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Abstract— In this paper we propose a new algorithm for
solving nonlinear optimal control problems which is called
real-time sequential convex programming (RTSCP). The main
difference between this approach and the previous real-
time iteration algorithms is that RTSCP linearizes only the
nonconvex parts of the problem while it preserves all the
convex structure which can be exploited by standard convex
optimization techniques. The algorithm is applied to the control
of a hydro power plant with 259 states and 10 controls. The
numerical results show the benefits that the proposed method
offers when compared to standard ones.

1. INTRODUCTION

Model predictive control (MPC), or receding horizon
control, is a powerful tool for many applications [1], [13],
[15]. MPC requires the online solution of an optimization
problem at every sampling time. The sequence of problems
to be solved depends parametrically on the value of the
state at the current time and maintains the same structure.
This fact can be exploited numerically to obtain a solution
efficiently.

When nonlinear model predictive control (NMPC) is
considered, traditional optimization methods do not always
meet the real-time requirements imposed by real-world
applications. The nonlinear programming problems (NLPs)
to be solved at every sampling time are usually solved with
iterative methods. When the NLP problem is obtained by
a direct single or multiple shooting method [4], sequential
quadratic programming (SQP) is often used to solve the
resulting optimization problems. SQP solves a sequence of
quadratic approximations of the NLP problem to converge to
a local solution. Another iterative technique which is often
used in practice is the constrained Gauss-Newton method
[3]. A major problem for the real-time application of these
methods is that the computational cost corresponding to
every iteration may be high, making the total time required
to obtain a solution large compared to the sampling time. To
overcome this problem, the real-time iteration (RTI) scheme
was introduced in [9]. RTI does not solve the optimization
problem until completely converged but uses a special
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transition between subsequent problems and performs only
one iteration of the optimization method such as SQP or
Gauss-Newton. If the subsequent problems to be solved
online do not vary too much and the sampling time is
sufficiently small, the approximated solution given by RTI
tracks the exact solution of the optimization problem within
a given accuracy. Proofs of nominal stability of RTI can be
found in [8], [10].

One possible drawback in the application of standard RTI
is that the local approximation used to characterize the NLP
problem is always quadratic programming models (QP) and
may not capture important features, e.g., convexity of the
problem, resulting in a poor tracking of the optimal solution.
This problem may occur in particular when some nonlinear
convex constraints are linearized.

a) Paper contribution: In this paper, we present a
new algorithm in which we combine RTI with sequential
convex programming (SCP). Similarly to SQP, also SCP is
an iterative method. However, in the SCP algorithm only
the nonconvex parts of the problem are convexified while
all the convex structures of the problem are preserved and
exploited by using convex optimization techniques.

In the algorithm we propose real-time sequential convex
programming (RTSCP), we solve only one convex optimiza-
tion problem per sampling period. Like in standard SCP, we
keep all the convex structure of the NLP problem in order
to have a more faithful model compared to the one obtained
by linearizing all the constraints.

To show the effectiveness of the method we apply it to the
control of a hydro power plant with 259 state variables and
10 control inputs. The numerical simulation is implemented
and compared to the conventional approach as well as the
real-time Gauss-Newton approach.

b) Paper organization: Section 2 introduces sequen-
tial convex programming and real-time sequential convex
programming. In Section 3 we describe the problem for-
mulation we used in the simulations. Section 4 presents
the numerical results. The conclusion and future work are
discussed in Section 5.

c) Notation: For a given vector x ∈Rn, the norm ‖x‖S
is defined as ‖x‖S =

√
xT Sx for any symmetric positive

definite matrix S, |‖X‖| is the Frobenius norm of a matrix X .
For a vector valued function g from Rn to Rm, g′(x)∈Rm×n

denotes its Jacobian matrix at x.
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2. SEQUENTIAL CONVEX PROGRAMMING AND
REAL-TIME IMPLEMENTATION

As mentioned in the introduction, the underlining opti-
mization problem to be solved in NMPC is a parametric
optimal control problem. By using the initial valued em-
bedding technique [8], the parameter linearly enters into this
problem as x(t0)− ξ = 0, where x(t0) is an initial state at
t0 and ξ the parameter (see formula (11) in Section 3).
Then, by applying a direct transcription, this optimal control
problem can be transformed into a structured (and large-
scale) parametric nonlinear optimization problem, where the
nonlinear equality constraint originates from the dynamics
by integrating it on a given discretized time grid.

This problem can be summarized in the following form:
min
w∈Rn

f (w)

s.t. g(w)+Mξ = 0,
w ∈Ω.

(P(ξ ))

Here, without loss of generality, we assume that f : Rn→R
is convex, Ω∈Rn is a nonempty, closed convex set, g :Rn→
Rm is nonlinear and continuously differentiable, ξ ∈P is
referred to as an input parameter, where P is a nonempty
closed subset in Rp, and M ∈Rm×p is a given matrix which
embeds the parameter ξ into the nonlinear constraints. In
other cases, slack variables can be used.

Let us denote by S(ξ ) the set of Karush-Kuhn-Tucker
(KKT) points z̄(ξ ) = (w̄(ξ ), λ̄ (ξ )) of problem P(ξ ).
Throughout this section, we assume that S(ξ ) is nonempty
for all ξ ∈P . As usual, w̄(ξ ) is referred to as a stationary
point and λ̄ (ξ ) is the Lagrange multiplier associated with
the constraint g(w)+Mξ = 0. We also assume that f and g
are twice continuously differentiable on their domains.

This section presents two algorithmic frameworks. First,
we propose a local optimization method for solving nonlin-
ear optimization problems, which is called sequential con-
vex programming (SCP). The nonlinear equality constraint
g(w) + Mξ = 0 is convexified by linearizing it around a
given point w j, while maintaining the convexity of the
objective function and the constraint w∈Ω. Then, we apply
the SCP method to solve problem P(ξ ) when parameter ξ

varies on its domain. Such a method is called a conventional
NMPC approach or a full-SCP algorithm. Finally, we com-
bine the SCP algorithm and the real-time iteration scheme in
[9] in order to obtain a real-time SCP algorithm for solving
P(ξ ).

A. Sequential convex programming

For a given w j ∈ Ω, we linearize the nonlinear equality
constraint g(w) +Mξ = 0 around this point to obtain the

following convex optimization subproblem:
min
w∈Rn

f (w)

s.t. g(w j)+g′(w j)(w−w j)+Mξ =0,
w ∈Ω,

(P(w j,ξ ))

Now, we fix the parameter ξ at ξ = ξ̄ . The SCP algorithm
for solving P(ξ̄ ) is described as follows.
SCP ALGORITHM.
Initialization. Find an initial point w0 ∈Ω and set j := 0.
Iteration. For a given w j ∈Ω, perform the following steps.

Step 1: Evaluate g(w j) and its Jacobian matrix g′(w j).
Step 2: Solve the convex subproblem P(w j,ξ ) with ξ =
ξ̄ to obtain a solution w j

+. Set ∆w j := w j
+−w j as a

search direction.
Step 2: If ‖∆w j‖ ≤ ε and ‖g(w j)‖ ≤ ε then terminate.
Otherwise, find an appropriate step size t j ∈ (0,1]. Set
w j+1 := w j + t j∆w j. Increase j by 1 and go back to
Step 1.

The step size t j in the SCP algorithm can either be fixed at
a certain value in (0,1] or be dynamically updated using a
line search procedure based on a merit function (see [14]).
If we choose t j = 1 for all j then the algorithm is called a
full-step SCP method. For solving the convex subproblem
P(w j,ξ ), one can implement an optimization algorithm such
as an interior point method to exploit the problem structure
or rely on available software. Further discussion on the local
convergence of the SCP algorithm can be found in [20].

B. Real-time SCP algorithm

Now, we consider a real-time implementation of the
SCP algorithm by combining it with the real-time iteration
scheme [9]. Instead of solving completely the nonlinear
optimization problem at each sampling time, we only per-
form one step of the full-step SCP algorithm, i.e. j = 0 to
obtain an approximate solution. In other words, one convex
subproblem of the form P(w j,ξ ) is required to be solved at
each time interval. In summary, the algorithm is presented
as follows.
REAL-TIME SCP ALGORITHM (RTSCP).
Initialization. Fix a starting parameter ξ0 ∈P and solve
approximately problem P(ξ ) for fixed ξ = ξ0 to get a
solution w0 ∈Ω as an initial point. Set k := 0.
Iteration. Perform the following steps:

Step 1: Evaluate g(wk) and the Jacobian matrix g′(wk).
Step 2: Obtain a new value of parameter ξk+1 ∈P .
Step 3: Solve the convex subproblem P(wk,ξk+1) to
get a solution wk+1.
Step 4: Set k := k+1 and go back to Step 1.

In NMPC applications treated with shooting methods, eval-
uating the function g and its Jacobian matrix at a certain
point is usually time consuming due to the integration
of the dynamics. On the other hand, solving the convex
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subproblem P(w j,ξ ) requires less computational time by
using an appropriate solver and exploiting the structure
of the problem. In the application investigated in Section
4, the first task amounts up to 80%− 90% of the total
computational time.

C. The stability of RTSCP.

Finally, we show that under certain assumptions, the
RTSCP algorithm ensures the stability of the approximate
solutions on the moving horizon. In other words, if the
algorithm starts from z0 close to the true KKT point z̄0 of
P(ξ0) then in the sampling time, the approximation z1 is
still close to the true KKT point z̄1 of P(ξ1) provided that
∆ξ0 := ξ1−ξ0 is sufficiently small.

To prove a theoretical result on the stability of the tracking
error, two essential assumptions are required. For a given
ξk ∈P , we denote z̄k = (w̄k, λ̄ k) := z̄(ξk) and make the
following assumptions.
Assumption A1. The following perturbed convex problem

min
w

f (w)+δ T
f (w− w̄k)

s.t. g(w̄k)+g′(w̄k)(w− w̄k)+Mξk = δg,
w ∈Ω,

(1)

has a unique KKT point z̄(δ f ,δg). Moreover, this KKT
mapping is Lipschitz continuous with respect to δ = (δ f ,δg)
with a Lipschitz constant γ > 0, i.e.:

‖z̄(δ )− z̄(δ ′)‖ ≤ γ‖δ −δ
′‖,

for all δ and δ ′ in a neighborhood of the origin.
Assumption A2. The value of the second derivative
∇2

wLg(w,λ ) of Lg(w,λ ) := λ T g(w) at z̄k with respect to w
satisfies: |‖∇2

wLg(w̄k, λ̄ k)‖| ≤ κ with κγ < 1.
Discussion on Assumptions A1 and A2. Assumption A1
relates to the strong regularity of the KKT system of prob-
lem P0(ξ ) at z̄k. The concept of strong regularity was first
introduced by Robinson in [16] and is a standard assumption
in optimization as well as nonlinear analysis [17]. If the
convex set Ω is polyhedral and the linear independence con-
straint qualification (LICQ) holds then the strong regularity
is equivalent to the strong second order sufficient optimality
condition in optimization [11]. Assumption A2 regards the
second term in the Hessian matrix of the Lagrange function
L(w,λ ) := f (x) + λ T [g(x) + Mξ ] at a KKT point, which
requires it to be sufficiently small. This is similar to the
κ-assumption in the analysis of constrained Gauss-Newton-
type methods [5].

Theorem 2.1 (Contraction Theorem): Suppose that As-
sumptions (A1)-(A2) are satisfied. Then there exist neigh-
borhoods Nτ of ξk, Nρ of z̄k and a single-valued function
z̄ : Nτ →Nρ such that for all ξk+1 ∈Nτ , z̄k+1 := z̄(ξk+1)
is the unique KKT point of P(ξk+1) in Nρ with respect

to parameter ξk+1 (i.e. S(ξk+1) 6= /0). Moreover, for any
ξk+1 ∈Nτ , zk ∈Nρ we have

‖zk+1− z̄k+1‖ ≤ ω‖zk− z̄k‖+ c0‖M(ξk+1−ξk)‖, (2)

where ω ∈ (0,1), c0 > 0 are two given constants, and zk+1

is a KKT point of P(wk,ξk+1).

6
z̄(ξ )

-
ξ
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Fig. 1. The approximate sequence {zk}k along the KKT trajectory z̄(·).

Discussion of Theorem 2.1. As stated in the estimate (2),
if the RTSCP algorithm starts from z0 close to z̄0, i.e.
‖z0− z̄0‖ ≤ ε for a given ε > 0, then when ∆ξ0 = ξ1− ξ0
is sufficiently small, the next approximation z1 is still close
to the true KKT point z̄1, i.e. ‖z1− z̄1‖ ≤ ε . By induction,
we can conclude that the whole approximate sequence {zk}
generated by the RTSCP algorithm tracks the true KKT
sequence {z̄k} along the moving horizon provided that the
initial point z0 is sufficiently close to z̄0 and the parameter
change ∆ξ k is sufficiently small. This observation is illus-
trated in Fig. 1. A detailed discussion on the assumptions
as well as the proof of Theorem 2.1 can be found in [21].

3. CONTROL OF A HYDRO POWER PLANT: PROBLEM
FORMULATION

A. Dynamic model

We consider a hydro power plant composed of several
subsystems connected together. The system includes six
dams with turbines Di (i = 1, . . . ,6) located along a river
and three lakes L1,L2 and L3 as visualized in Fig. 2. U1
is a duct connecting lakes L1 and L2. T1 and T2 are ducts
equipped with turbines and C1 and C2 are ducts equipped
with turbines and pumps. The flows through the turbines
and pumps are the controlled variables. The complete model
with all the parameters can be found in [18]. The dynamics
of the lakes is given by

∂h(t)
∂ t

=
qin(t)−qout(t)

S
, (3)

where h(t) is the water level and S is the surface area
of the lakes; qin and qout are the input and output flows,
respectively. The dynamics of the reaches Ri (i = 1, . . . ,6)
is described by the one-dimensional Saint-Venant partial
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Fig. 2. Overview of the hydro power plant.

differential equation:
∂q(t,y)

∂y + ∂ s(t,y)
∂ t = 0,

1
g

∂

∂ t

(
q(t,y)
s(t,y)

)
+ 1

2g
∂

∂y

(
q2(t,y)
s2(t,y)

)
+ ∂h(t,y)

∂y +I f (t,y)−I0(y)=0.
(4)

Here, y is the spatial variable along the flow direction of
the river, q is the river flow (or discharge), s is the wetted
surface, h is the water level with respect to the river bed, g
is the gravity, I f is the friction slope and I0 is the river bed
slope. The partial differential equation (4) can be discretized
by applying the method of lines in order to obtain a system
of ordinary differential equations. Stacking all the equations
together, we represent the dynamics of the system by

ẋ(t) = f (x,u), (5)

where the state vector x ∈ Rnx includes all the flows and
the water levels and u ∈ Rnu represents the input vector.
The dynamic system consists of nx = 259 states and nu =
10 controls. The control inputs are the flows going in the
turbines, the ducts and the reaches.

B. Nonlinear MPC formulation

Associated with the hydro power plant dynamic model
(5), we are interested in the following NMPC setting:

min
x,u

J(x(·),u(·))
s.t. ẋ = f (x,u), x(t) = x0(t),

u(τ) ∈U, x(τ) ∈ X , τ ∈ [t, t +T ]
x(t +T ) ∈RT ,

(6)

where the objective function J(x0(t),u(·) is given by

J(x(·),u(·)) :=
∫ t+T

t

[
‖x(τ)− xs‖2

P +‖u(τ)−us‖2
Q
]

dτ

+‖x(t +T )− xs‖2
S. (7)

Here P, Q and S are given symmetric positive definite
weighting matrices, and (xs,us) is a steady state of the
dynamics (5). The control variables are bounded by lower
and upper bounds, while some state variables are also
bounded and the others are unconstrained. Consequently, X
and U are boxes in Rnx and Rnu , respectively, but X is not

necessarily bounded. The terminal region RT is a control-
invariant ellipsoidal set centered at xs of radius r > 0 and
scaling matrix S, i.e.:

RT :=
{

x ∈ Rnx | (x− xs)
T S(x− xs)≤ r

}
. (8)

To compute matrix S and the radius r in (8) the procedure
proposed in [7] can be used. In [12] it has been shown
that the receding horizon control formulation (6) ensures the
stability of the closed-loop system under mild assumptions.
Therefore, the aim of this example is to track the steady state
of the system and to ensure the stability of the system by
satisfying the terminal constraint along the moving horizon.
To have a more realistic simulation we added a disturbance
to the input flow qin at the beginning of the reach R1 and
the tributary flow qtributary.

The matrices P and Q have been set to

P := diag
(

0.01
(xs)2

i +1
: 1≤ i≤ nx

)
, (9)

Q := diag
(

4
(ul +ub)

2
i +1

: 1≤ i≤ nu

)
, (10)

where ul and ub is the lower and upper bound of the control
input u.

C. A short description of the multiple shooting method

In this subsection we briefly describe the multiple shoot-
ing formulation [4] which we use to discretize the continu-
ous time problem (6). The time horizon [t, t +T ] of T = 4
hours is discretized into N = 16 shooting intervals with
every ∆τ = 15 minutes such that τ0 = t and τi+1 := τi +∆τ

(i = 0, . . . ,N−1). The control u(·) is parametrized by using
a piecewise constant function u(τ) = ui for τi ≤ τ ≤ τi +∆τ

(i = 0, . . . ,N−1).
Let us introduce N + 1 shooting node variables si (i =

0, . . . ,N). Then, by integrating the dynamic system ẋ =
f (x,u) in each interval [τi,τi +∆τ], the continuous dynamic
(5) is transformed into nonlinear equality constraints of the
form:

g(w)+Mξ :=


s0−ξ

x(s0,u0)− s1
. . .

x(sN−1,uN−1)− sN

= 0. (11)

Here, vector w combines all the controls ui and shooting
node variables si as w = (sT

0 ,u
T
0 , . . . ,s

T
N−1,u

T
N−1,s

T
N)

T , ξ is
the initial state x0(t) which is considered as a parameter,
and x(us,xs) is the result of the integration of the dynamics
from τi to τi +∆τ where we set u(τ) = ui and x(τi) = si.

The objective function is approximated by

J(w) =
N−1

∑
i=0

[
‖si− xs‖2

P +‖ui−us‖2
Q
]
+‖sN− xs‖2

S (12)
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while the constraints are imposed only at τ = τi (the
beginning of the intervals)

si ∈ X , ui ∈U, xN ∈RT ,(i = 0, . . . ,N−1). (13)

If we define Ω :=UN×(XN×RT )⊂Rnw then Ω is convex.
Moreover the objective function (12) is convex quadratic.
Therefore, the resulting optimization problem is indeed of
the form P(ξ ). Note that Ω is not a box but a curved convex
set due to RT .

The nonlinear program to be solved at every sampling
time has 4563 decision variables and 4403 equality con-
straints.

4. NUMERICAL EXPERIMENTS

In this section we present the results of the simulation we
performed and we give some details on the implementation.
To evaluate the performance of the method proposed in this
paper we implemented the following algorithms:
• Full-NMPC – the nonlinear program obtained by mul-

tiple shooting is solved at every sampling time until
convergence by several SCP iterations.

• RTSCP – the solution of the nonlinear program is
approximated by applying only one SCP iteration using
the initial value embedding. The structure of Ω is
preserved.

• RTGN – the solution of the nonlinear program is
approximated by solving a quadratic program obtained
by linearizing the dynamics and the terminal constraint
xN ∈ RT . This method can be referred to as a con-
strained Gauss-Newton method.

A. Implementation details

To compute the set RT a mixed MATLAB and C++ code
has been used. The computed value of r is 1.687836, while
the matrix S is dense, symmetric and positive definite.

The quadratic programs (QPs) and the quadratically con-
strained quadratic programming problems (QCQPs) arising
in the algorithms we implemented can be efficiently solved
by means of interior point or other methods [6]. In our
implementation, we used the commercial solver CPLEX
which can deal with both types of problems.

All the tests have been implemented in C++ running on a
16 cores workstation with 2.7GHz Intel R©Xeron CPUs and
12 GB of RAM. We used CasADi, an open source C++
package [2] which implements automatic differentiation to
calculate the derivatives of the functions and offers an
interface to CVODES from the Sundials package [19] to
integrate ordinary differential equations and compute sensi-
tivities. The integration has been parallized using openmp.

In the full-NMPC algorithm we perform at most 5 SCP
iterations for each time interval. We terminate the SCP algo-
rithm when the relative infinity-norm of the search direction
as well as of the feasibility gap reached the tolerance ε =

10−3. To have a fair comparison of the different methods,
the starting point w0 of the RTSCP and RTGN algorithms
has been set to the solution of the first full-NMPC iteration.

The disturbance on the flows qin and qtributary are gen-
erated randomly and varying from 0 to 25 and 0 to 8,
respectively. All the simulations are perturbed at the same
disturbance scenario.

B. Numerical results

We simulated the algorithms for Hp = 30 time intervals.
The average time required by three methods is summarized
in Table I. Here, AvIntTime is the average time in

TABLE I
THE AVERAGE TIME OF THREE METHODS

Methods AvEvalTime[s] AvSolTime[s] Total[s]
Full NMPC 240.84 (84.4%) 39.81 (14.0%) 285.43
RTSCP 79.42 (82.2%) 15.27 (15.8%) 96.56
RTGN 81.37 (92.2%) 5.07 (5.7%) 88.25

seconds needed to evaluate the function g and its Jacobian;
AvSolTime is the average time for solving the QP or
QCQP problems; Total corresponds to the sum of the
previous terms and some preparation time. On average, the
full-NMPC algorithm needed 3.7 iterations to converge to a
solution.

It can be seen from Table I that evaluating the function
and its Jacobian matrix costs 80%−90% of the total time.
On the other hand, solving a QCQP problem is almost
three times more expensive than solving a QP problem.
The most time consuming procedure at every iteration is
the integration of the dynamics and its linearization.

The control profiles of the simulation are illustrated in
Figures 3 and 4. Here, the first figure shows the flows in
the turbines and the ducts of lakes L1 and L2, while the
second one plots the flows to be controlled in the reaches
Ri (i = 1, . . . ,6). We can observe that the control profiles
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Fig. 3. The controller profiles qT1 , qC1 , qT2 and qC1 .

achieved by RTSCP are close to the profiles obtained by
Full-NMPC, while the results from RTGN oscillate in the
first intervals due to the violation of the terminal constraint.
The terminal constraint in the RTSCP algorithm is active in
many iterations.

Figure 5 shows the relative tracking error of the solution
of the nonlinear programming problem of the RTSCP and
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Fig. 4. The controller profiles of qR1 , . . . ,qR6 .

RTGN algorithms when compared to the full-NMPC one.
The error is quite small in RTSCP while it is higher in the
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Fig. 5. The relative errors of RTSCP and RTGN compared to Full-NMPC.

RTGN algorithm. This happens because the linearization of
the quadratic constraint can not adequately capture the shape
of the terminal constraint xN ∈RT .

5. CONCLUSION

A new method called real-time sequential convex pro-
gramming for solving NMPC is proposed. This method
is suitable for problems that possess convex substructures
which can be efficiently handled by using convex optimiza-
tion techniques.

Our future work is to develop a complete theory for this
approach and apply it to new problems. For example, in
some robust control problem formulations as well as robust
optimization formulations, where we consider worst-case
performance within robust counterparts, a nonlinear pro-
gramming problem with second order cone and semidefinite
constraints needs to be solved.
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