLMPC is not implementable 

in real traffic network due to the computational effort 

needed. The second is that a distributed MPC algorithms 

converge, in this case, in just a few iterations and can be 

computed in a fraction of the time needed by the centralized 

one (between a third and a fifth). The third conclusion is that 

Nash Equilibrium is far away to Pareto Optimal Equilibrium 

in this traffic system (i.e. cooperation is a key issue). In the 

simulation, the TTS decreases from 11.31% to 25.06% 

thanks to cooperation. It allows that FC-MPC almost reaches 

the centralized behavior fulfilling the design objectives. 

Moreover, as was shown in previous papers, it can be seen 

how the ITS signals substantially improves the performance 

of the traffic system, especially if the control signals are 

computed using model predictive control. 
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