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Abstract— The notion of output-feedback controlled-
invariant sets is extended from LTI systems to systems with
linear parameter-varying state transition matrix. A theorem is
presented that can be used to verify whether a given polytope
can be made invariant under output-feedback. The theorem
also provides the constraints a control input has to fulfill to
make the candidate set invariant. Predictive output-feedback
controllers based on such a set can satisfy hard constraints
on both the plant state and the control inputs in the presence
of process disturbances and measurement noise. Simulation
results demonstrate the strength of such a controller that can
guarantee constraints for a subset of the state space without
requiring state information or estimation.

I. INTRODUCTION

Invariant sets are a very useful concept for stability

analysis and controller synthesis. In general, invariant sets

are subsets of the state space where for each initial state

inside the subset, control trajectories exist that keep the state

within the invariant set for all time. The strength of this

tool for computation of Lyapunov functions and developing

controllers that guarantee hard constraints on the states is

obvious: as long as the invariant set is a subset of the

constraint set, the system constraints will be fulfilled for all

times. A good overview of invariant sets is given in [1] and

[2]. Since we use polyhedral invariant sets, this introduction

focuses on those.

Invariant sets of autonomous (considering - if any - a fixed

control law) discrete time linear time invariant (LTI) systems

were considered in [3]–[7]. In [8]–[11], so called controlled-

invariant sets of discrete time LTI systems were constructed

and corresponding state-feedback controllers were computed.

In [12] Dorea extended the concept of controlled invariant

sets from state-feedback to output-feedback and developed

a sufficient condition for output-feedback controlled in-

variance. Invariant sets for observer-based output-feedback

control for discrete time LTI systems are considered in [13].

A similar development has evolved for discrete time LPV

systems. In a number of publications, e.g. [14]–[16], invari-

ant sets for autonomous discrete time LPV systems (also

with fixed control law) were computed and used for model

predictive control in [15], [17], [18]. Controlled-invariant

sets for discrete time LPV systems were considered in [19].

A. Hempel is with the Automatic Control Laboratory, Swiss
Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
(http://control.ee.ethz.ch), A. Kominek is with Germanischer Lloyd In-
dustrial Services GmbH, 20457 Hamburg, Germany (http://www.gl-
group.com/GLRenewables), H. Werner is with the Institute of Control
Systems, Hamburg University of Technology, 21073 Hamburg, Germany
(http://www.tu-harburg.de/rts), email:andreas.kominek@tu-harburg.de.

Manuscript received September 7, 2011.

In [20] an efficient tool for the computation of controlled-

invariant sets for constrained LPV systems was presented

and applied to the computation of Lyapunov functions.

A more general notation for output-feedback controlled-

invariant sets was introduced in [21]. The authors comple-

ment the standard invariant set by information sets, that

incorporate information gathered by the controller during

the process. This approach is very useful to determine

invariant sets for observer-based output-feedback controllers.

An unresolved issue with this approach are the intricate

numerical computations because of the information sets even

when the original system is linear. Such issues would be

even worse for systems with linear parameter-varying state

transition matrix from now on referred to as LPV-A systems.

This is why in this paper the more conservative definition

of output feedback invariant sets used in [12] is extended to

LPV-A systems. A sufficient condition for output-feedback

controlled invariance of LPV-A systems is developed. For

computed sets for which the sufficient condition holds LPV

output-feedback controllers are computed that guarantee in-

variance of the set under process disturbances and measure-

ment noise. This is demonstrated with a numerical example

and the performance is compared to an explicit MPC state

feedback controller from [22].

This paper is structured as follows. After this introduction,

the definition of the considered LPV-A systems is provided

in Section II. The main results are presented in Section III

and validated with a simulation example in Section IV. The

conclusion summarizes the results in Section V.

Notation: A superscript in square brackets indicates the

row of a matrix or the component of a vector. A[j] accord-

ingly corresponds to the j th row of the matrix A and b[i] to

the ith component of vector b. Two superscripts in square

brackets indicate a particular element of a matrix, i.e. A[i,j]

would be the element in the ith row and j th column of matrix

A. A shorthand for the convex polytope {x | Ax ≤ b} is

given by P [A, b].

II. PRELIMINARIES

A. LPV-A Systems

Consider the class of polytopic linear parameter-varying

systems with constant input and output matrices called LPV-

A systems. All variables are subject to constraints and the

system to disturbances dk and measurement noise ηk:

xk+1 = A (θk)xk +Buk + Edk (1a)

yk = Cxk + ηk (1b)

xk ∈ X , uk ∈ U , dk ∈ D, ηk ∈ M (1c)
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Note that by using the ∆u-formulation an LPV system with

a parameter-varying input matrix B can be represented by

an LPV-A system, cf. [22].

The constraint sets X , U , D, and M are assumed to

be bounded convex polytopes containing the origin in their

interior:

X = {x ∈ R
nx | Gx ≤ hG} U = {u ∈ R

nu | V u ≤ hV }

D = {d ∈ R
nd | Sd ≤ hS} M = {η ∈ R

ny | Qη ≤ hQ}

The scheduling parameter θ is assumed to be known at each

timestep and constrained to the standard simplex Θ1, i.e.

θ ∈ R
nθ , 0 ≤ θ[i] ≤ 1,

nθ
∑

i=1

θ[i] = 1.

The state-transition matrix A (θ) is constrained to the poly-

tope defined by the vertex matrices Ai and the components

of the scheduling parameter vector θ are its barycentric

coordinates:

A (θ) =

nθ
∑

i=1

Aiθ
[i] (2)

Since the controlled-invariance of a given polytope Ω should

be guaranteed by the controller using only the noise cor-

rupted measured outputs, the set Y(Ω) is defined as:

Definition 1: (Set of admissible outputs) The set

Y(Ω) := {y ∈ R
ny | y = Cx+ η with x ∈ Ω, η ∈ M}

is the set of admissible outputs corresponding to Ω.

III. OUTPUT-FEEDBACK CONTROLLED-INVARIANT SETS

FOR LPV SYSTEMS

The problem addressed in this paper is twofold: given a

dynamic system (1) and a convex polytope Ω, determine

whether the polytope can be made controlled-invariant un-

der output-feedback. If that is the case, compute an (ex-

plicit) output-feedback model-based controller ensuring the

controlled-invariance of Ω. The first part is addressed in

Sections III-A and III-B while the second part is handled

in Section III-C.

A. Output-feedback controlled-invariant sets for LPV-A sys-

tems

The notion of an output-feedback controlled-invariant

(o.f.c.i.) polytope as given in [12] is extended to LPV-A

systems:

Definition 2: (Output-feedback controlled-invariant poly-

tope for an LPV-A system) A polytope Ω = {x | Gx ≤ hG}
is called o.f.c.i. with respect to LPV-A system (1) with

contraction rate λ ∈ [0, 1] if and only if

∀y ∈ Y(Ω), θ ∈ Θ ∃u = u (y, θ) :

G (A (θ) x+Bu+ Ed) ≤ λhG (3a)

V u ≤ hV (3b)

∀d with Sd ≤ hS (3c)

∀η with Qη ≤ hQ (3d)

1It should be noted that any physical scheduling parameter can be
transformed into such a representation by using its barycentric coordinates.

B. Output-feedback controlled-invariance verification

Let

uk = u(yk, θk) =

nθ
∑

j=1

θ
[j]
k uj(yk) (4)

be the control law to be computed. Using the polytopic

structure of the control law in (4) and of A(θ) in (2), the

worst-case effects δ of the disturbances d and the output

equation (1b) to rewrite (3) yields the following condition

for a polytope Ω to be output-feedback controlled-invariant

with respect to LPV-A system (1), which has to hold for all

j = 1, . . . , nθ:

∀y ∈ Y(Ω) ∃uj :

φ(y, j) +GBuj ≤ λhG − δ, (5a)

V uj ≤ hV , (5b)

where φ(y, j) ∈ R
g is the maximum value of the state

influence GAjx computed componentwise as:

φ[i](y, j) = max
x

G[i]Ajx (6)

s.t. Gx ≤ hG

−QCx ≤ hQ −Qy

Let the polyhedral cone Γ be defined as

Γ =

{[

t

w

]

∈ R
g+v
+

∣

∣

∣

∣

[

tT wT
]

[

GB

V

]

= 0

}

. (7)

The rows of the matrix
[

T W
]

consist of the elements of

the minimal generating set of Γ.

In order to check whether a given polytope Ω = P [G, hG]
is o.f.c.i., (5a),(5b) can be used. Together with (7) and Farka’s

Lemma, Theorem 1 is obtained:

Theorem 1: Output-feedback controlled-invariant po-

lytope for LPV-A system (1). Given is an LPV-A sytem (1)

for which the states x are constrained to the convex polytope

Ω = P [G, hG]. The nr rows of the matrix
[

T W
]

are given

by the minimal generating set of the pointed polyhedral cone

Γ (7) and φ(y, j) is defined as in (6).

Then Ω is output-feedback controlled-invariant with re-

spect to LPV-A system (1) if and only if

∀i = 1, . . . , nr, j = 1, . . . , nθ :
g

∑

l=1

T [i,l]G[l]Ajξl ≤ T [i](λhG − δ) +W [i]hV ,

∀ξl, y : Gξl ≤ hG, Q(y − Cξl) ≤ hQ.

Proof: Is straightforward in analogy to the proof in [12]

with the necessary modifications for the LPV-A case given

above.

From Theorem 1 it can be deducted that output-feedback

controlled-invariance of a given polytope Ω = P [G, hG]
can be verified by solving a number of linear optimization

problems for calculating δ and the minimal generating set
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of Γ as well as solving the following nrnθ optimization

problems. Let

µ(i, j) = max
y,ξl

g
∑

l=1

T [i,l]G[l]Ajξl,

s.t. Gξj ≤ hG, Qy −QCξj ≤ hQ.

Then Ω is o.f.c.i. with respect to LPV-A system (1) if and

only if ∀i = 1, . . . , nr, j = 1, . . . , nθ

µ(i, j) ≤ T [i](λhG − δ) +W [i]hV .

C. Computation of the control input

Any set of control inputs uj satisfying the constraints (5)

will guarantee the invariance of Ω. By adding an appropriate

cost function to the constraints an optimal set of vertex

control laws uj can be chosen. Combining the constraints (5)

for all values of j with an appropriate cost function yields

the optimization problem

min
U,y

J(y,U, x̄) (9a)

s.t. φ(y, j) +GBuj ≤ λhG − δ (9b)

V uj ≤ hV (9c)

y ∈ Y(Ω)

∀j = 1, . . . , nθ

which has to be solved to obtain the optimal vertex control

laws uj which have been collected in the matrix U. Note that

x̄ represents an assumed state consistent with the currently

measured output given by:

x̄(y) = argmin
x(y)

xTx

s.t. Q(y − Cx) ≤ hQ

Gx ≤ hG

In general the objective function can take any form the user

desires. One possibility that proved to yield good results is

based on known operating points Θ̄ =
[

θ̄1 θ̄2 . . . θ̄nθ̄

]

for the scheduling parameter θ. These will be incorporated

into the objective function to optimize the controller for these

particularly important points. Tuning matrices Pj and Rj

corresponding to each operating point can be selected as

appropriate weighting factors. The resulting cost function J

is then

J(U, x̄(y), Θ̄) =

nθ̄
∑

j=1

(

u
(

y, θ̄j
)T

Rju
(

y, θ̄j
)

+ (10)

(

C(A(θ̄j)x̄+Bu(y, θ̄j))
)T

Pj

(

C(A(θ̄j)x̄ +Bu(y, θ̄j))
)

)

The optimization problem (9) with cost function J can be

solved implicitly (online) or explicitly (offline). The former

requires more computation time during plant operation but

offers a relatively straightforward implementation. The latter

is a little more involved as the explicit solutions for the

components φ[i](y, j) from (6) have to be compiled into

a vector-valued expression of φ(y, j). Both solutions lead

to a controller that guarantees the invariance of Ω under

the influence of disturbances and measurement noise. The

computation and implementation of the explicit controller

will be outlined in the following.

The solution for all components φ[i](y, j) for each vertex

system matrix Aj will be continuous and piecewise affine in

y over a partition of the set of admissible outputs Y(Ω), cf.

[23]:

φ[i](y, j) = βl(i, j)y + γl(i, j) for y ∈ Ψl(i, j) (11a)
⋃

l

Ψl(i, j) = Y(Ω), Ψm(i, j) ∩Ψl(i, j) = ∅ (11b)

In order to obtain an affine expression of the whole vector

φ(i, j) that can be used in (9b), the solutions obtained for the

components from (6) of the form outlined in (11a) have to be

combined into continuous and piecewise affine expressions

for φ(y, j):

φ(y, j) = βl(j)y + γl(j) for y ∈ Φl(j) (12a)
⋃

l

Φl(j) = Y(Ω), Φk(j) ∩ Φl(j) = ∅ (12b)

The x∗(i, j) are the maximizers from (6) and are continuous

and piecewise affine functions in y. From (12a) it is clear

that βl(j) ∈ R
g×ny and γl(j) ∈ R

g . It is important to note

that the elements Ψl(i, j) of the partition (11b) are generally

not the same as the elements Φl(j) of partition (12b) since

for two different components of φ(y, j) the convex partition

of the parameter space Y(Ω) will in general be different2. It

is therefore necessary to construct the partition (12b) from

the partitions in (11b).

Let Pi(j) be the partition described in (11b) for the

component φ[i](y, j) and S(j) be the partition described in

(12b) for the whole vector φ(y, j):

Pi(j) = {Ψ1(i, j),Ψ2(i, j), . . . ,Ψpi
(i, j)} (13a)

S(j) = {Φ1(j),Φ2(j), . . . ,Φs(j)} (13b)

In the following an algorithm will be described that generates

S(j) from the g different partitions Pi(j). For this, two facts

have to be noted that will be important for this algorithm.

First, from the constraints in (6) it can be seen that for

all components φ[i](y, j) the parameter space is the same

because the constraints do not depend on vertex system Aj

or the row of G that is currently dealt with. Therefore all par-

titions Pi cover the same space, or
⋃

j Pi(j) =
⋃

j Pl(j) =
Y(Ω) for any two values of i and l. Second, all partitions

contain only convex polytopes since they are generated from

the solution of multiparametric linear programs.

The goal of the algorithm is to find a convex partition S(j)
together with the corresponding matrices βl(j) and γl(j)
that describe φ(y, j) as shown in (12a). The partitions Pi(j)
together with the corresponding matrices βl(i, j) and γl(i, j)
are taken by the algorithm as inputs. A shorthand description

is given as Algorithm 1. The key operations of the algorithm

will be described in the following.

2Please see [24] for two algorithms that create feasible partitions of the
parameter space of a quadratic multiparametric program.
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Algorithm 1 Generating a partition S(j) that describes

φ(y, j)

Require: partitions Pi(j) as described by (13a) and (11b)

with corresponding matrices βl(i, j) and γl(i, j) as de-

scribed by (11a)

1: S(j) = P1(j)
2: for l = 1 to |S(j)| do

3: βl(j) = βl(1, j)
4: γl(j) = γl(1, j)
5: end for

6: for i = 2 to g do

7: S̃(j) = ∅
8: n = 1
9: for l = 1 to |S(j)| do

10: for m = 1 to |Pi(j)| do

11: if Φl(j) ∩Ψm(i, j) 6= ∅ then

12: S̃(j) =
{

S̃(j),Φl(j) ∩Ψm(i, j)
}

13: β̃n(j) =

[

βl(j)
βm(i, j)

]

14: γ̃n(j) =

[

γl(j)
γm(i, j)

]

15: n = n+ 1
16: end if

17: end for

18: end for

19: S(j) = S̃(j)
20: for l = 1 to |S(j)| do

21: βl(j) = β̃l(j)
22: γl(j) = γ̃l(j)
23: end for

24: end for

The target partition S(j) and the corresponding matrices

βl(j) and γl(j) are initialized in lines 1 to 5 with the values

from the first component partition P1(j). In the next loop

each element Ψm(i, j) of the partition Pi(j) for the next

component will be compared with all elements Φl(j) of the

so far constructed partition S(j). If an intersection is detected

it is stored in an auxiliary partition (line 12) and the vectors

βl(j) and γl(j) corresponding to Φl(j) are augmented by the

βm(i, j) and γm(i, j) that correspond to Ψm(i, j) and stored

in auxiliary matrices β̃n(j) and γ̃n(j) (lines 13 and 14).

Whenever another component φ[i](y, j) is fully added to the

auxiliary partition S̃(j) in this way, the auxiliary variables

are stored back to the target variables S(j), βl(j), and γl(j)
(lines 19 to 23). These then represent all the information

necessary to obtain φ(y, j) as shown in (12a) and (13b).

Since all partitions Pi(j) cover the same space regardless

of the value for i the same space will also be covered by

S(j). Additionally no special cases have to be considered

where parts may be included in Pi(j) but not in another

partition. Furthermore, since the elements Ψm(i, j) of all

partitions Pi(j) are convex polytopes, the same holds for the

elements Φl(j) of S(j) because these are generated as the

intersection of two convex polytopes Ψm(i, j) and Ψn(i, j).

Algorithm 1 has to be executed for all j = 1, . . . , nθ

to obtain piecewise continuous and affine representations of

all φ(y, j) as in (12a) that can be used in the following

computations of optimal control inputs uj .

Since φ(y, j) is defined over the partition S(j) of Y(Ω),
the calculation of the optimal control inputs uj has to be

conducted separately for all elements of S(j). Using the

affine representation of φ(j) from (12a) in the constraints

of (5) together with a suitable objective function J leads

to the multiparametric optimization problem that is used to

choose an optimal control input vector uj :

uj,l(y) = arg min
uj(y)

J(y, uj, x̄) (14a)

s.t. βl(j)y + γl(j) +GBuj ≤ λhG − δ (14b)

V uj ≤ hV (14c)

y ∈ Φl(j)

The values of λ in (14b) and Rj and Pj in (10) can

be considered as tuning parameters to obtain a desirable

performance of the closed-loop system.

The main problem remains to find an output-feedback

controlled-invariant set for system (1). One strategy would

be to calculate a controlled-invariant set Ω employing an

algorithm as presented in [20] . Theorem 1 is then used to

verify whether it is also controlled-invariant under output-

feedback. If this is successful (14) with an appropriate cost

function, e.g. (10), can be used to calculate an explicit con-

troller that guarantees the invariance under output feedback.

There currently exists no algorithm to directly construct

o.f.c.i. polytopes. The same problem exists for LTI systems

and awaits solution.

IV. EXAMPLE

First simulations with randomly generated second-order

LPV-A systems indicate that the invariant output-feedback

control strategy described above can provide a relatively

good performance compared to other control strategies em-

ploying state- or state-estimate-feedback.

In order to visualize some of the unique properties of

an explicit output-feedback invariant controller (EOFIC),

its performance for an exemplary second order LPV sys-

tem (1) is compared to an explicit model-predictive controller

(EMPC) obtained from [22]. The necessary computations

are done with the Multiparametric Toolbox [23], [25] and

YALMIP [26] for MATLAB.

The two control schemes are applied to the LPV-A sys-

tem (1) with the system matrices3

A1 =

[

1.9851 1.9188
−1.5255 −1.1930

]

, A2 =

[

2.0382 2.1189
−1.2427 −1.1107

]

B =

[

1
0

]

, E =

[

0.5
0.5

]

, C =
[

0.5 0.5
]

.

The constraints are chosen such that ‖x‖∞ ≤ 10, |u| ≤ 3,

|d| ≤ 1, and |η| ≤ 0.3. The control objective is to guarantee

3Note that only the first four digits are shown. For details please contact
the authors.
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Fig. 1. Average cost J

the satisfaction of these constraints for a maximal subset of

the state space.

For the design of the EOFIC the weighting matrices are

chosen as P1 = P2 = 0.1I2 and R1 = R2 = 1 while the

vertices e1 and e2 of the standard simplex Θ are selected as

the operating points for (10). The same tuning parameters are

used for the EMPC which uses a prediction horizon of 5 steps

and a control horizon of 2 steps. For feedback purposes an

Extended Kalman Filter (EKF) is used to estimate the current

state. The EKF is initialized correctly with the actual initial

state and disturbances and measurement noise introduce

uncertainty.

The total state space is gridded into 100 points per

direction and each of these states is used as the initial state

for 20 simulations with different random trajectories for

disturbances d, noise η, and parameter θ.

Fig. 1 shows the average cost of control as given by (10)

on the z-axis resulting from the 20 simulations from each

initial state in the x, y-plane. The invariant polytope Ω is

shown in red. In case one of the simulations leads to a con-

straint violation the corresponding initial state is discarded

from the plot. Constraint violations can occur in the state (the

plant state is controlled outside the allowable state space X )

or in the control input (the use of a state outside the region

of operation of the controller leads to a nominal u outside

U).

The blue surface shows the average cost J for the output-

feedback controller being relatively low along the center

diagonal of the invariant polytope and rising significantly

towards its edges. The costs for the EMPC (green surface) are

comparable along the diagonal but rise more slowly towards

the edges.

Although the performance of the EMPC appears better

in terms of cost, a different aspect becomes apparent when

Fig. 1 is viewed at from below. Fig. 2 provides this view

in which colored areas indicate regions where one controller

performs better than the other. The first thing to note is that

the output-feedback controller actually performs a little better

Fig. 2. Areas of lowest cost J

for most states along the diagonal. The second is that in

spite of the steep increase in cost towards the edges of Ω the

EMPC cost surface is not seen in this area. This is due to

the significant number of constraint violations for the closed-

loop system.

The solid green line shows the nominal area of operation

for the EMPC which is slightly larger than Ω. The dashed

green line marks the convex hull of all states that do not lead

to constraint violations in the simulations. Not only exists a

significant gap between the two areas but also between the

feasible region of operation for the EMPC and Ω on which

the output-feedback controller is defined. Furthermore, even

some states outside Ω lead to feasible simulations with the

invariant controller. The described effects are also present

when the actual state is used for feedback.

The peculiar behavior of the EMPC can of course be

attributed to the influences of disturbances and measurement

noise. The invariant output-feedback controller recognizes

the existence of these influences and accounts for them while

the used EMPC scheme does not. The choice of values for

the tuning matrices Pj and Rj leads to significantly higher

cost for the EOFIC as compared to the EMPC as shown

in Fig. 1. By choosing different values for Pj and Rj the

gap between the nominal and actual control area of the

EMPC can be lessened but this also leads to better overall

performance for the EOFIC. The designer of the EMPC faces

a trade-off between superior performance over the EOFIC

and a larger area of control.

Other simulations confirm these impressions. Furthermore,

the general performance of the EOFIC for most systems

where it can be applied is comparable to or even better than

that of the EMPC or other control schemes from [18], [27]

while at the same time delivering guarantees with regard to

hard constraints even under external influences.

V. CONCLUSION

The notion of robust controlled-invariant polytopes is very

useful for designing state-feedback controllers for linear

parameter-varying (LPV) systems. Computation algorithms
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can take process disturbances into account in the polytope

computation making the resulting control method robust with

respect to unknown but bounded disturbances.

As an extension of this, a theorem is presented that

allows to verify whether a given polytope is output-feedback

controlled-invariant (o.f.c.i.) with respect to a given LPV-

A system. The invariance property of the polytope can

then be guaranteed by calculating the control input from

the measured outputs only. The outputs can be subject to

bounded measurement noise. The calculation of a suitable

control input requires some sort of robustification of the con-

straints with respect to the unknown plant state x. The robust

constraints are complemented by a suitable cost function to

calculate an output-feedback controller that can guarantee

hard constraints on states and control inputs in the presence

of process disturbances and measurement noise.

The output-feedback control method (EOFIC) is compared

to an explicit model-predictive controller (EMPC) in an

exemplary simulation. The EOFIC guarantees the obser-

vance of system constraints in the presence of both process

disturbances and measurement noise for all states within

the invariant polytope. On the other hand the EMPC has

major problems dealing with these external influences. Even

when using state-feedback the nominal area of operation

and the actual set of states for which it does not lead to

constraint violations are significantly different from each

other. This effect is strengthened by using state estimation

which is affected by the presence of measurement noise. The

EOFIC scheme guarantees this robustness for any choice of

weighting matrices while the EMPC can be tuned to work

on a larger area than shown here at the expense of giving up

its performance advantage.

There are several possible routes for future research. The

most obvious is indicated by the fact that finding an o.f.c.i.

polytope for a given system can be difficult. It will be

useful to find conditions LPV (or even LTI) systems have to

fulfill to indicate the (non-)existence of an o.f.c.i. polytope

for the respective system. The next step will then be to

develop algorithms that allow for the calculation of these

polytopes directly. Other paths involve the extension to other

model structures, e.g. full LPV systems or input-output LPV

systems.
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