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Abstract— A class of discontinuous vector fields is investi-
gated, where equilibria are generically positioned in an interval
in the phase space, and equilibria are not isolated points.
The dynamics near such an equilibrium set is studied, and
it is shown that the structural stability of trajectories near
the equilibrium sets is determined by the local dynamics near
the endpoints of this interval. Based on this result, sufficient
conditions for structural stability of equilibrium sets in planar
systems are given, and two new bifurcations are identified. The
results are illustrated by application to a controlled mechanical
system with dry friction.

I. INTRODUCTION

In this paper we consider the structural stability of a class
of discontinuous vector fields, which are discontinuous when
one of the velocities is zero. The discontinuous term in
the vector field compensates the other terms of the vector
field when these are sufficiently small, such that equilibrium
points are generically not isolated, but occur on an interval
of a curve in the phase space. This feature, which is distinct
from the behaviour of smooth differential equations, makes
this class of discontinuous vector fields suitable to model
nonlinear mechanical systems with dry friction. In these
systems, equilibrium sets occur generically: a single mass
experiencing dry friction and gravity is not expected to move
towards a local minimum, but can stick to all positions where
the slope of the surface is sufficiently small.

Dry friction appears at virtually all physical interfaces that
are in contact, and the dynamics of systems with friction
can be understood by studying the class of discontinuous
vector fields presented in this paper. It is well known
that dry friction may induce limit cycling, thereby deteri-
orating performance, cf. [1], [2]. Moreover, the presence
of friction-induced equilibrium sets in engineering systems
compromises position accuracy in motion control systems,
such as robot positioning control, see e.g. [2]–[4]. Despite
countermeasures such as friction compensation, steady-state
errors induced by the existence of equilibrium sets can
often not be avoided. Hence, the stability properties of the
equilibrium sets are of interest and the effect of variations
of control parameters on the equilibrium sets should be
considered. The force exerted by dry friction can be modelled
with a discontinuous friction law, such that the dynamics
is described by a discontinuous vector field. Despite the
fact that such a friction law is not accurately describing the
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microscopic interaction forces in the frictional contact, and
can not show hysteretic behaviour, this friction law can yield
an accurate description of the equilibrium set and the nearby
dynamics, see e.g. [4]–[6].

The equilibrium sets of the discontinuous vector fields may
be stable or unstable in the sense of Lyapunov. In addition,
equilibrium sets may attract all nearby trajectories in finite
time, cf. [7]. A natural question is to ask how changes in
(control) system parameters influence these properties. To
answer this question, structural stability of equilibrium sets
is studied.

For this purpose, the local phase portrait near an equilib-
rium set is studied and possible bifurcations are identified.
Under a non-degeneracy condition, the local dynamics is
shown to be structurally stable near the equilibrium set,
except for two specific points, namely the endpoints of the
equilibrium set. With this result, the study of the structural
stability of the dynamics near the equilibrium sets can be
restricted to the analysis of the two endpoints of the equilib-
rium set; it is not necessary to consider the whole interval in
the phase space. Local analysis near these endpoints yields
a listing of the bifurcations that are possible.

Although quite some results exist on the asymptotic stabil-
ity and attractivity of equilibrium sets of mechanical systems
with dry friction, see [7]–[9], very few results exist that study
structural stability and bifurcations of equilibrium sets, see
[10]. In [7], sufficient conditions are presented for attractivity
and asymptotic stability of equilibrium sets using Lyapunov
theory and invariance results. In [8], conditions are presented
under which trajectories converge to the equilibrium set in
finite time. Using Lyapunov functions, the attractive proper-
ties of individual points in the equilibrium sets are analysed
in [9]. Bifurcations of equilibrium sets are studied in [10] for
systems with dry friction. In this reference, the appearance or
disappearance of an equilibrium set is studied by solving an
algebraic inclusion; however, nearby trajectories and stability
properties are not considered.

Bifurcation results considering the larger family of differ-
ential inclusions, that contains the specific class of vector
fields considered in this paper, are either focussing on bifur-
cations of limit cycles, or bifurcations of isolated equilibrium
points. Bifurcations of limit cycles of discontinuous systems
are studied using a return map, see [11]. However, this
approach is only applicable when the friction interface is
moving, such that the discontinuity surface does not contain
equilibria. Bifurcations of equilibria in two or three dimen-
sions are studied extensively, see [12] for review of existing
results. Here, the dynamics is understood by following the
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trajectories that become tangent to a discontinuity boundary.
In [12], a generic classification is presented of bifurcations
with codimension one and two in planar differential inclu-
sions. However, the special structure of differential inclusions
describing mechanical systems with dry friction, which we
analyse in the present paper, is considered to be non-
generic in [12]. In (nonlinear) mechanical systems with dry
friction, equilibrium sets occur generically, and persist when
physically relevant perturbations are applied.

In this paper both the existence of an equilibrium set and
the structural stability of the local phase portrait are inves-
tigated. Sufficient conditions for structural stability of the
phase portrait are given, where we restrict our attention to a
neighbourhood of the equilibrium set. At system parameters
where the conditions for structural stability are not satisfied,
two bifurcations are identified that do not occur in smooth
systems.

The outline of this paper is as follows. First, in Section II
we introduce the class of discontinuous vector fields consid-
ered in this paper. In Section III the main result is presented,
which states that structural stability of equilibrium sets is
determined by the local dynamics of two specific points,
which are the endpoints of the equilibrium set. Furthermore,
classes of systems are identified that are structurally stable. In
Section IV, two bifurcations of the equilibrium set of planar
systems are presented. In Section V, the results of this paper
are illustrated with an example of a controlled mechanical
system with dry friction, where a bifurcation occurs when a
control parameter is changed. Concluding remarks are given
in Section VI.

II. MODELLING

M2M1

FT ∈ −FsSign(ẋ)FT

xy1

Fig. 1. Mechanical system subject to dry friction.

Consider a mechanical system that experiences friction on
one interface between two surfaces that move relative to each
other in a given direction. Let x denote the displacement in
this direction and ẋ denote the slip velocity, see Fig. 1 for
an example. For an n−dimensional dynamical system this
implies that n− 2 other states y are required besides x and
ẋ. These states contain the other positions and velocities of
the mechanical system, and possibly controller and observer
states, e.g. in the case of a feedback-controlled motion
system. The system given in Fig. 1 can be modelled with the
additional states y =

(

y1 ẏ1
)T

. Using the states x, ẋ and
y, the dynamics are described by the following differential
inclusion, cf. [13]:

ẍ− f(x, ẋ, y) ∈ −FsSign(ẋ),
ẏ = g(x, ẋ, y),

(1)

where f and g are sufficiently smooth, Fs 6= 0, and Sign(·)
denotes the set-valued sign function Sign(p) = p|p|−1, for
p 6= 0 and Sign(0) = [−1, 1].

Note that (1) also encompasses systems with other non-
linearities than dry friction, e.g. geometric nonlinearities
in robotic systems. Introducing the state variables q =
(

x ẋ yT
)T

, the dynamics of (1) can be reformulated as:

q̇ ∈ F (q), (2)

F (q)=







F1(q), q ∈ S1 :={q ∈ R
n : h(q)<0},

F2(q), q ∈ S2 :={q ∈ R
n : h(q)>0},

co(F1(q), F2(q)), q ∈ Σ:={q ∈ R
n : h(q) = 0},

(3)
where q ∈ R

n, co(a, b) denotes the smallest convex hull
containing a and b, and F1, F2 and h are given by:
F1(q) =

(

ẋ f(x, ẋ, y) + Fs g(x, ẋ, y)T
)T

, F2(q) =
(

ẋ f(x, ẋ, y)− Fs g(x, ẋ, y)T
)T

, and h(q) = ẋ.

In most existing bifurcation results for differential inclu-
sions, see e.g. [11]–[13], parameter changes are considered
that induce perturbations of the function F in (2). In these
studies also the first component of F is perturbed, which
implies that the case where the discontinuity surface coin-
cides with the set where the first element of F is zero is
considered non-generic by these authors. This implies that
the existence of an equilibrium set in (2) is non-generic.
However, parameter changes for the specific system (1) only
yield perturbations of f and g in (2). We show that for the
class of systems under study, i.e. mechanical systems with
set-valued friction, equilibrium sets will occur, generically.

To study trajectories at the discontinuity surface Σ, the
solution concept of Filippov is used, see [13]. Three domains
are distinguished on the discontinuity surface. If trajectories
on both sides arrive at the boundary, then we have a stable
sliding region Σs. If one side of the boundary has trajectories
towards the boundary, and trajectories on the other side leave
the boundary, this domain is called the crossing region Σc

(or transversal intersection). Otherwise, we have the unstable
sliding motion on the domain Σu. The mentioned domains
are identified as follows:

Σ := {q ∈ R
n : h(q) = 0},

Σs := {q ∈ Σ : LF1
h > 0 and LF2

h < 0},
Σu := {q ∈ Σ : LF1

h < 0 and LF2
h > 0},

Σc := {q ∈ Σ : (LF1
h)(LF2

h) > 0},

(4)

where LFi
h, i = 1, 2, denotes the directional derivative of h

with respect to Fi, i.e. LFi
h = ∇hFi(q).

The vector field q̇ = F s(q) during sliding motion at q ∈
Σu∪Σs is defined using Filippov, [13], as follows. For each
q, the vector F s(q) is the vector on the segment between
F1(q) and F2(q) that is tangent to Σ at q:

q̇ = F s(q) : =
LF1

h(q)F2(q)−LF2
h(q)F1(q)

LF1
h(q)−LF2

h(q) , (5)

=
(

0 0 g(x, 0, y)T
)T

. (6)

Since LF1
h = LF2

h+ 2Fs, it follows from (4) that Fs > 0
implies that no unstable sliding occurs, and Fs < 0 implies
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Fig. 2. Sketch of discontinuity surface Σ of (2) with n = 3 and Fs > 0,
containing an equilibrium set E .

that no stable sliding occurs. The resulting phase space is
shown schematically in Fig. 2 for the case n = 3.

The equilibrium set is a segment of a curve on the discon-
tinuity surface Σ when we adopt the following assumption.

Assumption 1: The functions f and g are such that

f(0, 0, 0) = 0, g(0, 0, 0) = 0 and

(

∂f(x,0,y)
∂x

∂f(x,0,y)
∂y

∂g(x,0,y)
∂x

∂g(x,0,y)
∂y

)

is

invertible. Furthermore, the map
(

f

g

)

is proper1.

For systems satisfying this assumption, the equilibrium set
E of (1) is a one-dimensional curve as shown in Fig. 2.
The equilibrium set of a differential inclusion is given by
0 ∈ F (q), which is equivalent with (q ∈ Σs ∪ Σu and
LF2

hF1(q)− LF1
hF2(q) = 0), since (q2 = 0 and 0 ∈

co{f(q)−Fs, f(q)+Fs}) is equivalent with q ∈ Σs∪Σu and
g(q) = 0 is equivalent with LF2

hF1(q) − LF1
hF2(q) = 0

for q ∈ Σs ∪ Σu, see (5).
The equilibrium set E is divided in interior points p ∈ I

and the two endpoints E1, E2 as follows:

E := {q ∈ Σu ∪ Σs : LF2
hF1 − LF1

hF2 = 0},

I := {q ∈ E : F1 6= 0 and F2 6= 0},

Ei := {q ∈ E : Fi = 0}, i = 1, 2. (7)

Note, that interior points are called pseudo-equilibria in
[11]. The endpoints E1 and E2 satisfy LF1

h = 0 or LF2
h =

0, respectively, hence they are positioned on the boundary of
the stable or unstable sliding mode as given by (4).

III. STRUCTURAL STABILITY OF THE SYSTEM NEAR THE

EQUILIBRIUM SET

In this section, trajectories near the equilibrium set are
studied, and the influence of perturbations of (1) on this
phase portrait is considered. For this purpose, we define
the topological equivalence of phase portraits of (1) in
Definition 1. We note that this definition is equal to the
definition for smooth systems, see, e.g., [14].

Definition 1 ( [13]): Two dynamical systems in open do-
mains G1 and G2, respectively, are topologically equivalent

if there exist a homeomorphism from G1 to G2 which carries,
as does its inverse, trajectories into trajectories.
This equivalence relation allows for homeomorphisms that
do not preserve the parameterisation of the trajectory with

1A continuous map is proper if the inverse image of any compact set is
compact.

time, as required for topological conjugacy defined in [14].
Throughout this paper, we assume that f and g smoothly
depend on system parameters. When a parameter variation
of a dynamical system A yields a system Ã which is not
topologically equivalent to A, then the dynamical system
undergoes a bifurcation.

With the definitions given above, we can formulate our
main result in the following theorem.

Theorem 1: Assume (1) satisfies Assumption 1. If ∂g
∂y

∣

∣

∣

p

has no eigenvalue λ with real(λ) = 0 for any p ∈ E , then the
dynamical system (1), in a neighbourhood of the equilibrium
set, can only experience bifurcations near the endpoints E1

or E2.
Proof: The proof of Theorem 1 is given in [15].

To prove Theorem 1, the influence of perturbations on
systems (1) are studied. If perturbations of f and g of (1)
can not yield a dynamical system which is not topologically
equivalent to the original system, then the occurrence of
bifurcations is excluded. Hence, structural stability of (1) is
investigated, which is defined as follows.

Definition 2: A system A given by (1) is structurally

stable for perturbations in f and g if there exists an ǫ > 0
such that any perturbed system Ã, given by (1) with f̃ and
g̃, is topologically equivalent to system A when

|f − f̃ | < ǫ,

∥

∥

∥

∂(f−f̃)
∂q

∥

∥

∥ < ǫ, ‖g − g̃‖ < ǫ,

∥

∥

∥

∂(g−g̃)
∂q

∥

∥

∥ < ǫ,

(8)
holds for all q ∈ R

n.
If these properties hold locally in a neighbourhood of a set
J ⊂ R

n, then the local phase portrait near J is structurally
stable. Note, that this definition corresponds to C1-structural
stability as defined by [16], and is tailored to dynamical
systems described using second-order time derivatives of the
state x.

Note that perturbations of (1) in f and g do not cause
perturbations of the first component of F (·) in (2), as
observed e.g. in [16] or [13, page 226]. One consequence
of this fact is that equilibrium sets occur generically in
systems (1), although they are non-generic in systems (2).
In experiments on mechanical systems with dry friction,
such equilibrium sets are found to occur generically, see e.g.
[17]. For this reason, perturbations satisfying (8) are used
throughout this paper. System A can be structurally stable
for perturbations in f and g, whereas the corresponding
system (2) is not structurally stable for general perturbations
of F . Small changes of system parameters cause small
perturbations of f and g and their derivatives. However, the
first equation of (2) will not change under parameter changes.
Namely, this equation represents the kinematic relationship
between position and velocity of a mechanical system, such
that perturbation of this equation does not make sense for
the class of physical systems under study. Hence, structural
stability for perturbations in f and g excludes the occurrence
of bifurcations for small variations of the system parameters.

Small perturbations of system (1) cause the equilibrium set
E to deform, but the equilibrium set of the perturbed system
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remains a smooth curve. Hence, there exist a smooth coordi-
nate transformation that transforms the original equilibrium
set E to the equilibrium set of the perturbed system.

A. Structural stability of planar systems

In this section, sufficient conditions are presented for
the structural stability of planar systems, restricted to a
neighbourhood of equilibrium sets. In the planar case, (1)
and (2) reduce to, respectively:

ẍ− f(x, ẋ) ∈ −FsSign(ẋ), (9)

q̇ ∈F (q)=























F1(q)=

(

q2
−f(q1, q2) + Fs

)

, h(q)< 0

F2(q)=

(

q2
−f(q1, q2)− Fs

)

, h(q)>0

co(F1(q), F2(q)), h(q)=0,

(10)

where q=
(

x ẋ
)T

and h(q)=q2. In this case, the Filippov
solution q̇=F s(q)=0, ∀q∈Σs∪Σu, see (5), such that the set
of interior points of the equilibrium set satisfies I=Σs∪Σu.

Throughout this section it is assumed that Fs > 0,
which corresponds to the practically relevant case where
dry friction dissipates energy. According to Theorem 1,
structural stability of (9), restricted to a neighbourhood of
the equilibrium set, is determined by the trajectories of
(9) near the endpoints. Analogous to the Hartman-Grobman
theorem, which presents sufficient conditions for structural
stability of the phase portrait near an equilibrium point in
smooth systems based on the linearised dynamics near this
point, sufficient conditions for structural stability of (9) are
formulated based on the linearisation of F1 and F2 near the
endpoints of the equilibrium set.

For ease of notation, we define Ak := ∂Fk

∂q

∣

∣

∣

q=Ek

, k =

1, 2, which determines the linearised dynamics in Sk near the
endpoints of the equilibrium set, with Sk, k = 1, 2, defined
in (3). In the other domain, i.e. S3−k, it follows from (10) that
the vector field is pointing towards the discontinuity surface.
To study the structural stability of planar systems (9), we
adopt the following assumption.

Assumption 2:

(i) The dry friction force satisfies Fs > 0;
(ii) The eigenvalues of Ak, k = 1, 2, are distinct and

nonzero.
Observe that (i) implies that the equilibrium point E persists
under perturbation of f , whereas (ii) concerns the linearised
vector field near the endpoints of E . Furthermore, (ii) im-
plies that Ak is invertible. The following theorem presents
sufficient conditions for structural stability of (9), restricted
to a neighbourhood of the equilibrium set.

Theorem 2: Consider a system A given by (9) that sat-
isfies Assumptions 1 and 2. Restricted to a neighbourhood
of the equilibrium set, system A is structurally stable for
perturbations in f .

Proof: The proof of Theorem 2 is given in [15].
The theorem implies that one can identify a number of differ-
ent types of systems (9) which, restricted to a neighbourhood
of the equilibrium set, are structurally stable.

IV. BIFURCATIONS

Since the class of systems (1) is a special case of systems
(2), many bifurcations of (2), e.g. those observed in [18],
can not occur in (1). In this section, bifurcations of (1) are
studied, restricting ourselves to planar systems, given by (9).

Theorem 2 states that Assumptions 1 and 2 together imply
structural stability. Hence, it seems a reasonable step to con-
sider parameter-dependent systems, and study the parameters
where the conditions on the differential inclusion (9), as
given in Assumption 2, no longer hold. In the following
sections, two bifurcations of planar systems (1) are identified
when Assumption 2(ii) is violated.

A. Real or complex eigenvalues

Consider system (9) where the eigenvalues of A1 change
from real to complex eigenvalues under a parameter vari-

ation. From (9) it follows that A1 =

(

0 1
a21 a22

)

, hence

the eigenvalues of A1 are distinct when a21 6= − 1
4a

2
22 and

the eigenvalues are both nonzero given a21 6= 0. Now, let
the first part of Assumption 2.(ii) be violated, such that the
eigenvalues are equal. In that case, we obtain a21 = − 1

4a
2
22.

Arbitrarily close to systems with a21 = − 1
4a

2
22 there

exist topologically distinct systems, since a system where
A1 has complex eigenvalues is topologically distinct from
a system where A1 has real eigenvalues. This follows from
the observation that there exists a stable or unstable manifold
containing E1 if and only if A1 has real eigenvalues. When
no stable or unstable manifold exist, there exists only one
trajectory converging to E1, which emanates from S2. This
case is topologically distinct from the situation where a stable
or unstable manifold exist, since in that case there exist more
trajectories converging to, or emanating from this point.

This bifurcation is illustrated with the exemplary system:

ẍ− a21x− a22ẋ ∈ −FsSign(ẋ), (11)

with Fs = 1, a22 = −0.1 and varying a21. In this
example, the matrices A1 and A2 are equal, such that both
endpoints undergo a bifurcation at the same value for a21.
This system shows a bifurcation when a21 = −0.0025, as
shown in Fig. 3. We refer to this bifurcation as a focus-
node bifurcation. According to [8], all trajectories of system
(11) will arrive in the equilibrium set E in finite time if and
only if a21 < − 1

4a
2
22 = −0.0025. For a21 ≥ 0.0025, the

matrices A1 and A2 have a real eigenvector corresponding
to an eigenvalue λ. The span of this eigenvector contains
trajectories that converge exponentially according to x(t) −
Ei = eλt(x(0)−Ei), i = 1, 2, which consequently does not
converge in finite time. Hence, this change of the attractivity
properties of the equilibrium set coincides with a bifurcation,
defined using topological equivalence as used in this paper.

B. Zero eigenvalue

Consider system (9) where an eigenvalue of A1 becomes

zero under parameter variation, where A1 =

(

0 1
a21 a22

)

.

This matrix has an eigenvalue equal to zero when a21 = 0.
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−2000 −1000 0 1000
−50

0

50

x

ẋ

(a) a21 = −0.001

−2000 −1000 0 1000
−50

0

50

x

ẋ
(b) a21 = −0.0025

−2000 −1000 0 1000
−50

0

50

x

ẋ

(c) a21 = −0.004

Fig. 3. System (11) with Fs = 1 and a22 = −0.1 showing a focus-
node bifurcation. The equilibrium set E is given by a bold line, the real
eigenvectors of the stable eigenvalues of A are represented with dashed
lines. The real eigenvectors are distinct for a21 > −0.0025, collide at
a21 = −0.0025 and subsequently become imaginary.

At the point E1 of the equilibrium set the vector field
satisfies F1(E1) = 0. By definition, the point E1 is an
endpoint of E , such that trajectories on Σ on one side of
E1 can cross Σ without sliding. This implies that the second
component of F1, denoted F1,2, evaluated on the curve Σ
changes sign at E1. Assuming that a21 = 0, since F1 is
smooth and F1,2 changes sign at E1, we obtain ∂kF1,2

∂xk

∣

∣

∣

E1

6=0

for an odd integer k ≥ 3, and ∂iF1,2

∂xi

∣

∣

∣

E1

= 0, for i =

1, . . . , k− 1. The equilibrium set E is the subset of Σ where
F2,2<0 and F1,2>0. The mentioned characteristics of F1,2

imply that a small parameter change can create two distinct
domains where F1,2>0 near E1, such that two equilibrium
sets are created. Analogue observations apply to E2.

This bifurcation is illustrated with the exemplary system:

ẍ− a21x− a22ẋ+ Fs + x3 ∈ −FsSign(ẋ), (12)

with Fs = 1, a22 = −1 and varying a21. The system
is designed such that the origin is always the endpoint of
an equilibrium set. The resulting phase portrait is given
in Fig. 4, and shows the mentioned bifurcation. At the
equilibrium points of this systems, the dry friction force (i.e.,
Fs(1+ Sign(ẋ))) can compensate the remaining forces (i.e.,
−a21x + x3) when ẋ = 0. Hence, at the equilibrium set
−a21x + x3 ∈ −Fs(1 + Sign(0)) = [−2, 0] holds, such
that a bifurcation occurs when a21 crosses zero. For a21 =
−0.1, one compact equilibrium set exists. For a21 = 0, an
eigenvalue of the system becomes zero and the corresponding
eigenvector is parallel to the equilibrium set. Note that, in this
case, both Assumptions 1 and 2(ii) are violated. For a21 > 0,
the equilibrium set splits in two separated equilibrium sets
where −a21x+x3 ∈ −Fs(1+Sign(0)), cf. Fig. 4(c). Another
bifurcation occurs when F1 and F2 are linear systems. In that
case, the equilibrium set grows unbounded when a21 → 0,
and becomes the complete line Σ.

V. ILLUSTRATIVE EXAMPLE

Theorem 1 is an important tool to study structural stability
and bifurcations of higher-dimensional systems as well. This
is illustrated with an observer-based control system, where
a single mass is controlled using a velocity observer. The
system is given by:

q̇ = Aq +B(u + f(q)), (13)

−1 −0.5 0 0.5

−0.2

0

0.2

0.4

0.6

0.8

x

ẋ

(a) a21 = −0.1

−1 −0.5 0 0.5

−0.2

0

0.2

0.4

0.6

0.8

x

ẋ

(b) a21 = 0

−1 −0.5 0 0.5

−0.2

0

0.2

0.4

0.6

0.8

x

ẋ

(c) a21 = 0.1

Fig. 4. System (12) with Fs = 1, a22 = −1 and varying a21, showing
a bifurcation where an eigenvalue becomes zero. A neighbourhood of the
origin is depicted, that does not contain the complete equilibrium set. The
equilibrium set E is given by a bold line, the eigenvectors of stable or
unstable eigenvalues of ∂F2

∂q

∣

∣

∣

q=0

are represented with dashed lines.

with q =
(

x ẋ
)T

∈ R
2, measurement z = x, control

input u and friction force f(q) ∈ −FsSign(q2), as shown
schematically in Fig. 5. We assume M = 1. The matrix A is

given by A=

(

0 1
0 −c

)

, with c> 0, and B=
(

0 1
)T

. For

M

FT ∈ −FsSign(ẋ)FT

c

x

u

Fig. 5. Example of mechanical system subject to dry friction.

this system, a linear state feedback controller of PD-type is
designed, yielding u=kpz+ kdy, with proportional gain kp,
differential gain kd, and y an estimate of the velocity ẋ. This
estimate is obtained with a reduced-order observer, cf. [19],
that is designed for the system without friction and given by:

ẏ = −cy + u, (14)

The resulting closed-loop system is given by




ẋ

ẍ

ẏ



 ∈ Ac





x

ẋ

y



+





0
−FsSign(ẋ)

0



 , (15)

with Ac =





0 1 0
−kp −c −kd
−kp 0 −c− kd



 , which is equivalent

with (2), where f(x, ẋ, y) = −kpx − cẋ − kdy and g =
−kpx − (c + kd)y. Assumption 1 implies ckp 6= 0. If this
is satisfied, system (15) has the equilibrium set {(x ẋ y) ∈
R

3 : (x ẋ y) = α(−( 1
kp

+ kd

ckp
) 0 1

c
), α ∈ [−Fs, Fs]}.

Since ∂g
∂y

= −c− kd, Theorem 1 shows that when −c−
kd 6= 0, bifurcations can only occur at the endpoints E1 and
E2 , given by (x ẋ y) = ±(−( 1

kp
+ kd

ckp
)Fs 0 Fs

c
).

The structural stability of trajectories near the endpoints
of an equilibrium set is studied in the present paper only for
planar systems, while the current example is 3-dimensional.
However, we will still present a bifurcation of trajecto-
ries near the endpoints. Similar to the approach used in
Section IV, the linearisation of the vector field near the
endpoints is used. Here, matrices A1 and A2 coincide with
Ac, which has eigenvalues λ1 = −c and λ2,3 = − c+kd

2 ±
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Fig. 6. System (15) with c = 0.5, kp = 1 and Fs = 2, showing a
bifurcation near the endpoints at kd = 1.5. The equilibrium set E is given
by a dotted line, and the real eigenvectors of A2 are represented with thick
lines.

1
2

√

(c+ kd)2 − 4kp. The eigenvalues λ2,3 change from real
to complex when kd = −c+ 2

√

kp. At this point a bifurca-
tion occurs similar to the focus-node bifurcation observed in
Section IV-A. When two eigenvalues are complex, for both
endpoints Ei, i = 1, 2, there exist only one trajectory that
converges to the endpoints Ei from domain Si for t → ∞ or
t → −∞. When eigenvalues λ2,3 are real, more trajectories
exist with this property. Hence, a bifurcation occurs when kd
crosses the value −c+ 2

√

kp. This bifurcation is illustrated
in Fig. 6 where the parameters c = 0.5, kp = 1, Fs = 2 are
used. At these parameters, the mentioned bifurcation occurs
at kd = 1.5. For the used system parameters, the eigenvalues
of Ac have negative real part. In Fig. 6, only trajectories near
the endpoint E2 are shown. Since the system is symmetric,
the same bifurcation occurs near endpoint E1.

These results suggest that using the linearisation of the
dynamics near the endpoints, sufficient conditions for struc-
tural stability of trajectories can be constructed for higher-
dimensional systems, analogously to the results in Sec-
tions III-A and IV for planar systems.

VI. DISCUSSION

In this paper, structural stability is studied of a class
of discontinuous vector fields, which show the presence of
equilibrium sets. It has been shown in Theorem 1 that the
structural stability of equilibrium sets of a class of nonlinear
mechanical systems with a single frictional interface is
determined by the trajectories near the endpoints of the
equilibrium set. Hence, local techniques can be applied in

a neighbourhood of these points. For differential inclusions
given by (1), the linearisation of vector fields is only ap-
plicable to the part of the state space where the vector
field is described by a smooth function. A careful study of
this linearisation has given insight in the topological nature
of solutions of the differential inclusion near the equilib-
rium set. Hence, in the neighbourhood of equilibrium sets
the result of Theorem 1 significantly simplifies the further
study of structural stability and bifurcations for this class
of mechanical systems with friction. Using this approach,
sufficient conditions are derived for structural stability of
planar systems given by (1), restricted to a neighbourhood of
the equilibrium set. The results are illustrated by application
to a controlled mechanical system with friction.
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