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Abstract— A new multivariate spectral estimation technique
is proposed. It is based on a constrained spectrum approxima-
tion problem, where the distance between spectra is derived
from the relative entropy rate between stationary Gaussian
processes. This approach may be viewed as an extension of the
high-resolution estimator called THREE introduced by Byrnes,
Georgiou and Lindquist in 2000. The corresponding solution
features a complexity upper bound which is equal to the one
featured by THREE in the scalar case thereby improving on
the one so far available in the multichannel framework. The
solution is computed by means of a globally convergent, matri-
cial Newton-type algorithm. Comparative simulation indicates
that this new technique outperforms PEM and N4SID in the
case of short data records.

I. INTRODUCTION

Multivariate spectral estimation is a classic and difficult

problem [13], [17] still generating considerable interest in

the engineering sciences, see e.g. [8], [10], [16], [15]. In

[2], [7], a new approach to scalar spectral estimation, called

THREE, was introduced by Byrnes, Georgiou and Lindquist.

It employs the output covariance of a bank of filters, repre-

senting measurement devices, to extract information on the

input power spectrum and may be viewed as a (consider-

able) generalization of classical Burg-like maximum entropy

methods. Its main features are high resolution in prescribed

frequency ranges and good performances in the case of

short observation records. A first attempt of generalization

to the multichannel situation was made in [15], where a non

entropy-like distance was employed in the optimization part

of the procedure. The resulting solution, however, had higher

McMillan degree than in the original scalar THREE method.

The purpose of this paper is to introduce a more natural

multivariate extension of the THREE method, which hinges

on the choice of a new distance index for the optimization

part. Such a choice has profound motivations, as detailed

in our journal paper [4]. There, the proposed metric is

shown to originate from the relative entropy rate of two

stationary Gaussian processes. Hence, in the following the

new approach will be referred to as RER (Relative Entropy

Rate) estimator.
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This method features the same complexity upper bound

as THREE in the scalar case, considerably improving on

the one so far available in the multivariable setting. As for

the previous THREE-like methods, RER also exhibits high

resolution features and works extremely well in the case of

short observation records. Indeed, scanty but encouraging

simulation tests show that in such case it may outperform

classical identification methods like PEM and N4SID.

The paper is outlined as follows. Section II describes

THREE-like spectral estimation methods. In Section III we

introduce the new approach RER via a convex optimization

problem and we derive the form of the optimal spectral esti-

mate. In Section IV, we show that there exists a unique solu-

tion for the corresponding dual problem. Such a solution is

computed, in Section V, by means of a globally convergent,

matricial Newton-type algorithm. Finally, in Section VI, the

RER estimator performance is compared via simulation to

that of the previously available methods.

II. THREE-LIKE SPECTRAL ESTIMATION AND

GENERALIZED MOMENT PROBLEMS

We now briefly introduce our spectral estimation frame-

work. Let Sm×m
+ (T) be the set of the bounded and coer-

cive spectral density functions with values in H+(m), the

cone of positive definite, Hermitian C
m×m-valued matrices.

Suppose that the data {yi}
N
i=1 are generated by a zero-

mean, m−dimensional, wide-sense stationary and purely

nondeterministic process y = {yk; k ∈ Z}. Our purpose

is to estimate the spectral density Φ ∈ Sm×m
+ (T) of y from

{yi}
N
i=1. We draw inspiration from THREE-like approaches

[2], [11], [5], [15], which generalize Burg-like methods in

several ways. Indeed, the second order statistics that are

estimated from the data {yi}
N
i=1 are not necessarily the

covariance lags Cl := E{yk+ly
∗
k} of y (here ∗ denotes

transposition plus conjugation). Moreover, a prior estimate

of Φ may be included in the estimation procedure. More

explicitly, these methods are based on four pivotal elements:

1) A rational filter to process the data. The filter has

transfer function

G(z) = (zI −A)
−1

B, (1)

where A ∈ C
n×n is a stability matrix (i.e. it has all its

eigenvalues inside the unit circle), B ∈ C
n×m is full

rank, n ≥ m, and (A,B) is a reachable pair;

2) An estimate, based on the data {yi}
N
i=1, of the steady-

state covariance Σ of the state x(k) of the filter

x(k + 1) = Ax(k) +By(k); (2)
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3) A prior spectral density Ψ ∈ Sm×m
+ (T);

4) An index that measures the distance between two

spectral densities.

By (2), the spectrum of y must satisfy the constraint

∫

GΦG∗ = Σ. (3)

Here and throughout the paper integration is on the unit circle

with respect to normalized Lebesgue measure. Constraint (3)

provides Carathèodory or, more generally, Nevanlinna-Pick

interpolation data for the positive real function Z(z) associ-

ated to Φ (see [2, Section II]). As for the spectral density Ψ,

it allows to take into account possible a priori information

on Φ. For example, Ψ may simply be a coarse estimate of the

true spectrum.1 Since, in general, Ψ is not consistent with the

interpolation conditions, an approximation problem arises.

Then, it is necessary to introduce an adequate distance index.

This choice is of capital importance and should be made

by considering several requirements. On the one hand, the

solution should be rational of low McMillan degree at least

when the prior Ψ is such. On the other hand, the variational

analysis should lead to a computable solution. In the scalar

case [2], [11], the choice was to minimize the Kullback-

Leibler type criterion

dKL(Ψ,Φ) =

∫

Ψ log
Ψ

Φ
,

which satisfies both of the above requirements. In the multi-

variable case, the Kullback-Leibler pseudo-distance may also

be defined [10], on the basis of the Umegaki-von Neumann’s

relative entropy of statistical quantum mechanics [14]. How-

ever, the resulting spectrum approximation problem does not

lead, in general, to computable solutions of bounded McMil-

lan degree. On the contrary, with the following multivariate

extension of the Hellinger distance introduced in [5]

dH(Ψ,Φ)2 := inf
WΨ,WΦ

tr

∫

(WΨ −WΦ) (WΨ −WΦ)
∗
,

such that WΨW
∗
Ψ = Ψ and WΦW

∗
Φ = Φ,

which turns out to be a bona fide distance, the variational

analysis can be carried out leading to a computable solution.

An effective multivariate THREE-like spectral estimation

method can therefore be based on such a distance, which

leads to rational solutions when the prior Ψ is rational [15].

However, there is a drawback: The complexity of the solution

is usually noticeably higher than in the original scalar

THREE approach.

In this paper we propose a new distance index, which

allows us to carry out the variational analysis explicitly.

Moreover, such a choice entails an upper bound on the

complexity of the solution which is equal to that achieved

in the scalar setting by the original THREE method.

1When no prior information on Φ is available, Ψ is set equal either to
the identity or to the sample covariance of the available data {yi}

N

i=1
.

III. A NEW METRIC FOR MULTIVARIATE SPECTRAL

ESTIMATION

Let us briefly recall the concept of relative entropy, also

known as Kullback-Liebler pseudo-distance or divergence,

see e.g [3]. Given two probability densities p and q, it is

defined by

D(p‖q) =

∫

Rn

p(x) log
p(x)

q(x)
dx, (4)

provided the support of p is contained in the support of q.

In the case of two zero-mean Gaussian probability density

functions p and q with covariance matrices P and Q, respec-

tively, the relative entropy depends only on the covariance

matrices as follows:

D(p‖q) =
1

2

[

log det(P−1Q) + tr(Q−1P )− n
]

. (5)

Motivated by (5), we introduce a new pseudo-distance be-

tween spectra in Sm×m
+ (T):

dRER(Φ,Ψ) :=
1

2π

∫

T

1

2

{

log det
(

Φ−1(e jϑ)Ψ(e jϑ)
)

+ tr
[

Ψ−1(e jϑ)
(

Φ(e jϑ)−Ψ(e jϑ)
)]}

dϑ. (6)

In [4], strong motivation for employing (6) is provided by

exhibiting a cogent relation between this index and time and

spectral domain relative entropy rates.

We now address the following Approximation problem

Problem 1: Let Ψ ∈ Sm×m
+ (T), G(z) as in (1) and Σ ∈

H+(n). Find Φ◦ that solves:

minimize dRER(Φ,Ψ)
over

{

Φ ∈ Sm×m
+ (T)|

∫

GΦG∗ = Σ
}

.

Remark 3.1: Notice that we could also think of mini-

mizing the distance index (6) with respect to the second

argument. However, it is possible to prove that such a choice,

which is related to minimum prediction error estimation [12],

usually leads to a non rational approximant, even when the

prior Ψ is rational. Therefore, this approach is not suitable

for our purposes.

First, feasibility of Problem 1, i.e. existence of Φ ∈
Sm×m
+ (T) satisfying (3), needs to be considered. To this

aim, let Γ : C(T,H(m)) → H(n) be the linear operator

Γ(Φ) :=

∫

GΦG∗, (7)

where C(T,H(m)) denotes the set of H(m)-valued contin-

uous functions defined on the unit circle T. The following

result was established by Georgiou in [9], see also [15].

Theorem 3.1: Consider Σ ∈ H(n) and a system described

by (2), where A is (asymptotically) stable, B is full column

rank and (A,B) is a reachable pair. Then:

1) Σ is in Range(Γ) if and only if there exists H ∈ C
m×n

such that

Σ−AΣA∗ = BH +H∗B∗. (8)

2) Let Σ be positive definite. Then, there exists H ∈
C

m×n that solves (8) if and only if there exists Φ ∈
Sm×m
+ (T) such that Γ(Φ) = Σ.
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Henceforth, we assume feasibility of Problem 1. Moreover,

to simplify the exposition, we also assume Σ = I . Solving

Problem 1, is equivalent to minimizing over Sm×m
+ (T)

2dRER(Φ,Ψ) +m =

∫

{

log det
(

Φ−1Ψ
)

+ tr
(

Ψ−1Φ
)}

.

subject to (3). Recall that the inner product in H(n) is defined

by 〈M,N〉 = tr[MN ]. Thus, we consider the Lagrangian

LΨ(Φ,Λ) = 2dRER(Φ,Ψ) +m+ 〈Λ,

∫

GΦG∗ − Σ〉

=

∫
[

log
det(Ψ)

det(Φ)
+ tr(Ψ−1Φ) + tr(ΛGΦG∗)

]

− tr Λ,

(9)

where the Lagrange parameter Λ ∈ H(n). Each Λ ∈ H(n)
can be uniquely decomposed as Λ = ΛΓ ⊕Λ⊥, where ΛΓ ∈
Range (Γ) and Λ⊥ ∈ (Range (Γ))

⊥
. It can be proven that

a term Λ⊥ ∈ (Range (Γ))
⊥

gives no contribution to the

Lagrangian (9). Therefore, we assume from now on that the

Lagrange parameter Λ belongs to Range(Γ).
Next, we concentrate on the unconstrained minimization

of the functional (9). Since LΨ(·, ·) in (9) is strictly convex

in Φ and has continuous directional (Gateaux) derivatives in

any direction C(T,H(m)), the unconstrained minimization

is realized by imposing the first variation to be zero in each

direction. Recall that, for X > 0,

δ log det(X; δX) = tr(X−1δX). (10)

Then, it is possible to compute the first variation of the

Lagrangian:

δL(Φ,Λ; δΦ) =

∫

[

− tr(Φ−1δΦ) + tr(Ψ−1δΦ)

+ tr(G∗ΛGδΦ)] . (11)

Therefore, we can conclude that (11) is zero ∀ δΦ ∈
C(T,H(m)) if and only if

Φ = Φ◦ :=
[

Ψ−1 +G∗ΛG
]−1

. (12)

Let WΨ be the stable and minimum phase spectral factor of

Ψ,2 and G1(e
jϑ) be defined by

G1(e
jϑ) := G(e jϑ)WΨ(e

jϑ). (13)

Later, it will be useful to consider also the alternative form

of (12)

Φ◦ = WΨ(I +G∗
1ΛG1)

−1
W ∗

Ψ. (14)

Remark 3.2: Notice that expression (12) yields an upper

bound on the complexity of the approximant, whose max-

imum McMillan degree amounts to degΨ + 2n, where n

is the dimension of each minimal realization of G(z). This

result represents a significant improvement in the frame of

multivariable spectral estimation. Indeed, the best so far

available upper bound on the complexity of the solution was

degΨ + 4n (see [5]).

2Since Ψ ∈ Sm×m

+
(T), WΨ exists. It is unique up to multiplication on

the right by a constant unitary matrix.

Since Φ◦ is required to be a bounded spectral density, we

need, as indicated by (14), to restrict the Lagrange multiplier

Λ to the subset L+, defined by

L+ := {Λ ∈ H(n) | I +G∗
1ΛG1 > 0 a.e. on T} . (15)

Thus, the natural set for Λ is

LΓ
+ := L+ ∩ Range (Γ). (16)

To sum up, for each Λ ∈ LΓ
+ there exists a unique Φ◦ ∈

Sm×m
+ (T) that minimizes the Lagrangian functional. It has

the form (12). If we produce a Λ◦ s.t. Φ◦(Λ◦) satisfies the

constraint (3), then such a Φ◦(Λ◦) is the solution of Problem

1. To this aim we resort to duality.

IV. THE DUAL PROBLEM

In order to tackle the dual problem, we equivalently

Solving the dual problem is equivalent to minimizing the

following functional, henceforth referred to as the dual

functional:

JΨ(Λ) := −L(Φ◦(Λ),Λ) + n

=

∫

[tr Λ− log det(I +G∗
1ΛG1)] .

(17)

Given δΛ ∈ H(n), by means of (11) we have that the first

variation of JΨ is

δJΨ(Λ; δΛ) =

∫

{

tr [δΛ]− tr
[

(I +G∗
1ΛG1)

−1
G∗

1δΛG1

]}

(18)

As for the second variation: Let us denote the matrix

inversion operator by R : M 7→ M−1 and recall that its

first derivative in direction δM is given by δR (M, δM) =
−M−1δMM−1. Then, for δΛ1 and δΛ2 in H(n), we have

δ2JΨ(Λ; δΛ1, δΛ2) =

∫

tr
[

(I +G∗
1ΛG1)

−1
G∗

1δΛ2G1

×(I +G∗
1ΛG1)

−1
G∗

1δΛ1G1

]

.

(19)

The bilinear form HΛ(·, ·) := δ2JΨ(Λ; ·, ·) is the Hessian of

JΨ at Λ.

The next and most delicate issue is to prove that, although

the set LΓ
+ is open and unbounded, a (unique) Λ◦ minimizing

JΨ over LΓ
+ does exist.

Theorem 4.1: The dual functional JΨ(Λ) belongs to

C2(LΓ
+) and is strictly convex on LΓ

+. If the feasibility

condition (8) holds, JΨ(Λ) admits a unique minimum point

Λ◦ in LΓ
+.

We refer the reader for both proofs to [4] for the details. Here,

we just provide a sketch of the proof. As for uniqueness,

it can be proven by showing that the Hessian is positive

definite on LΓ
+. The proof of the existence, however, is quite

nontrivial. First, we define a new function J∞
Ψ , so that it

is well defined on the closure of the set LΓ
+. Given that,

for Λ belonging to the boundary ∂LΓ
+, the Hermitian matrix
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I+G∗
1ΛG1 is singular, in at least one point of T, it is useful

to introduce the following sequence of functions on LΓ
+:

Jn
Ψ(Λ) =

∫

tr

[

Λ− log

(

I +G∗
1ΛG1 +

1

n
I

)]

, n ≥ 1.

(20)

Define now J∞
Ψ (Λ) by considering the pointwise limit

J∞
Ψ (Λ) := lim

n→∞
Jn
Ψ(Λ). (21)

It can be proven that such limit exists and coincides with the

dual function (17) on LΓ
+. Moreover, it defines a bounded-

below, convex, lower-semicontinuous and inf-compact func-

tion3. Therefore, by Weierstrass’ Theorem, we can conclude

that J∞
Ψ admits a minimum point in Λ◦ ∈ LΓ

+. Actually,

more can be established: Such a minimum point belongs to

LΓ
+.

In conclusion, there exists a unique Λ◦ ∈ LΓ
+ minimiz-

ing JΨ(Λ), as defined in (17). Such a Λ◦ annihilates the

directional derivative (18) in any direction δΛ ∈ H(n). This

means that the corresponding spectral density Φ◦(Λ◦) =
[

Ψ−1 +G∗Λ◦G
]−1

, satisfies constraint (3) and is therefore

the unique solution of Problem 1. We are left with the

problem of developing an efficient numerical algorithm to

compute Λ◦.

V. AN EFFICIENT MATRICIAL NEWTON-LIKE

ALGORITHM FOR MULTIVARIATE SPECTRAL ESTIMATION

In order to compute the minimizer of the dual functional

JΨ(Λ), a matricial Newton-type algorithm is proposed, based

on two steps:

1) Find the search direction ∆Λi;

2) Compute the Newton step length tki .

The starting point for the minimizing sequence {Λi}i∈N
can

be taken to be Λ0 = 0.

A. Search Direction

Notice that this step is rather delicate: Even though the

problem is finite-dimensional, because a matricial expression

of the Hessian and the gradient allowing to compute the

search direction as ∆x = −Hx
−1∇fx is not available.

Indeed, in order to find the Newton step ∆Λi, given Λi ∈
LΓ
+, one has to solve, for the unknown ∆Λi, the equation

HΛi
(∆Λi, ·) = −∇JΨ,Λi

(·), which can be explicitly written

as:
∫

G1(I +G∗
1ΛiG1)

−1
G∗

1∆ΛiG1(I +G∗
1ΛiG1)

−1
G∗

1 =
∫

G1(I +G∗
1ΛiG1)

−1
G∗

1 − I.

To this aim, consider a basis of Range(Γ). Note that it can be

readily obtained4, by recalling that Σk ∈ Range(Γ) if and

only if ∃Hk ∈ C
m×n s.t. Σk − AΣkA

∗ = BHk +Hk
∗B∗.

3Recall that a function f : Cn×n → R is said to be lower semicontinuous
at x0 if, ∀ ε > 0, there exists a neighborhood U of x0 such that, ∀x ∈ U ,
f(x) ≥ f(x0) − ε. Recall also that f is inf-compact if ∀α ∈ R, the set
{

x ∈ Cn×n | f(x) ≤ α
}

is compact.
4Indeed, following the lines detailed in [6] it is possible to obtain directly

a basis of Range(Γ) by solving only N Lyapunov equations.

Moreover, under the assumption that I ∈ RangeΓ we can

always get a basis {Σ1, . . . ,ΣN} of Range(Γ) made of

positive definite matrices. This result simplifies the following

procedure:

1) Compute

Y =

∫

G1(I +G∗
1ΛiG1)

−1
G∗

1 − I (22)

2) For each generator Σk, compute

Yk =

∫

G1(I +G∗
1ΛiG1)

−1
G∗

1ΣkG1

× (I +G∗
1ΛiG1)

−1
G∗

1 (23)

3) Find {αk} s.t. Y =
∑

k αkYk;

4) Set ∆Λi =
∑

k αkΣk.

Notice that the most challenging step, that is the computation

of Y and Yk, can be tackled efficiently by employing

spectral factorization techniques in order to compute the

integrals, along the same lines described in [15, Section

VI]. Indeed, the integrand that appears in equation (22)

is a coercive spectral density and the same holds for the

integrand in (23), since we have chosen positive definite

generators Σi. For the computation of Y , let us focus on

QΛi
(z) = I + G∗

1(z)ΛiG1(z). Assume WΨ(z) to be a

realization of the stable minimum phase spectral factor of

Ψ. Then, we can easily obtain a state-space realization

G1(z) = C1(zI−A1)
−1B1 of (13). Since Λi ∈ LΓ

+, QΛi
(z)

is positive definite on T, so that the following ARE admits

a positive definite stabilizing solution P = P ∗ > 0 (see, e.g.

Lemma 6.4 in [15]):

P = A∗
1PA1 −A∗

1PB1(B
∗
1PB1 + I)

−1
B∗

1PA1 +C∗
1ΛiC1.

(24)

Moreover, QΛi
(z) can be factorized as QΛi

(z) =
∆∗

Λi
(z)∆Λi

(z), where ∆Λi
(z) can be explicitly written in

term of the stabilizing solution P :

∆Λi
(z) = (B∗

1PB1 + I)−
1

2B∗
1PA1(zI −A1)

−1B1

+ (B∗
1PB1 + I)

1

2 . (25)

It is now easy to compute a state space realization of

∆−1
Λi

and then of the stable filter WY := G1∆
−1
Λi

=

C1(zI − Z1)
−1B1(B

∗
1PB1 + I)−

1

2 , with Z1 := A1 −
B1(B

∗
1PB1 + I)

−1
B∗

1PA1 being the closed-loop matrix.

The computation of (22) is now immediate. In fact,

Y + I =

∫

G1(I +G∗
1ΛiG1)

−1
G∗

1

=

∫

G1∆
−1
Λi

∆−∗

Λi
G∗

1 =

∫

WY W
∗
Y . (26)

Then, the latter integral can be evaluated by computing the

unique solution of the Lyapunov equation R − Z1RZ∗
1 =

B1(B
∗
1PB1 + I)

−1
B∗

1 and setting Y + I = C1RC∗
1 , so that

Y = C1RC∗
1 − I. (27)

A similar procedure may be employed to compute also the

matrices Yk.
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B. Step length

The backtracking line search is implemented by halving

the step ti until both the following conditions are satisfied:

Λi + tki∆Λi ∈ LΓ
+; (28)

JΨ(Λi + tki∆Λi) < JΨ(Λi) + αtki∇JΨ,Λi
∆Λi (29)

where 0 < α < 0.5. The first condition can be easily

evaluated by testing whether QΛi+tk
i
∆Λi

admits a factoriza-

tion of the kind introduced in the previous subsection or,

equivalently, whether the corresponding ARE (24) admits a

solution P = P ∗ > 0.

The only difficulty in checking the second condition is in

computing

JΨ(Λ) = tr

∫

[Λ− log(I +G∗
1ΛG1)] =

trΛ−

∫

log det(I +G∗
1ΛG1). (30)

The latter integral can be evaluated in a straightforward

way in the light of Wiener-Masani Theorem. It states that,

if Ξ(e jϑ) is the spectral density of a process z,

exp

{

1

2π

∫

T

log det[Ξ(e jϑ)]dϑ

}

= detR, (31)

where R is the error covariance matrix corresponding to the

one-step-ahead optimal predictor of z. In our case QΛ(z)
may be factorized as QΛ = ∆∗∆, where ∆ is a stable

and minimum phase filter for which a minimal realization

can be computed as in the previous section (see (25)).

Since log detQΛ = log det [∆∗∆] = log det [∆∆∗], detR
is given by det[∆(∞)∆∗(∞)] which may be explicitly

written in terms the solution P of the corresponding ARE

as det[B∗
1PB1 + I]. Therefore,

∫

log det(I +G∗
1ΛG1) = log det (B∗

1PB1 + I) .

C. Convergence of the Proposed Algorithm

A sufficient condition for global convergence of the algo-

rithm is that the following requirements are simultaneously

satisfied [1, Chapter 9]:

1) JΨ(·) is twice continuously differentiable;

2) The starting point Λ0 belongs to LΓ
+ and the sublevel

set S :=
{

Λ ∈ LΓ
+|JΨ(Λ) ≤ JΨ(Λ0)

}

is closed;

3) The Hessian is Lipschitz continuous in S;

4) JΨ(·) is strongly convex, i.e. ∃ m s.t. HΛ > mI , ∀
Λ ∈ S.

In this case, after a certain number of iterations, the

backtracking line search always selects the full step and the

rate of convergence is quadratic, i.e. there exists a constant C

such that ‖Λi+1−Λ◦‖ ≤ C‖Λi−Λ◦‖2. It is possible to show

that the above sufficient conditions for global convergence

hold. While we refer the reader to [4] for a complete proof,

we outline below the essential steps. The first requirement

is satisfied in view of Theorem 4.1. As for the second

one, it follows on the fact that the sublevel sets of the dual

function JΨ are compact. Finally, by Weierstrass’ theorem,

it is possible to readily establish strong convexity of JΨ and

Lipschitz continuity of the Hessian, so also the third and the

fourth requirements are satisfied.

Thus, global convergence of the Newton algorithm is

guaranteed. This result suggests the effectiveness of the

proposed procedure in providing the solution of the spectral

estimation Problem 1.

VI. SIMULATION RESULTS

We now employ our results in a spectral estimation pro-

cedure, that may be outlined as follows.

1) Let {y1, . . . , yN} be a finite sequence extracted from

a realization of the zero-mean Gaussian process y =
{yk; k ∈ Z}, whose spectrum is Φ(e jϑ).

2) Design a filter G(z), as described by equation (2).

3) Feed the filter with the data sequence {y1, . . . , yN},

collect the output data xi and compute a consistent

estimate Σ̂ of the covariance matrix.

4) In general the estimate Σ̂ does not satisfy the con-

ditions stated in Theorem 3.1. In order to guarantee

feasibility, we compute a suitable matrix Σ̃ by solving

an ancillary optimization problem as in [6].

5) Introduce a prior spectral density Ψ.

6) Tackle Problem 1 by means of the proposed algorithm,

by fixing Ψ and Σ = Σ̃.

Notice that our approach provides two degrees of freedom:

the choice of the prior Ψ and the design of the filter G(z).
In the planning stage it is important to consider their effect

on the upper bound on the complexity of the approximant,

as explained in Section III.

The performances of the proposed method in the mul-

tivariate setting were analyzed by considering the same

estimation task as that described in [15, Section VIII.C].

The process y was obtained by filtering a bivariate Gaussian

white noise process with zero mean and variance I through a

square shaping filter of order 40. The filter coefficients were

chosen at random, except for one fixed complex poles pair,

0.9e±j0.52 and the zeros pair (1− 10−5)e±j0.2.

We designed the filter G(z) by fixing four complex poles

pairs with radius 0.7 and arguments equispaced in the range

[0, π]. We assumed N = 300 samples of the process {yk}k∈Z

to be available. As for the the prior, our choice was to

compute a simple PEM model of order 3, by means of the

standard function pem provided in MATLAB’s System and

Identification toolbox. We compared the performance of the

proposed technique to those achieved by Maximum Entropy

[8] and Hellinger-distance estimators [5], which are both

THREE-like approaches to multivariate spectral estimation.

Aiming at making the comparison as independent as possible

of the specific data set, we performed 50 trials by feeding the

shaping filter with independent realizations of the input noise

process e = {ek; k ∈ Z}. The performances of each method

were evaluated by considering the average estimation error

at each frequency, defined as

EM (ϑ) :=
1

50

50
∑

i=1

‖Φ̂M (e jϑ)− Φ(e jϑ)‖. (32)
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Here M denotes the specific algorithm and Φ̂M is the corre-

sponding approximant. Fig. 1 allows to compare the various

techniques. Our approach seems to outperform the Maximum

Entropy estimator (henceforth referred to as ME). Moreover,

the results achieved by Relative Entropy Rate method are

slightly better than those of the Hellinger-distance approach.

As for the order of the estimates, it was 19 in the Hellinger

case, while it was just 11 in the case of RER. The order of

the ME estimates was 8.
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Fig. 1. Comparison of THREE-like approaches, in terms of average
estimation error.

It is worthwhile to investigate what happens when only

a few data of the process of interest are provided. The

RER method exhibits a property that seems to characterize

THREE-like approaches: It is quite robust with respect to

artifacts. Such a problem, which is due to the shortness of

the available data record, can heavily affect the estimates ob-

tained by means of standard techniques such as MATLAB’s

PEM and MATLAB’s N4SID. Fig. 2 shows the results that

were obtained in a case where only N = 100 samples are

available. Both PEM and N4SID estimates were affected by

artifacts. On the contrary, the proposed approach was not.

This result seems to suggest that RER estimation is suitable

to tackle spectral estimation problems characterized by the

presence of short data records.

VII. CONCLUSION

In this paper, a new THREE-like approach to multivariate

spectral estimation, called RER, has been introduced. The

new distance in the optimization part leads to an upper bound

on the complexity of the estimate which is equal to the

one achieved by THREE in the scalar context. Hence, it

sensibly improves on the best one so far available in the

multichannel setting with prior estimate. An efficient glob-

ally convergent Newton-type matricial algorithm has been

designed and tested. Simulations suggest the effectiveness

of the proposed approach in tackling multivariate spectral

estimation tasks. In particular, as it is the case for THREE-

like methods, RER seems to work extremely well with short

observation records, often outperforming MATLAB’s PEM

and MATLAB’s N4SID. We surmise that RER estimation

may become a standard in multivariate, THREE-like spectral

estimation.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4
x 10

4

 

 

Error norm, RER

Error norm, PEM

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8
x 10

4

 

 

Error norm, RER

Error norm, N4SID

Fig. 2. Comparison of RER, PEM and N4SID in terms of average
estimation error. RER is provided with a PEM(2) prior. The filter G(z)
has a pole in the origin and four complex conjugate poles pairs with radius
0.7.
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