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Abstract— This paper deals with an inventory-production
system in which raw parts are transformed into processed parts,
in order to satisfy a time-varying positive demand over a given
time horizon. The production resource is capacitated whereas
the inventory is unbounded; the external demand is known
and is expressed as a piecewise constant function changing at
asynchronous time instants. The objective is to find the optimal
service speed pattern, assumed to be a piecewise constant
function, which minimizes setup, production, and holding costs;
hence, the decisions concern both the values of the service
speed and the (asynchronous) time instants at which it changes.
The optimization problem defined for this class of systems
has a parametric structure and includes both nonlinear and
combinatorial aspects. In the paper, some structural properties
of any optimal solution are firstly proven, and then a solution
procedure that allows finding an optimal solution in polynomial
times is provided.

I. INTRODUCTION

The paper addresses a production planning problem for

an inventory-production system transforming raw parts into

processed parts, in order to satisfy a deterministic external

demand over a given time horizon. This demand is a positive

piecewise constant function changing at asynchronous time

instants. The system considered in this paper can be related

to the class of lot sizing models, which has been studied

for some decades [1]. Lot sizing is one of the most difficult

problems in production planning and the relevant decisions

concern when and how much to produce in order to minimize

setup, production, and holding costs. Lot sizing models can

be classified according to different characteristics, such as the

planning horizon (finite or infinite), the number of production

levels (single-level or multi-level), the number of products

(single-item or multi-item), the capacity constraints (capaci-

tated or uncapacitated), the demand type (static or dynamic,

deterministic or probabilistic, dependent or independent), and

so on [2]. The first study on lot sizing models dates back to

the fifties [3], for the uncapacitated case; since then, a lot of

research work has been done by introducing new modelling

aspects and by providing various solution algorithms.

An important distinction in the class of lot sizing models

concerns the demand satisfaction. In some cases the demand

must be satisfied in time (model without backlogging) by

producing and, if necessary, storing products [4]; in other

cases the demand can be satisfied by backlogging to sub-

sequent periods or it can be outsourced [5]. The model

considered in this paper belongs to the class of capacitated
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lot sizing problems without backlogging, with dynamic and

deterministic demand; anyway, it is highly different from the

models present in the literature and belonging to this class,

since it presents very peculiar characteristics. Specifically,

the main novelty of this model concerns timing aspects; in

the approaches present in the literature on lot sizing problems

the system is either studied and observed continuously or at

discrete-time points, corresponding to continuous-time (see

for instance [6], [7]) or discrete-time approaches (as in [8],

[9]); few works consider a discretized planning horizon in

which the time intervals have different lengths [10].

In the present model, the processes representing external

demand and production are piecewise constant functions

changing in correspondence with asynchronous time instants,

i.e. not equally spaced over the time horizon, and some

decisions on timing must be taken, as in [11], [12]. More

specifically, the decisions concern not only the values of

the production speed over time, but also the time instants

at which these values change. The decisions on timing make

the considered planning problem more complicated than in

the case of discrete-time horizon with fixed and known

time intervals and, in fact, this planning problem cannot

be formulated and solved via mixed-integer programming,

as generally done in this field [13]. On the contrary, the

optimization problem treated in this paper has a paramet-

ric structure and includes non linearities and combinatorial

aspects.

As already introduced, the objective of this work is to find

the optimal service speed in order to satisfy a positive time-

varying external demand over a finite horizon, considering

that the production speed cannot exceed a given maximum

value, and minimizing setup, production, and holding costs.

In the next section, the considered class of production-

inventory systems is introduced; the optimization problem

is formalized in Section III, and in Section IV the structural

properties which characterize the optimal solutions of that

problem are given and proven; the procedure which provides

an optimal solution of the optimization problem is in sec-

tion V, and an example is in section VI; in the last section,

some conclusions are drawn.

II. THE INVENTORY-PRODUCTION SYSTEM

The inventory-production system considered in this paper

consists of a production resource which transforms raw parts

(assumed unlimited, that is, always available) into processed

parts, an inventory where processed parts are stored, and a

departure process which withdraws processed parts from the

inventory and delivers them, in accordance with an external
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demand (which is assumed to be completely satisfied). Parts

stored in the inventory are considered as continuous entities;

in this connection, let x(t) be the level of the inventory at

time t.

The external demand e(t) is assumed to be a piece-

wise constant function of time defined in the interval [0, T ],
being T the considered time horizon. The values of e(t)
represent the rates at which processed parts are withdrawn

from the production system (withdrawal rates). The external

demand is therefore characterized by the asynchronous time

instants at which the withdrawal rate changes, namely θk,

k = 1, . . . , Q − 1, and by the withdrawal rates themselves,

namely ek, k = 1, . . . , Q, being ek the rate in time interval

[θk−1, θk), with θ0 = 0 and θQ = T . In this paper it is

assumed ek > 0 ∀k = 1, . . . , Q. An example of external

demand is illustrated in Fig. 1.

t

e(t)

e1

e2

e3 e4

e5
e6

θ0 = 0 θ1 θ2 θ3 θ4 θ5 θ6 = T

Fig. 1. Example of external demand e(t).

The production resource transforms parts at a certain

speed; in this connection, let u(t) be the service speed at

time t, that is the number of parts processed by the system

per time unit. In the proposed system, the service speed is

modelled as a piece-wise constant function of t (see Fig. 2),

where uh, h = 1, . . . , P , is the speed within time interval

[τh−1, τh); moreover, the service speed is upper-bounded by

value U . The speed changes at asynchronous time instants

τh, h = 1, . . . , P − 1 (then, uh+1 6= uh). It is assumed, of

course without loss of generality, τ0 = 0 and τP = T .

u(t)
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Fig. 2. Example of Production speed u(t).

The state of the system is represented by the level x(t) of

the inventory. Such a level obviously increases when the ser-

vice speed is greater than the withdrawal rate, and decreases

when the service speed is lower than the withdrawal rate.

In this paper, it is assumed that the inventory is not upper-

bounded and is always nonnegative (no backlog allowed).

x(t) can be written as

x(t) = x(0) +
∫ t

0
u(t)dt−

∫ t

0
e(t)dt =

= x(0) +
∑p+1

h=1 uh(τh − τh−1) − up+1(τp+1 − t)

−
∑q+1

k=1 ek(θk − θk−1) + eq+1(θq+1 − t)
(1)

with p : τp ≤ t < τp+1 and q : θq ≤ t < θq+1. Since both

the service speed and the external demand are piece-wise

constant functions of t, x(t) is a piece-wise linear function.

III. OPTIMIZATION OF SERVICE SPEED

As discussed in the Introduction, the objective of this paper

is to state and solve a finite-horizon optimization problem

which provides a piece-wise constant function representing

the optimal production speed over time that minimizes setup,

production, and holding costs. Being the production driven

by the external demand, the optimization horizon is set equal

to the time interval in which the external demand is known,

that is, T .

The decision variables are τh, h = 1, . . . , P − 1, and uh,

h = 1, . . . , P . It is worth noting that also the number of

“discontinuity points” (that is, the number of time instants at

which the production rate changes) is matter of optimization.

Then, value P is considered as a decision variable.

The setup cost is

CS =
∑P−1

h=0 σyh (2)

being σ the cost to be paid when the production resource

passes from an idle state to a working state, and where

y0 =

{

0 if u1 = 0
1 if u1 > 0

yh =

{

0 if uh > 0
1 if uh = 0

h = 1, . . . , P − 1

(3)

is a binary variable whose value, for a certain h ∈
{0, . . . , P − 1}, is equal to 1 if a setup is required at τh.

It is assumed that the resource is initially idle (at t = 0) and

that no setup is required at the end of the production process

(at t = T ).

The production cost is

CP = ψ
∑P

h=1 uh(τh − τh−1) (4)

being ψ the unitary cost for the processing of parts.

The holding cost is

CH = ϕ
∫ T

0
x(t)dt =

= ϕ
[

x0T +
∑P

h=1
1
2uh(τh − τh−1)

2

+
∑P

h=2

∑h−1
p=1 up(τp − τp−1)(τh − τh−1)

−
∑Q

k=1
1
2ek(θk − θk−1)

2

−
∑Q

k=2

∑k−1
q=1 eq(θq − θq−1)(θk − θk−1)

]

(5)

being x0 = x(0) the initial inventory level, and ϕ the unitary

cost of inventory.

In the proposed model, no backlog is allowed. Then, the

inventory level must be non-negative at each time instant,

that is, x(t) ≥ 0, 0 ≤ t ≤ T . However, since x(t) is a piece-

wise linear function and assuming x0 ≥ 0, it is sufficient

to check the non-negativity at τh, h = 1, . . . , P , and at θk,

k = 1, . . . , Q, which are the asynchronous time instants in

which the slope of x(t) changes. In these time instants, the

inventory level is provided by

x(τh) = x0 +
∑h

p=1 up(τp − τp−1)

−
∑Q

k=1 ρh,kek(θk − θk−1)

−
∑Q

k=1(ρh,k−1 − ρh,k)ek(τh − θk−1)

(6)
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x(θk) = x0 +
∑P

h=1(1 − ρh,k)uh(τh − τh−1)

+
∑P

h=1(ρh,k − ρh−1,k)uh(θk − τh−1)

−
∑k

q=1 eq(θq − θq−1)

(7)

where

ρh,k =

{

0 if τh ≤ θk

1 if τh > θk
(8)

is a binary variable which defines, for any pair (h, k), h =
0, . . . , P and k = 0, . . . , Q, the relative position between

τh and θk. Since it has been assumed τ0 = θ0 = 0 and

τP = θQ = T , it turns out














ρ0,k = 0 ∀ k = 0, . . . , Q
ρh,0 = 1 ∀ h = 1, . . . , P
ρP,k = 1 ∀ k = 1, . . . , Q− 1
ρh,Q = 0 ∀ h = 1, . . . , P

(9)

The optimization problem for the considered production

system can be defined as follows.

Problem 1: Given the initial inventory level x0 ≥ 0, given

the maximum production speed U , given the time horizon T ,

and given the external demand e(t) (expressed by θk, k =
0, . . . , Q, with θ0 = 0 and θQ = T , and ek, k = 1, . . . , Q),

find

min
P

τh, h=1,...,P−1
uh, h=1,...,P

yh, h=0,...,P−1
ρh,k, h=1,...,P−1, k=1,...,Q−1

CS + CP + CH (10)

being CS, CP, and CH provided by (2), (4), and (5), respec-

tively, with τ0 = 0, τP = T , subject to

x(τh) ≥ 0, h = 1, . . . , P (11)

x(θk) ≥ 0, k = 1, . . . , Q (12)

τh > τh−1, h = 1, . . . , P (13)

0 ≤ uh ≤ U, h = 1, . . . , P (14)

τh − θk +M(1 − ρh,k) > 0,
h = 1, . . . , P − 1
k = 1, . . . , Q− 1

(15)

θk − τh +Mρh,k ≥ 0,
h = 1, . . . , P − 1
k = 1, . . . , Q− 1

(16)

|uh − uh+1| > 0, h = 1, . . . , P − 1 (17)

u1 +N(1 − y0) > 0 (18)

− u1 +Ny0 ≥ 0 (19)

uh +Nyh > 0, h = 1, . . . , P − 1 (20)

− uh +N(1 − yh) ≥ 0, h = 1, . . . , P − 1 (21)

P ∈ N>0 (22)

ρh,k ∈ {0, 1},
h = 1, . . . , P − 1
k = 1, . . . , Q− 1

(23)

yh ∈ {0, 1}, h = 0, . . . , P − 1 (24)

where x(τh) and x(θk) are respectively provided by (6)

and (7) (taking into account (9)), and M and N are positive

numbers that are sufficiently large to guarantee that, in an

optimal solution, the values of binary variables ρh,k and yh

are in accordance with (8) and (3), respectively.

Problem 1 has a parametric structure since P belongs

to the set of decision variables; moreover, it includes non

linearities and combinatorial aspects. The following theorem

provides necessary and sufficient conditions for the existence

of a solution for Problem 1.

Theorem 1: Necessary and sufficient conditions for the

existence of a solution for Problem 1 are

x0 + U(θk − θ0) ≥
∑k

q=1 eq(θq − θq−1) (25)

for any k = 1, . . . , Q. �

Proof: Assume that condition (25) is not satisfied for a

certain k ∈ {1, . . . , Q}. Then, it turns out x(θk) < 0, which

violates constraint (12). For this reason (25) are necessary

conditions. Assume now that conditions (25) are satisfied

for all k ∈ {1, . . . , Q}. Then, the specific solution S⋆ for

Problem 1, characterized by P = 1, u1 = U , and y0 = 1
(this solution refers to the case in which parts are produced at

the constant speed U throughout the interval [0, T ]) respects

all constraints and then it is a feasible solution of Problem 1.

For this reason (25) are sufficient conditions.

IV. PROPERTIES OF THE OPTIMAL SOLUTIONS

The following theorems provide some structural properties

of any optimal solution of Problem 1.

Theorem 2: In any optimal solution of Problem 1,

the number of parts to be produced is nP =
max{0,

∑Q

k=1 ek(θk − θk−1) − x0}. �

Proof: In the considered problem, there is no advantage

in producing more parts than those which are necessary to

satisfy exactly the external demand, since the production of

more parts would result in an equal or higher setup cost, a

higher production cost, and a higher holding cost. Moreover,

it is not possible to produce less parts then the necessary

since the external demand is assumed to be satisfied. Then,

in any optimal solution of Problem 1, the number of parts to

be produced is always equal to the total demand minus the

initial inventory; obviously, if the initial inventory is higher

than the total demand, no parts are produced.

Theorem 2 also allows determining the inventory at the fi-

nal time instant depending on the inventory at the initial time

instant. As a matter of fact, if x0 ≤
∑Q

k=1 ek(θk − θk−1),

then, x(T ) = 0; otherwise, x(T ) = x0 −
∑Q

k=1 ek(θk −
θk−1). A further consequence of the above theorem is

reported in the following result.

Corollary 1: In any optimal solution of Problem 1, the

production cost is always equal to ψ nP. �

Proof: The number of parts to be produced is nP, as

stated by Theorem 2; then,
∑P

h=1 uh(τh − τh−1) = nP.

Hence, according to (4), the production cost is ψ nP.

Theorem 3: A necessary condition for the existence of an

idle period in any optimal solution of Problem 1, that is,

uh = 0 for some [τh−1, τh) ⊆ [0, T ], is x0 > 0. If x0 > 0
then there is one idle period at most; when present, it is at

the beginning of the considered time horizon. �

Proof: First of all, it is proven that, in any optimal

solution, an idle period cannot exist in the middle of the

production process. To this end, assume the existence of a

feasible solution in which nP parts are produced (in accor-

dance with Theorem 2) and in which an idle period exists in
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the interval [τh, τh+1) (assume for simplicity [τh, τh+1) ⊂
[θk−1, θk)). Let S′ be such solution and let x′(t) be the

level of inventory at t when S′ is adopted; moreover, let

u′h, with 0 < u′h ≤ U be the service speed in the interval

[τh−1, τh). Consider now another solution in which nP parts

are produced, no idle period is present in [τh, τh+1), and the

service speeds in the intervals [0, τh−1) and [τh+1, T ] are

equal to those in S′. Let S′′ be such solution and let x′′(t)
be the level of inventory at t when S′′ is adopted; moreover,

let u′′h > 0 and u′′h+1 > 0 be, respectively, the service speed

in [τh−1, τh) and in [τh, τh+1). Since the resource produces,

both in S′ and in S′′, the same number of parts, it is assumed

that the two speeds u′′h and u′′h+1 satisfy the condition

u′h(τh − τh−1) = u′′h(τh − τh−1) + u′′h+1(τh+1 − τh). Then,

assuming u′′h+1 to be a positive value arbitrarily small (that

is, less than or equal to U ), it turns out u′′h < u′h ≤ U . Thus,

S′′ is a feasible solution. However, the solution S′ yields an

extra cost equal to σ + 1
2ϕu

′′

h+1(τh+1 − τh)(τh+1 − τh−1),
with respect to the cost yielded by S′′. This means that a

solution in which an idle period is present in the middle of

the production process cannot be optimal.

Consider now the possibility of having an idle time at the

beginning of the considered interval [0, T ]. It is evident that

no idle period exists in the case x0 = 0, since the production

must start immediately in order to satisfy the positive external

demand. This means that x0 > 0 is a necessary condition

for the existence of an idle period in any optimal solution

of Problem 1. Consider the case x0 > 0. First of all, if

x0 ≥
∑Q

k=1 ek(θk − θk−1) no parts are produced and then

the whole time horizon [0, T ] is an idle period. Moreover, if

x0 =
∑k

q=1(eq − U)(θq − θq−1) for some k ∈ {1, . . . , Q},

then it is necessary to produce at speed U within the time

horizon [0, θk) in order to satisfy (25); thus, also in this case,

no idle period is present in an optimal solution of Problem 1.

This means that x0 > 0 is not a sufficient condition for

the existence of an idle period in an optimal solution of

Problem 1.

Assume now x0 > 0, x0 <
∑Q

k=1 ek(θk − θk−1), and

x0 >
∑k

q=1(eq−U)(θq−θq−1) for all k = 1, . . . , Q, and let

us prove that, in any optimal solution, an idle period exists at

the beginning of the considered time horizon. To prove that

an idle period exists at the beginning of the considered time

horizon, assume the existence of a feasible solution in which

nP parts are produced and in which no idle period exists. Let

S′ be such solution and let x′(t) and τ ′h, h = 1, 2, . . ., be,

respectively, the level of inventory at t and the time instants

at which the service speed changes, when S′ is adopted;

moreover, let u′1, with 0 < u′1 < U , be the service speed

at the beginning, that is, in the interval [θ0, τ
′

1) (condition

x0 >
∑k

q=1(eq −U)(θq − θq−1) for all k = 1, . . . , Q allows

choosing, at the beginning, a service speed u′1 lower than

the maximum speed U ). Consider now another solution in

which nP parts are produced and an idle period is present at

the beginning. Let S′′ be such solution and let x′′(t) and τ ′′h ,

h = 1, 2, . . ., be, respectively, the level of inventory at t and

the time instants at which the service speed changes, when

S′′ is adopted. In this solution, it is assumed that the idle

period ends at τ ′′1 , and τ ′′2 = τ ′1; moreover, the service speed

in the interval [τ ′′1 , τ
′′

2 ) is such that x′′(τ ′′2 ) = x′(τ ′1), and the

speeds in [τ ′′2 , T ] are equal to those in S′. In order to have

x′′(τ ′′2 ) = x′(τ ′1), the speed u′′2 and the time instant τ ′′1 must

satisfy the condition u′1τ
′

1 = u′′2(τ ′′2 −τ
′′

1 ); since u′1 < U , then

a pair (τ ′′1 , u
′′

2), with 0 < τ ′′1 < τ ′1 and 0 < u′′2 ≤ U , certainly

exists. Thus, S′′ is a feasible solution. However, the solution

S′ yields an extra cost equal to 1
2ϕu

′′

2τ
′′

1 (τ ′′2 − τ ′′1 ), with

respect to the cost yielded by S′′. This means that a solution

in which no idle period exists at the beginning cannot be

optimal in the case x0 > 0, x0 <
∑Q

k=1 ek(θk − θk−1), and

x0 >
∑k

q=1(eq − U)(θq − θq−1) for all k = 1, . . . , Q.

In conclusion, since it has been proven that an idle period

cannot exist in the middle of the production process, then in

the case x0 > 0 there is one idle period at the beginning of

the considered time horizon at most.

Remark 1: With reference to the proof of Theorem 3,

the time instant at which the idle period ends, namely τ̃ ,

can be determined as the farthest (from 0) time instant for

which the solution remains feasible (such time instant will

be determined inside the solution procedure proposed in the

following section). �

Corollary 2: In any optimal solution of Problem 1, the

setup cost is paid one time at most, that is
∑P−1

h=0 yh ≤ 1.�

Proof: According to Theorem 3, the production re-

source passes from an idle to a working state only one time

if x0 <
∑Q

k=1 ek(θk − θk−1), and remains in the idle state

otherwise. Then the setup cost is paid one time at most.

Theorem 4: In any optimal solution of Problem 1, the

production speed in the generic interval [θk−1, θk) of the

working period is either ek or U , in case ek < U , and U , in

case ek ≥ U . �

Proof: Consider firstly the case ek < U . In this connec-

tion, consider a feasible solution S′ and, with reference to

generic interval [θk−1, θk) of the working period (in which

the withdrawal rate is ek), let S′ be characterized by two

changes of production speed, namely τh−1 and τh with

[τh−1, τh) ⊆ [θk−1, θk) and by the speed values uh−1 = ek,

uh = ũ, and uh+1 = ek.

Assume 0 < ũ < ek. Since the external demand has been

assumed to be always satisfied, at time instant τh−1 a number

of parts equal to (ek − ũ)(τh − τh−1) must be available

in the inventory; since uh−1 = ek, such parts must have

been produced before time instant θk−1. This yields an extra

cost of inventory of at least 1
2ϕ(ek − ũ)(τh − τh−1)(τh +

τh−1−2θk−1), with respect to the cost yielded by a solution

in which the production speed is ek in the whole interval

[θk−1, θk), and no parts are produced in advance. Then, in

this case, S′ cannot be optimal.

Assume now ek < ũ < U . In this case, two situations

must be considered. In the first situation, the production at

speed ũ > ek is justified by the need of producing and

storing parts, in order to satisfy future external demands

that are characterized by a withdrawal rate higher than the

maximum allowable speed U . Then, in the solution S′, a

fraction of the production effort in the interval [τh−1, τh)
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is dedicated to this aim; more specifically, the number of

parts produced and stored is (ũ− ek)(τh − τh−1). Consider

now another feasible solution, namely S′′, in which the

production speed in the interval [θk−1, θk) is ek in [θk−1, τ̂),

with τ̂ = θk−
(ũ−ek)(τh−τh−1)

U−ek
, and U in [τ̂ , θk). It is evident

that the number of parts produced in [θk−1, θk) is the same

in both solutions, and then S′′ is feasible being S′ feasible.

With respect to the considered interval, the solution S′ yields

an extra cost equal to 1
2ϕ(ũ − ek)(τh − τh−1)(2θk − τh −

τh−1)−
1
2ϕ(U−ek)(θk−τ̂)

2, with respect to the cost yielded

by S′′. Then, in this situation, S′ cannot be optimal. In the

second situation, there is no need of producing and storing

parts in advance and then the speed ũ > ek is not justified

by feasibility issues. This yields an extra cost of at least
1
2ϕ(ũ−ek)(τh−τh−1)(2θk −τh−τh−1), with respect to the

cost yielded by a solution in which the production speed is ek

in the whole interval [θk−1, θk). Then, also in this situation,

S′ cannot be optimal.

Summarizing, when ek < U in the interval [θk−1, θk),
there is no advantage in producing parts at a speed different

from ek or U .

Consider now the case ek ≥ U . As before, consider a

feasible solution S′, and let S′ be now characterized by the

presence of a time interval [τh−1, τh) ⊆ [θk−1, θk) with the

speed values uh−1 = U , uh = ũ < U , and uh+1 = U . Since

the external demand has been assumed to be always satisfied,

at time instant θk−1 a number of parts equal to (ek−U)(θk−
θk−1)+(U−ũ)(τh−τh−1) must be available in the inventory.

Consider now another feasible solution, namely S′′, in which

the production speed in the interval [θk−1, θk) is always U .

In this case the number of parts that must be available in

the inventory at θk−1 is equal to (ek −U)(θk − θk−1) only.

Then, the solution S′ yields, with respect to the cost yielded

by S′′, an extra cost of at least 1
2ϕ(U − ũ)(τh − τh−1)(τh +

τh−1 − 2θk−1). Then, S′ cannot be optimal.

This means that, when ek ≥ U in the interval [θk−1, θk),
there is no advantage in producing parts at a speed different

from U .

It is worth finally observing that the above theorems and

corollaries allow stating that neither the setup cost nor the

production cost influence the solution of Problem 1 (as a

consequence, the solution is not affected by the unitary costs

σ, ψ, and ϕ).

V. THE SOLUTION PROCEDURE

An optimal solution of Problem 1 is provided by the

following theorem.

Theorem 5: An optimal solution of Problem 1 can be

obtained through the following procedure:

1) determine the set of values {ξk, k = 0, . . . , Q} (“resid-

ual stocks”) through the forward procedure

ξk = ξk−1 − ek(θk − θk−1) (26)

k = 1, . . . , Q, initialized by ξ0 = x0;

2) determine the set of values {Xk, k = 0, . . . , Q}
(“safety stocks”) through the backward procedure

Xk = max
{

0,Xk+1 + (ek+1 − U)(θk+1 − θk)
}

(27)

k = Q− 1, . . . , 0, initialized by XQ = 0;

3) apply the following algorithm which provides the opti-

mal values of decision variables P , τh, h = 1, . . . , P−
1, uh, h = 1, . . . , P , yh, h = 0, . . . , P − 1, and ρh,k,

h = 1, . . . , P − 1, k = 1, . . . , Q− 1:

1: if (ξQ ≥ 0) then
2: y0 = 0, u1 = 0, P = 1
3: else
4: h = 0, k = 1
5: if (ξ0 > 0) ∧ (ξ0 > X0) then
6: y0 = 0
7: while ¬

˘ˆ

(ξk−1 ≥ 0)∧ (Xk−1 ≤ ξk−1)∧ (ξk <

0)
˜

∨
ˆ

(Xk−1 ≤ ξk−1) ∧ (Xk > ξk) ∧ (ξk > 0)
˜¯

do
8: k = k + 1
9: end while

10: if ¬
ˆ

(ξk−1 = 0) ∨ (Xk−1 = ξk−1)
˜

then
11: if (ξk < 0) ∧ (Xk−1 = 0) ∧ (Xk = 0) then

12: u1 = 0, τ1 = θk−1 +
ξk−1

ek
, y1 = 1

13: if k > 1 then
14: for j = 1 to k − 1 do ρ1,j = 1

15: if k < Q then
16: for j = k to Q − 1 do ρ1,j = 0

17: u2 = ek, h = 2
18: else if (ξk < 0) ∧ (Xk−1 = 0) ∧ (Xk >

0) ∧
`

Xk

U−ek
<

−ξk

ek

´

then

19: u1 = 0, τ1 = θk−1 +
ξk−1

ek
, y1 = 1

20: if k > 1 then
21: for j = 1 to k − 1 do ρ1,j = 1

22: if k < Q then
23: for j = k to Q − 1 do ρ1,j = 0

24: u2 = ek, τ2 = θk −
Xk

U−ek
, y2 = 0

25: if k > 1 then
26: for j = 1 to k − 1 do ρ2,j = 1

27: if k < Q then
28: for j = k to Q − 1 do ρ2,j = 0

29: u3 = U , h = 3
30: else if

ˆ

(ξk < 0) ∧ (Xk−1 = 0) ∧ (Xk >

0) ∧
`

Xk

U−ek
≥

−ξk

ek

´˜

∨
ˆ

(Xk−1 < ξk−1) ∧ (ξk < 0) ∧

(Xk−1 > 0)
˜

∨
ˆ

(ξk > 0)
˜

then

31: u1 = 0, τ1 = θk −
Xk−ξk

U
, y1 = 1

32: if k > 1 then
33: for j = 1 to k − 1 do ρ1,j = 1

34: if k < Q then
35: for j = k to Q − 1 do ρ1,j = 0

36: u2 = U , h = 2

37: end if
38: k = k + 1
39: end if

40: end if
41: for i = k to Q do
42: if (Xi−1 = 0) ∧ (Xi = 0) then
43: if (i ≥ 2) then
44: τh = θi−1, yh = 0
45: if i > 2 then
46: for j = 1 to i − 2 do ρh,j = 1

47: if i < Q then
48: for j = i − 1 to Q − 1 do ρh,j = 0

49: else if (i = 1) then
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50: yh = 1

51: end if
52: uh+1 = ei, h = h + 1
53: else if (Xi−1 = 0) ∧ (0 < Xi < (U − ei)(θi −

θi−1)) then
54: if (i ≥ 2) then
55: τh = θi−1, yh = 0
56: if i > 2 then
57: for j = 1 to i − 2 do ρh,j = 1

58: if i < Q then
59: for j = i − 1 to Q − 1 do ρh,j = 0

60: else if (i = 1) then
61: yh = 1

62: end if
63: uh+1 = ei, τh+1 = θi −

Xi

U−ei
, yh+1 = 0

64: if i > 1 then
65: for j = 1 to i − 1 do ρh+1,j = 1

66: if i < Q then
67: for j = i to Q − 1 do ρh+1,j = 0

68: uh+2 = U , h = h + 2
69: else if (Xi−1 > 0)∨(Xi = (U −ei)(θi−θi−1))

then
70: if (i ≥ 2) ∧

ˆ

(Xi = (U − ei)(θi − θi−1)) ∧
(ei−1 < U)

˜

then
71: τh = θi−1, yh = 0
72: if i > 2 then
73: for j = 1 to i − 2 do ρh,j = 1

74: if i < Q then
75: for j = i − 1 to Q − 1 do ρh,j = 0

76: uh+1 = U , h = h + 1
77: else if (i = 1) then
78: yh = 1, uh+1 = U , h = h + 1

79: end if

80: end if

81: end for
82: P = h
83: end if �

Sketch of the Proof: First of all, consider the two

sets of values which are determined at steps 1) and 2) of

the procedure. The “residual stock” ξk, k ∈ {0, . . . , Q},

represents the portion of the initial inventory level which

is still available at time instant θk, after having satisfied the

external demands until that time instant; negative values of

ξk mean that the initial inventory has been entirely consumed

and then it is necessary to produce parts to satisfy the

demand. Instead, the “safety stock” Xk, k ∈ {0, . . . , Q},

represents the number of parts that the production resource

must guarantee at θk in order to satisfy the future demands,

from θk onwards; in other words, in order to meet the future

demands, it is necessary that the inventory contains, at θk,

at least Xk parts; Xk = 0 means that the demand in the

following interval, namely [θk, θk+1), can be satisfied with

the production from θk onwards.

It has been mentioned in Remark 1 that, in any optimal

solution of Problem 1, the time instant at which the idle

period ends is the farthest (from 0) time instant for which

the solution remains feasible; in other words, the idle period,

if present, lasts as much as possible. It is also possible to

show (the proof is not reported due to the lack of space) that

such a time instant is

τ1 = θk−1 + ξk−1

ek
(28)

if (ξk−1 ≥ 0)∧ (ξk < 0)∧ (Xk−1 = 0)∧
(

Xk

U−ek
< −ξk

ek

)

, or

τ1 = θk − Xk−ξk

U
(29)

otherwise, where k ∈ {1, . . . , Q} is such that [(ξk−1 ≥ 0)∧
(Xk−1 ≤ ξk−1) ∧ (ξk < 0)] ∨ [(Xk−1 ≤ ξk−1) ∧ (Xk >

ξk) ∧ (ξk > 0)].
On the basis of this result, it is possible to show (again,

the proof is not reported) that, in any optimal solution of

Problem 1, the optimal service speed in the time interval in

which the idle period (if present) ends, namely [θk−1, θk),
with k ∈ {1, . . . , Q} such that [(ξk−1 > 0) ∧ (Xk−1 <

ξk−1)∧(ξk < 0)]∨[(Xk−1 < ξk−1)∧(Xk > ξk)∧(ξk > 0)],
is equal to:

• in case (ξk < 0) ∧ (Xk−1 = 0) ∧ (Xk = 0):
{

u1 = 0 in [θk−1, τ1)
u2 = ek in [τ1, θk)

(30)

and τ1 = θk−1 + ξk−1

ek
is the time instant at which the

production starts;

• in case (ξk < 0)∧ (Xk−1 = 0)∧ (Xk > 0)∧
(

Xk

U−ek
<

−ξk

ek

)

:






u1 = 0 in [θk−1, τ1)
u2 = ek in [τ1, τ2)
u3 = U in [τ2, θk)

(31)

and τ1 = θk−1 + ξk−1

ek
is the time instant at which the

production starts, whereas τ2 = θk − Xk

U−ek
is the time

instant at which the service speed changes to U ;

• in case (ξk < 0)∧ (Xk−1 = 0)∧ (Xk > 0)∧
(

Xk

U−ek
≥

−ξk

ek

)

or in case (Xk−1 < ξk−1)∧ (ξk < 0)∧ (Xk−1 >

0) or in case (ξk > 0):
{

u1 = 0 in [θk−1, τ1)
u2 = U in [τ1, θk)

(32)

and τ1 = θk − Xk−ξk

U
is the time instant at which the

production starts.

Moreover, as corollary of Theorem 4, it can be also shown

that, in any optimal solution of Problem 1, the optimal

service speed in the generic interval of the working period,

namely [θk−1, θk), for any k ∈ {1, . . . , Q} such that (ξk−1 ≤
0) ∨ (ξk−1 = Xk−1), is equal to:

• in case (Xk−1 = 0) ∧ (Xk = 0):

uh+1 = ek (33)

and τh = θk−1 is the time instant at which the service

speed changes to ek (when k ≥ 2) or the time instant

at which the production starts (when k = 1);

• in case (Xk−1 = 0)∧(0 < Xk < (U−ek)(θk−θk−1)):
{

uh+1 = ek in [θk−1, τh+1)
uh+2 = U in [τh+1, θk)

(34)

and τh = θk−1 is the time instant at which the service

speed changes to ek (when k ≥ 2) or the time instant

at which the production starts (when k = 1), whereas

τh+1 = θk − Xk

U−ek
is the time instant at which the

service speed changes to U ;
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• in case (Xk−1 > 0) or in case (Xk = (U − ek)(θk −
θk−1)):

uh+1 = U (35)

and τh = θk−1 is the time instant at which the service

speed changes to U (when k ≥ 2 and if (Xk = (U −
ek)(θk − θk−1)) ∧ (ek−1 < U); otherwise no change

of service speeds occurs within the considered interval)

or the time instant at which the production starts (when

k = 1);

being h ∈ {0, . . . , P − 1} the number of service speed

changes occurring before θk−1.

The algorithm at step 3 of the procedure applies, in an

algorithmic fashion, these results, thus providing an optimal

solution of Problem 1.

More specifically, rows 1÷2 are relative to the case in

which the initial inventory is sufficient to satisfy entirely

the external demand and then no production is required (the

resource stays idle during the whole time horizon); rows

3÷40 verifies if an idle period exists at the beginning or

not and, in positive case, the time interval [θk−1, θk), k ∈
{1, . . . , Q}, during which the idle period ends is determined

and the production speed is set according to (30)÷(32)

(except in the case the idle period ends at θk−1); finally,

rows 41÷83 takes into account all the intervals [θk−1, θk)
corresponding to a working period and sets the production

speed in accordance with (33)÷(35).

Remark 2: Necessary and sufficient conditions for the ex-

istence of a solution for Problem 1, that have been provided

in Theorem 1, can be now simply written as x0 ≥ X0.

Remark 3: The procedure in Theorem 5 allows finding

the optimal solution of Problem 1 in polynomial time,

being O(Q2) the complexity of the procedure, and having

considered Q as the size of the problem to be solved (number

of changes of withdrawal rate in the external demand).

VI. EXAMPLE

Consider an inventory-production system characterized by

a maximum speed U = 20 parts/hour and an initial inventory

level x0 = 7 parts. The external demand e(t) is the piece-

wise constant function illustrated in Fig. 3.
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Fig. 3. Example – Pattern of the external demand e(t).

By applying Theorem 5, the optimal service speed u◦(t)
illustrated in Fig. 4 is determined. It is characterized by the

following values of the decision variables: P ◦ = 6, τ◦1 =
0.8854, τ◦2 = 3, τ◦3 = 6.8235, τ◦4 = 9, τ◦5 = 13.8955,

u◦1 = 0, u◦2 = 19.2, u◦3 = 11.5, u◦4 = 20, u◦5 = 3.25,

u◦6 = 20.
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Fig. 4. Example – Optimal service speed u
◦(t).

VII. CONCLUSIONS

In this paper, we have proposed a procedure which allows

finding in polynomial time the solution of a finite-horizon

optimization problem for an inventory-production system

that must satisfy a positive demand changing at asynchronous

time instants. The decisions on such system regard the

optimal pattern of the service speed (in terms of values and

asynchronous time instants in which these values change)

in order to minimize setup, production, and holding costs.

Present and future research is devoted to exploit this solution

procedure in order to find optimal (closed-loop) control

strategies, functions of the system state, to be used when

some perturbations affect the system.
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