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Abstract— We provide a homotopy algorithm that computes
a decay point of a monotone operator, i.e., a point whose
image under the monotone operator is strictly smaller than
the preimage. For this purpose we use a fixed point algorithm
and provide a function whose fixed points correspond to decay
points of the monotone operator. This decay point plays a
crucial role in checking, in a semi-global fashion, the local input-
to-state stability of an interconnected system numerically and
in the numerical construction of local input-to-state stability
(LISS) Lyapunov functions. We give some improvements of this
algorithm and show the advantage to an earlier approach based
on the algorithm of Eaves.
Index Terms— homotopy algorithm, monotone operator, LISS
Lyapunov function, interconnected system, small gain condition

I. INTRODUCTION

For large-scale nonlinear systems it may be difficult to prove
stability properties such as input-to-state stability (ISS) as
introduced in [16]. If a large-scale system is defined through
the interconnection of a number of smaller components,
which are ISS, then there exist small-gain type conditions
guaranteeing the ISS property for the interconnected system.
For the case of two subsystems this result was obtained
in [10], [9]. Recently, there has been a substantial effort
to extend these results to the case of a greater number
of subsystems, see [4], [5], [8], [11], [12], [2]. To this
end the influence of the smaller components, described by
comparison functions, is collected in the gain matrix Γ. The
special structure of the interconnected system now leads to
a monotone operator Γµ on the positive orthant RN

+ . The
available small-gain results all basically state that input-to-
state stability for the overall system is equivalent to the exis-
tence of a so-called Ω-path with respect to Γµ. Furthermore
an ISS Lyapunov function for the interconnected system
can be constructed by this path and by the ISS Lyapunov
functions of the subsystems. In [5] the construction of an Ω-
path is outlined. The crucial ingredient that usually cannot be
obtained in a straightforward manner is a decay point of Γµ.
In this paper we provide numerical procedures for computing
such points and thus also for local Ω-paths. The approach is
semi-global as there is no a priori restriction on domain on
which an ISS property can be checked numerically.
In [3] local ISS (LISS) definitions and local small gain
theorems are given. Here the knowledge of a decay point
leads to the local input-to-state stability of the interconnected
system and to the construction of a LISS Lyapunov function.
The algorithm that computes a decay point for a given
monotone operator Γµ is a particular simplicial fixed point
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(SFP)-algorithm customized in a way that we obtain a decay
point of Γµ. To ensure the convergence of the algorithm we
require irreducibility of Γµ. This is no significant restriction
because by standard graph theoretic algorithms the irre-
ducible components of the system can be obtained efficiently.
The paper is organized as follows. In Section II the necessary
notions and a short introduction in comparison functions
and graphs is provided. In Section III we recall the ISS
Lyapunov formulation of interconnected systems, state a
local small gain theorem and outline the construction of a
LISS Lyapunov function for the overall systems. Section IV
contains the main contribution of this paper. Some facts
about homotopy algorithms and the SFP-algorithm are re-
called, mainly following [17]. In subsection IV-D we state
some sufficient conditions on Γµ and prove that the SFP-
algorithm converges to a decay point of Γµ. In Section V
an example shows that the new algorithm improves on an
earlier algorithm described in [15], which was based on [6].
In particular, we reexamine a nonlinear example from [14].

II. PRELIMINARIES

A. Notation and conventions
Let R+ := [0,∞), and RN

+ the positive orthant of nonnega-
tive real column vectors of length N . The cone RN

+ induces
a partial order on RN as follows. We denote v ≥ w ⇐⇒
vi≥wi, v>w ⇐⇒ v≥w and v %=w, v&w ⇐⇒ vi >wi,
each for i = 1, . . . , N , where vi denotes the ith component
of the vector v. For v, w ∈ RN

+ the order intervals are
given by [v, w] := {x ∈ RN

+ : v ≤ x ≤ w} if v ≤ w,
(v, w) := {x ∈ RN

+ : v ) x ) w} if v ) w. On RN we
use the Euclidean norm ‖x‖ = (

∑N
i=1 |xi|2)1/2. The space

of measurable and essentially bounded functions is denoted
by L∞ = L∞([0,∞); RM ) with norm ‖ ·‖∞.

B. Comparison functions and induced monotone operators
We call a function α : R+ → R+ a function of class K, if
it is strictly increasing, continuous, and α(0) = 0. If α ∈ K
is unbounded it is said to be of class K∞. A function β :
R+×R+ → R+ is called a function of class KL, if it is
of class K∞ in the first argument and strictly decreasing to
zero in the second argument. It is easy to see that if ρ ∈ K∞,
then ρ−1 : R+ → R+ exists and is also of class K∞.
To formulate general small gain conditions we need, cp. [5]:
Definition 1: A continuous function µ : RN

+ → R+ is called
a monotone aggregation function if the following holds:

1) positivity: µ(s) ≥ 0 for all s ∈ RN
+ and µ(s) = 0 if

and only if s = 0;
2) strict increase: µ(s) < µ(t) if s ) t;
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3) unboundedness: µ(s) →∞ if ‖s‖ → ∞.
The space of monotone aggregation functions is denoted by
MAFN . The properties in Definition 1 can be extended to
vectors in the sense that µ=(µ1, . . . , µN )#∈MAFN

N , µi∈
MAFN , i = 1, . . . , N , defines a mapping from RN×N to RN

by µ(A)i = µi(ai1, . . . , aiN ) for A = (aij)N
i,j=1 ∈ RN×N

+ .
We want to generalize this to matrices of the form Γ =
(γij)N

i,j=1 ∈ (K∞ ∪ {0})N×N , where 0 denotes the zero
function. This leads to an operator Γµ : RN

+ → RN
+ with

Γµ(s) :=




µ1(γ11(s1), . . . , γ1N (sN ))

...
µN (γN1(s1), . . . , γNN (sN ))



 ∈ RN
+ (1)

for s ∈ RN
+ . For the k-times composition of this operator we

write Γk
µ. We call the operator Γµ

1) monotone, if Γµ(v) ≤ Γµ(w) for all v, w ∈ RN
+ with

v ≤ w;
2) strictly increasing, if Γµ(v) ) Γµ(w) for all v, w ∈

RN
+ with v ) w.

Remark 2: Note that if Γ∈(K∞∪{0})N×N and µ∈MAFN
N ,

then Γµ is monotone and satisfies Γµ(0) = 0.
The next definition is fundamental in the following.
Definition 3: For a given function T : RN

+ → RN
+ we define

the set of decay Ω by Ω(T ) :=
{
s ∈ RN

+ : T (s) ) s
}

. For
short we just write Ω, if the reference to T is clear from the
context. Points in Ω are called decay points.

C. Graphs and matrices
A directed graph G(V,E) consists of a finite set of vertices
V and a set of edges E ⊂ V ×V . If G(V,E) consists of
N vertices, then we may identify V = {1, . . . , N}. So if
(j, i) ∈ E then there is an edge from j to i. The adjacency
matrix AG = (aij) of this graph is defined by aij = 1 if
(j, i) ∈ E and aij = 0 else. We call the graph G(V,E)
strongly connected if for each pair (i, j) there exists a path
(ei0,i1 , ei1,i2 , . . . , eik−1,ik) with i = i0, j = ik such that
eil−1,il ∈ E for all i = 1, . . . , k. It is well known that
the graph G(V,E) is strongly connected iff the adjacency
matrix AG is irreducible, i.e., there exists no permutation
matrix P such that A = P# ( B C

0 D )P for suitable, square
matrices B and D. These definitions can be carried over to
matrices Γ ∈ (K∞ ∪ {0})N×N . To this end we define the
matrix AΓ =(aij)N

i,j=1 by aij =1 if γij ∈K∞ and aij =0 if
γij≡0. We call Γ irreducible, if the matrix AΓ is.

III. INPUT-TO-STATE STABILITY AND SMALL GAIN
THEOREMS

Consider the N ∈ N interconnected systems given by

ẋ1 = f1(x1, . . . , xN , u)
...

ẋN = fN (x1, . . . , xN , u)
. (2)

Assume that xi ∈ Rni , u ∈ Rm and the functions fi :
R

PN
j=1 nj+m → Rni are continuous and locally Lipschitz in

x = (x#1 , . . . , x#N )# uniformly for u in compacts. Let xi

denote the state of the ith subsystem and assume u as an

external control variable. Without loss of generality we may
assume to have the same input for all systems.
If we consider individual systems, we treat the state xj , j %=
i, as an independent input for xi. Assume that for each
subsystem i ∈ {1, . . . , N} there exists a continuous and
locally Lipschitz continuous function Vi : Rni → R+ such
that for suitable α1i, α2i ∈ K∞

α1i(‖xi‖) ≤ Vi(xi) ≤ α2i(‖xi‖) ∀xi ∈ Rni . (3)

We call Vi an ISS Lyapunov function for the subsystem i,
if there exist µi ∈MAFN+1, γij ∈ (K∞∪{0}), j %= i, γiu ∈
(K∪{0}) and a positive definite function αi such that

Vi(xi) ≥ µi

(
γi1(V1(x1)), . . . , γiN (VN (xN )), γiu(‖u‖)

)

⇒ ∇Vi(xi)fi(x, u) ≤ −αi(‖xi‖). (4)

The functions γij and γiu are called ISS Lyapunov gains. We
distinguish between the internal inputs xj and the external
input u of the ith subsystem. These gains indicate the
influence of the inputs on the state. This is why we set
γij ≡ 0, if fi does not depend on xj and we collect the
internal inputs into the gain matrix Γ := (γij)N

i,j=1. Note that
Γ and the µi define a monotone operator Γµ : RN

+ → RN
+ as

in (1) (cf. Remark 2).

A. A local small gain theorem

In this section we assume that the interconnected system (2)
satisfies an ISS condition of the form (4) for ISS Lyapunov
functions Vi, i = 1, . . . , N . Denote the corresponding gain
operator by Γµ as in (1). We assume that Γ is irreducible, so
that Γµ is strictly increasing (cf. [13, Lemma 2.7]). A local
ISS Lyapunov function for the overall system given by

ẋ = f(x, u) (5)

and x = (x#1 , . . . , x#N )#, f = (f#1 , . . . , f#N )# may now be
constructed as follows.
Assume there exists a decay point w & 0 with

Γµ(w) ) w. (6)

With Γµ even the sequence {Γk
µ(w)}k∈N is strictly decreas-

ing and so limk→∞ Γk
µ(w) exists. If

lim
k→∞

Γk
µ(w) = 0, (7)

then we define σ : [0, 1] → RN
+ by the linear interpolation

of the points σ( 1
k ) := Γk

µ(w), k∈N and σ(0) = 0.
Note that σ is continuous on [0, 1] by (7) and strictly
increasing in all component functions. With this construction
local ISS Lyapunov functions can be constructed using the
following summary of existing results (cf. [3, Theorem 6.5]).
Theorem 4: Assume that system (2) satisfies an ISS condi-
tion of the form (4) and that the gain matrix Γ is irreducible.
If there exists an w & 0 so that (6) and (7) hold then a local
ISS Lyapunov function for the overall system (5) is

V (x) = max
i=1,...,N

σ−1
i (Vi(xi)), (8)
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In particular, the implication

V (x) ≥ γ(‖u‖) ⇒ ∇V (x) · f(x, u) ≤ −α(V (x)) (9)

holds locally with γ ∈ K∞ given by [3, Proposition 4.3].
Remark 5: 1) By “local” we mean “in an open neighbor-

hood of the origin” (cf. [3] for more details).
2) Note that by (6) and (7) it follows that the small gain

condition Γµ(s) %≥ s for all s ∈ [0, w] holds.
3) Note that σ(r) ∈ Ω(Γµ) for all r ∈ [0, 1] and σ belongs

to the class of Ω-paths (cf. [5, Definition 5.1]).
Remark 6: In the linear case with µ = Σ we have ΓΣ(s) =
Γs with Γ ∈ RN×N

+ . Here the existence of a decay point w&
0 with Γw) w is equivalent to the spectral radius of Γ being
less than one, i.e., 1>ρ(Γ)={|λ| : λ is an eigenvalue of Γ}
(cf. [13, Lemma 1.1]). So finding a decay point is just
an eigenvalue problem. That’s why we assume Γµ to be
nonlinear.

IV. A HOMOTOPY ALGORITHM FOR COMPUTING A
DECAY POINT w ∈ Ω(Γµ)

In this section we want to develop an algorithm that com-
putes a decay point w ∈ Ω(Γµ) for a given continuous and
monotone operator Γµ : RN

+ → RN
+ . We know that such a

point exists for any norm if the small gain condition

Γµ(s) %≥ s for all s ∈ RN
+\{0} (10)

is satisfied (cf. [4, Proposition 5.3]). To find such a point
we will extend a homotopy algorithm that was also used
by Merrill (cf. [17]) to compute fixed points of upper-
semicontinuous (u.s.c.) point-to-set mappings. Note that
since a continuous single-valued function is in particular
an u.s.c. point-to-set mapping the homotopy algorithm can
clearly be used in our case. The idea is to construct a function
φ : RN

+ → RN which has the property that fixed points of φ
are decay points of Γµ and show that the homotopy algorithm
will converge to approximate fixed points of φ which are also
decay points of Γµ. This algorithm is semi-global since by
choosing design variables appropriately we end up in a decay
point with arbitrarily large norm.
In subsection IV-A we offer the triangulation which we need
for the computation of the fixed points. Before we introduce
the homotopy algorithm in subsection IV-C we first give
some facts about homotopy algorithms in subsection IV-B.
In subsection IV-C we mainly follow [17, Section 4.3]. In
subsection IV-D we will give the function φ mentioned above
and show the convergence of the SFP-algorithm. For reasons
of space proofs and suggestions for the choice of the design
variables are omitted and can be found in [7].

A. Simplices and triangulations
A set C ⊂ RN is called convex if for all a, b ∈ C it holds
Sa,b := {λa + (1−λ)b : λ ∈ [0, 1]} ∈ C. The dimension of
a convex set is equal to the dimension of the smallest affine
subspace U ⊂ RN containing C.
Definition 7: An N -simplex S is an N -dimensional, convex
polytope spanned by N +1 vectors v1, . . . , vN+1 in RM ,
M ≥ N , i.e., S := co

{
vi : i ∈ {1, . . . , N +1}

}
, where co

denotes the convex hull of the vectors vi. A subsimplex ς
is a simplex spanned by a subset of the set of vertices of
S, i.e., ς = {vi : i ∈ Iς} with Iς ⊂ {1, . . . , N +1}. Zero-
dimensional subsimplices are just the vertices of the simplex
and (N−1)-subsimplices are called facets. The subsimplex
S(j) = co

{
vi : i %=j

}
is called the facet opposite vj .

Clearly, since any N -simplex is N -dimensional, N of the
N +1 vertices are linearly independent and it holds vi %= vj

for i %= j. Simplices can be used to cover convex sets in RN .
Definition 8: Let C be an m-dimensional convex set in RN .
A set T of m-simplices is called a triangulation of C, if

1) C is the union of all simplices in T ;
2) for any η1, η2 ∈ T , the intersection η1 ∩ η2 is either

the empty set or a common facet of both;
3) each element x in C contains a neighborhood inter-

secting only a finite number of simplices in T .
By T k we denote the set of all k-subsimplices of T . It is
easy to see that T N = T and T 0 describes the set of the
vertices of the simplices in T . To distinguish simplices, or
triangulations, we introduce the diameter of a simplex η ∈ T
by diam(η) = max{‖x − y‖ : x, y ∈ η} and the mesh size
of a triangulation T by mesh(T ) = sup{diam(η) : η ∈ T }.
There is one special triangulation of RN , that will be used to
compute decay points. The K1-triangulation is defined as the
set of all N -simplices with vertices x1,. . .,xN+1 such that

x1 ∈ ZN and xi+1 = xi + eπN (i) for all i ∈ {1, . . . , N},

where πN = (πN (1), . . . , πN (N)) is a permutation of the
elements of the set {1, . . . , N}. See ([17, Theorem 1.4.8]) for
a proof that K1 is a triangulation in the sense of Definition 8.
Defining δC = {δx : x ∈ C} for C ⊂ RN , δ > 0, and
δF = {δC : C ∈ F} for a family F of subsets of RN we
obtain that if T is a triangulation of C and δ > 0 then δT is a
triangulation of δC. In this way we get the δK1-triangulation
of RN for which mesh(δK1) = δ

√
N for δ > 0.

Let T be a triangulation of RN × [0, 1] with the restriction
T 0 ⊆ RN ×{0, 1}, i.e., the vertices only lie in RN ×{0, 1}.
Then we call this triangulation two-layered. Let K̃1 denote
the restriction of the K1-triangulation of RN+1 to RN×[0, 1].
Then K̃1 is two-layered. Further define the (N+1)×(N+1)-
matrix P = [δe1, . . . , δeN , eN+1] for given δ > 0, where ei

denotes the ith unit vector in RN+1. Define

K̃1(δ) = {〈Py1, . . . , PyN+2〉 : 〈y1, . . . , yN+2〉 ∈ K̃1},

then K̃1(δ) is a two-layered triangulation of RN × [0, 1]. In
Figure 1 the K̃1(δ)-triangulation is illustrated.

B. Some facts about homotopy algorithms
Now we state the basic principles of homotopy algorithms.
Definition 9: Let f, g : C → D be two continuous mappings
from the topological space C to the topological space D.
We call f, g homotopic, if there exists a continuous mapping
ϑ : C× [0, 1] → D, (s, t) 8→ ϑ(s, t) with ϑ(s, 0) = f(s) and
ϑ(s, 1) = g(s) for all s ∈ C. We call ϑ the homotopy from
f to g.
Let C be a nonempty, compact and convex subset of RN

and assume that f : C → C is continuous. Then it follows
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by Kakutani’s fixed point theorem (cf. [1, p.174]) that there
exists at least one fixed point of f . To determine any fixed
point we use the idea of the classical homotopy. Define the
continuous mapping ft : C → C by

ft(s) := (1− t)s0 + tf(s), t ∈ [0, 1]

with s0 ∈ C. Then there exists a fixed point of ft for every
t ∈ [0, 1]. We start with the constant mapping f0(s) = s0

and its fixed point s0. Assume that tk → 1 for k → ∞,
then the sequence of functions {ftk(·)}k∈N converges even
uniformly to f1(·) = f(·). Now one can show that the cluster
points of the set of fixed points stk of ftk are just the fixed
points of f . Note that in this approach we have to extend the
dimension of this problem, i.e., we now work in C × [0, 1].
The numerical procedure for nonempty, compact and convex
C ⊆ RN is the following. We split the space C × [0, 1]
in simplices using a suitable triangulation T . Under certain
conditions there exists a path in this triangulation from an
N -simplex τ0 ∈ C×{0} to an N -simplex τ∗ ∈ C×{1}
which yields an approximate fixed point of the function f .
The simplicial fixed point algorithm that we use here, follows
the path by using the lexicographic pivoting rule from linear
programming. The advantage is that the so-called degenera-
tion problem (i.e., the path ends up in a circuit) cannot occur.
We don’t want to enlarge on that fact and will only give the
definition of lexicographically positive matrices.
Definition 10: A row vector is called lexicographically posi-
tive if its first nonzero entry is positive. A matrix W is called
lexicographically positive denoted by W 9 0 if every row
vector is lexicographically positive.

C. The SFP-algorithm
To compute a fixed point of a continuous function φ :
RN → RN the SFP-algorithm uses a suitable homotopy
ϑ : RN × [0, 1] → RN and a pivoting method to get from an
N -simplex τ0 ⊂ RN×{0} to an N -simplex τ1 ⊂ RN×{1}
which yields an approximate fixed point of φ. For this
purpose we have to triangulate the set RN × [0, 1] suitably.
Let T be a triangulation of RN × [0, 1] with the restriction
T 0 ⊂ RN × {0, 1}, i.e., T is two-layered. We denote ele-
ments of RN×[0, 1] by y = (v1, . . . , vN , t) with v ∈ RN and
t ∈ [0, 1] and define the projection onto the first factor p1 :
RN×[0, 1] → RN , p1(v, t) = v. Suppose that the N -simplex
τ = 〈y1, y2, . . . , yN+1〉 ∈ T N . We define the diameter of the
projection of τ by diamp(τ) := max{‖p1(yi) − p1(yj)‖ :
i, j∈{1, . . . , N+1}}, and the mesh size of the projection of
T is defined by meshp(T ) := sup{diamp(τ) : τ ∈ T N}.
If τ = 〈y1, . . . , yN+1〉 ∈ T N and τ ⊂ RN × {i}, i∈{0, 1},
then τp := 〈p1(y1), . . . , p1(yN+1)〉 is an N -simplex in RN .
The collection of all such simplices τp is denoted by Ti.
We choose an arbitrary point (c, 0) ∈ RN × [0, 1] such that
(c, 0) lies in the interior of an N -simplex τ0 ∈ T0. Define
the homotopy mapping ϑ : RN×[0, 1] → RN

ϑ(v, t) = (1− t)c + tφ(v). (11)

A point y is called a fixed point of ϑ if p1(y) = ϑ(y).
Clearly, (c, 0) is the only fixed point of ϑ in RN ×{0}

and any fixed point y of ϑ in RN×{1} projects to a fixed
point of φ, i.e., p1(y) = φ(p1(y)). The concept of labelings
establishes a way of studying the relation of the triangulation
with approximate fixed points of φ.
Definition 11: Let T be a two-layered triangulation of RN×
[0, 1]. We define the labeling rule l : RN × [0, 1] → RN by

l(y) = ϑ(y)− p1(y). (12)

Let the N -simplex τ =〈y1, . . . , yN+1〉∈T N be given. Then
we call the (N+1)×(N+1) matrix

L(τ) :=
(

1 . . . 1
l(y1) . . . l(yN+1)

)
(13)

the label matrix of τ .
The simplex τ is called complete if the system

L(σ)W = IN+1, W 9 0 (14)

has a solution W ∗∈R(N+1)×(N+1). The aim in the following
will be to find a complete N -simplex τ ∈RN×{1}, since it
contains an approximate fixed point of φ. By choosing the
mesh size of the triangulation small enough we achieve any
accuracy of the approximate fixed point.
Proposition 12: Let D ⊂ RN be compact and φ : D →
RN be continuous. For ε > 0 let δ > 0 be such that for all
x, y ∈D we have the implication ‖x − y‖ < δ ⇒ ‖φ(x) −
φ(y)‖ < ε. Let T be a two-layered triangulation of RN ×
[0, 1] with mesh(T ) < δ and τ = 〈y1, . . . , yN+1〉 ∈ RN ×
{1} a complete simplex in T with yj = (vj , tj) for all
j = 1, . . . , N + 1. Let λ ∈ RN

+ satisfy L(τ)λ = e1. Then
v∗ :=

∑N+1
j=1 λjvj is an approximate fixed point of φ, i.e.,

‖φ(v∗)− v∗‖ < ε.
To get to a complete simplex in RN×{1} we first character-
ize the complete simplices. To this end we define the graph
G(V,E) of all complete simplices as follows. An (N + 1)-
simplex η of T is a node, if it has at least one complete
facet τ . Two nodes are adjacent and connected by an edge
if they share a common complete facet. The degree deg(η)
of a node η is the number of nodes adjacent to η.
Recall that τ0 is the N -simplex lying on RN ×{0} and
containing (c, 0) in its interior. Let η0 be the unique (N+1)-
simplex of T having τ0 as its facet. Then we have (cf. [17,
Lemma 4.3.3, Lemma 4.3.4 and Theorem 4.3.5]).
Lemma 13: The N -simplex τ0 is the only complete simplex
on RN × {0}.
Lemma 14: Given the graph G(V,E) defined as above, for
each node η of G(V,E), we have

1) if η has a complete facet lying on RN×{0} or RN×{1},
then deg(η) = 1;

2) in all other cases, deg(η) = 2.
Theorem 15: For the graph G(V,E) defined as above, each
connected component of G(V,E) has one of the following
five forms

1) a simple circuit;
2) a finite simple path whose two end nodes all have a

complete facet lying on RN×{1};
3) an infinite simple path starting with an (N+1)-simplex
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which has a complete facet lying on RN×{1};
4) a finite simple path which starts with the (N + 1)-

simplex η0 and ends with another (N + 1)-simplex
having a complete facet on RN×{1};

5) an infinite simple path starting with η0.
From the point of view of computation we are interested in
case 4). In this case we can algorithmically go from η0 to
a simplex η∗ ∈ RN×{1} containing an approximate fixed
point of φ by Proposition 12.

D. Using the SFP-algorithm for computing decay points
Now we want to use the SFP-algorithm to compute a decay
point w ∈ Ω(Γµ) of the monotone operator Γµ : RN

+ → RN
+ .

In the following the aim is to find a suitable function φ
whose fixed points w = φ(w) correspond to decay points
w ∈ Ω(Γµ), and to show that the SFP-algorithm converges
for this choice of φ. Since Γµ(0) = 0 we have to exclude 0
to be a fixed point of φ.
Consider the function φ : RN

+ → RN defined by

φ(v)=Γµ(v)
(
1+min

{
0, κΓ−2‖v‖

‖v‖+κ0

})
+max{0, κh−2‖v‖} e.

(15)
Here let κ0 >0, κΓ >κh >0 and e the N -dimensional vector
of ones. We note some properties of φ:

1) With Γµ also φ is continuous on RN
+ .

2) For large v ∈ RN
+ it holds φ(v) < 0.

3) It holds φ(0) = κhe & 0, i.e., the origin cannot be a
fixed point of φ.

We partition the positive orthant into five regions:
I =

{
v ∈ RN

+ : ‖v‖ ∈ [0, κh/2)
}

II =
{
v ∈ RN

+ : ‖v‖ ∈ [κh/2, κΓ/2)
}

III=
{
v ∈ RN

+ : ‖v‖ ∈ [κΓ/2, κΓ+κ0)
}

IV=
{
v ∈ RN

+ : ‖v‖ ∈ [κΓ+κ0, κΓ+κ0+δ]
}

V =
{
v ∈ RN

+ : ‖v‖ ∈ (κΓ+κ0+δ,∞)
}

I′ =I×[0, 1]
II′ =II×[0, 1]
III′=III×[0, 1]
IV′=IV×[0, 1]
V′ =V×[0, 1]

The next proposition indicates the relation between fixed
points of φ and decay points of Γµ.
Proposition 16: Let φ : RN

+ → RN be defined as in (15)
and assume that Γµ : RN

+ → RN
+ is monotone and satisfies

the small gain condition (10). Let s ∈ RN
+ be a fixed point

of the function. Then s ∈ Ω(Γµ). Moreover, s ∈ I.
In the following we will always use the K̃1(δ)-triangulation.
This triangulation has the essential advantage that the ver-
tices of an N -simplex τ = 〈y1, . . . , yN+1〉 are in the order
of RN+1

+ , i.e., y1 <. . .<yN+1 with y=(v, t)∈RN
+×{0, 1}.

Again, the SFP-algorithm starts with the (N +1)-simplex
η0 which has the N -simplex τ0 ∈ RN × {0} as a facet
containing (0, c) in its interior. Here we choose c ∈ I∪ II
and any approximate fixed point c′ will also lie in I∪ II, see
Theorem 19. Then the algorithm follows the path of complete
N -simplices. If we can show that this path is finite and inside
of the positive orthant, then we get, by Theorem 15, that the
SFP-algorithm ends up with a (N+1)-simplex containing a
complete facet on RN

+×{1}. Proposition 12 now tells us that
this simplex contains an approximate fixed point of φ.
A first rough estimation where the path of complete simplices
can lead to is given in the next proposition.

Proposition 17: Let φ : RN
+ → RN be defined as in (15)

and assume that Γµ : RN
+ → RN

+ is monotone. Assume that
c ∈ I∪ II and let τ = 〈y1, . . . , yN+1〉 be an N -simplex in
V′. Then τ is not complete.
Note, this does not show that the path is inside the positive
orthant. To prove this we have to look at the boundary of the
positive orthant. Here we need some additional assumptions.
Theorem 18: Let φ : RN

+ → RN be defined as in (15) and
assume that the underlying gain matrix Γ is irreducible. Let
τ = 〈y1, . . . , yN+1〉 be an N -simplex on the boundary of
the positive orthant. If ‖vN+1‖=‖p1(yN+1)‖<κ0+κΓ then
τ is not complete.
In other words Theorem 18 provides that no N -simplex τ ∈
I′∪II′∪III′ lying on the boundary of the positive orthant can
be complete. It remains to show that the path cannot enter
the set IV′. For this purpose we show in the next theorem
that the path of complete simplices runs inside of the region
which is painted dark grey in Figure 1. To prove this we
require an upper bound for the feasible size of δ.

I′

II′

III′

IV′

η

τ

κh
2

κΓ
2

κΓ+κ0

Fig. 1. K̃1(δ)-triangulation and the maximum region of the path
(τ -simplices are 1-dimensional and η-simplices are 2-dimensional)

For the next Theorem we choose k ∈ N such that
1

2k−1Γµ((κΓ+κ0)e) < c and set δ > 0 such that

δ < min
{

κΓ − κh

2
√

N
,
κΓ + 2κ0

2k
√

N

}
. (16)

Theorem 19: Let φ : RN
+ → RN be defined as in (15)

and assume that Γµ : RN
+ → RN

+ satisfies the small gain
condition (10). Furthermore assume that the underlying gain
matrix Γ does not contain any zero row. Let K̃(δ) be the
triangulation of RN

+ × [0, 1] with δ > 0 as in (16). Then
for all simplices τ = 〈y1, . . . , yN+1〉 ∈ III′ with yN+2 :=
y1+[δ, . . . , δ, 1]# ∈ IV′ it follows that τ cannot be complete.
In particular, any approximate solution c′ satisfies c′ ∈ I∪ II.
Now we can deduce the following main theorem.
Theorem 20: Let φ be defined as in (15) and assume that Γ
is irreducible and that the operator Γµ : RN

+ → RN
+ , deduced

from the gain matrix Γ, satisfies the small gain condition
(10). Let δ > 0 be chosen as in (16). Then the simple path
starting with η0 is finite and the SFP-algorithm converges to
a decay point s ∈ Ω(Γµ).
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Proof: The dark grey painted region in Figure 1 is
compact. The path of complete simplices starts in the interior
of this region. Theorem 18 and Theorem 19 now show that
under the above assumptions the path starting with η0 cannot
leave this region. So the path remains in this region. Since
the region is compact there exist only finitely many simplices
in this region and we are in the situation of Theorem 15
case 4). So the path is finite and ends up in a simplex τ ∈
RN

+ ×{1} which contains an approximate fixed point of φ
by Proposition 12. So refining the triangulation leads to the
convergence of the SFP-algorithm to a fixed point s of φ.
Since Γµ satisfies the small gain condition (10) it follows
by Proposition 16 that the fixed point s of φ lies in the set
of decay Ω(Γµ). So the SFP-algorithm converges to a decay
point s ∈ Ω(Γµ).

V. EXAMPLE

In [15] an algorithm due to Eaves [6] is modified to compute
decay points. This algorithm is used in [14] to compute
decay points for an example of a nonlinear system. For this
purpose a nonnegative matrix P ∈ RN×N with spectral
radius ρ(P ) < 1 is constructed for given dimension N .
By Perron-Frobenius theory it follows that the matrix A :=
−IN +P then has spectral abscissa α(A) := max{Reλ :
λ is an eigenvalue of A}=−1+ρ(P )<0. So the matrix A
is Hurwitz with negative diagonal entries and nonnegative
off-diagonal entries. Now we define a smooth coordinate
transformation S : RN → RN by

S(v)i =






evi−1 if vi > 1
vi if vi ∈ [−1, 1]
−e−vi−1 if vi < −1

.

It holds S(0) = 0 and S(RN
+ ) = RN

+ . The mapping S :
RN

+ → RN
+ is a monotone operator. Therefore the systems

v̇ = S′(S−1(v))AS−1(v) =: g(v) (17)

ż = Az =: h(z) (18)

are equivalent under a nonlinear change of coordinates. Let
v∗ be any decay point for the function g in equation (17).
With it z∗ := S−1(v∗) is a decay point for the function h in
equation (18). We want to pick up the associated run times
and numbers of iterations and compare them with those of
the SFP-algorithm.
The following results correspond to matrices P ∈ RN×N

+

with uniformly distributed positive entries, and 30% of those
are set to zero. Then α(A)=−0.2. The numbers are averages
over 100 simulations. The design variables are chosen such
that the expected decay point w has ‖w‖ ≈ 10.
In Table I(i) and (ii) we compare the results of [14] with
those of the SFP-algorithm. In addition, we tested the SFP-
algorithm for large N . Note that the run times and itera-
tions can only be compared relatively since the simulations
are executed on different computers. Nevertheless, our run
times are considerably lower and even for relatively large
dimensions we are able to compute decay points in a quite
acceptable run time.

(i) Eaves (ii) SFP-algorithm
N time # iter. time # iter.
5 0.11s 268 0.03s 21

10 0.65s 2060 0.04s 35
15 1.78s 5506 0.06s 72
25 7.99s 19743 0.17s 188
50 1.2s 688

100 13.2s 2712
150 78.4s 6614
200 273.6s 11244

TABLE I
RESULTS (I) OF EAVES K1-ALGORITHM FROM [14] AND (II) OF THE

SFP-ALGORITHM

VI. CONCLUSION

In this paper we presented an algorithm to compute decay
points which are crucial in checking the local input-to-state
stability and showed the advantage to an earlier algorithm
due to Eaves [6], [14], [15].
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