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Abstract— A hybrid observer to estimate the frequencies of
a saturated multi-frequency signal is proposed. The observer is
based on the Immersion and Invariance technique combined
with a high-gain approach. This paper is a (semi-global)
generalization of the result in [1] to the case of multiple
frequencies.

I. INTRODUCTION

The problem of estimating the frequencies of a signal has
been extensively addressed via Fourier transform tools [2]
and on-line methods, see [3], [4], [5], [6], [7], [8], [9] and
references therein. The importance of such studies is well-
known in several areas of engineering, such as mechanics,
telecommunication and control. In the latter field on-line
frequency estimators have been exploited, for example, to
pursue output feedback stabilization of plants perturbed by
unknown sinusoidal disturbances [10], [11], [12], [13].
In [1] the problem of estimating the frequency of a saturated
single frequency signal has been addressed. The observer
therein allows to estimate the single frequency of a sinusoidal
signal when its amplitude exceed the sensor capabilities or
when the sensor exhibits nonlinear characteristics.
To extend this result we consider the saturated multi-
frequency signal

ζ(t) = satσ

(
n∑
i=1

Ei sin (ωit+ φi)

)
, (1)

with known n ≥ 1 and saturation threshold1 σ > 0 where

satσ(s) =

{
s if|s| ≤ σ,

σsign(s) elsewhere,

and unknown angular frequencies ωi > 0, amplitudes Ei and
phases φi, i = 1, .., n.
The difficulties of estimating the frequencies in the case
n ≥ 1 stands in the fact that the jump map, i.e. the map
that relates the signal derivatives before and after the action
of the saturation, depends on the unknown parameters ωi’s.
In the case n = 1, this jump map does not depend on the
unknown frequency, namely ẏ(t−j ) = −ẏ(t+j+1), where tj is
the instant at which y(t) hits the saturation thresholds i.e.
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1The results can be easily extended to non-symmetric saturation maps.

|y(tj − ε)| < σ and |y(tj + ε)| > σ, and tj+1 is such that
|y(tj+1 − ε)| > σ and |y(tj+1 + σ)| < σ for sufficiently
small ε > 0.
The results in the paper can be used to deal with sensor
saturation or sensor nonlinear behavior for large input sig-
nals. In the latter case, it is “advisable” to saturate the output
of the sensor outside its linear range and use the result of
Theorem 1. The benefits of this approach in case of quantized
signal, which seems to suggest that low saturation levels (low
σ) associated with fine quantization would be profitable for
estimating the ωi’s are under investigation.
The paper is organized as follows: mathematical backgrounds
are given in section Section II followed by the main result
in Section III. Simulation results are given in Section IV and
conclusions in Section V.

II. MATHEMATICAL BACKGROUND

To start with, we focus on the unsaturated signal y(t)
defined as

y(t) =

n∑
i=1

Ei sin (ωit+ φi), (2)

which can be regarded as the output of a time invariant,
neutrally stable, linear system in observer canonical form
described by the equations

Σ̄ :

{
η̇ = Aθη,
y = Hη,

with y ∈ R, η ∈ R2n,

Aθ =



0 1 0 . . . 0
−θ1 0 1 . . . 0

0 0 0 . . . 0
... . . . . . . . . .

...
0 . . . . . . 0 1
−θn 0 . . . 0 0


∈ R2n×2n,

H =
[

1 0 · · · 0 0
]
∈ R1×2n,

and where the unknown parameters θi, are related to the
angular frequencies wi, i = 1, .., n, by the relation

n∏
k=1

(
s2 + ω2

k

)
= s2n + θ1s

2(n−1) + · · ·+ θn. (3)

System Σ̄ can be written, in compact form, as

Σ :

{
ẏ = Cx,
ẋ = Ax−QΘy,

(4)
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with x ∈ R2n−1, A ∈ R(2n−1)×(2n−1), and C ∈ R1×(2n−1),
where C and A are obtained eliminating the last column
and the first row and column from Aθ and H , respectively,
Θ = [θ1, . . . , θn]> ∈ Rn, and Q ∈ R(2n−1)×n has zero
elements except for Q2j−1,j = 1, j = 1, . . . , n. Consider
now the natural assumption that ensures the possibility of
reconstructing the angular frequencies ωi, i = 1, . . . , n,
measuring y(t).
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Fig. 1. The saturated signal ζ(t) (solid) and y(t) (dashed) when σ = 7.

Assumption 1: For all (i, j) ∈ {1, . . . , n}, i 6= j,
0 < ωi 6= ωj and the initial conditions x(0) and y(0) of (4)
are such that the signal y(t) is rich of order 2n, see [5].

To solve the estimation problem, similarly to [9], [1], and the
general approach suggested in [14], we define the estimation
error z = [z

′

x, z
′

θ]
′ ∈ R3n−1 as

z = β(y,M,R, ξ)− h(R, x,Θ), (5)

where the maps β(·) and h(·) are selected as

β(y,M,R, ξ) =

[
Ky + γ1M

γ2(CR)
′
y + ξ

]
, (6)

hR(x,Θ) =

[
x− γ1RΘ

γ1
γ3

Θ

]
, (7)

with ξ(t) ∈ Rn, M(t) ∈ R2n−1 and the matrix2 R(t) ∈
R2n−1×n, and γi, i ∈ {1, 2, 3} are positive constants. Note
that the map hR(·), parameterized by R is left invertible3

2The dimension of the observer might be reduced defining R as a function
of M , as in [9]. However, to avoid burdening of notation, we do not take
into account this possibility.

3A mapping φs(·) : Rp1 → Rp2 (parameterized by s) is left-invertible
if there exists a mapping φLR(·) : Rp2 → Rp1 such that φLs (φs(w)) = w
for all w ∈ Rp1 (and for all s). This is equivalent to require that φs is
injective uniformly in s.

hence the estimates of x and Θ are given by

x̂ = Ky + γ1(M +RΘ), (8a)

Θ̂ =
(
γ2(CR)

′
y + ξ

)
γ3/γ1. (8b)

To obtain a globally asymptotically converging estimate of
x and Θ we need to design the dynamics of M , R and ξ
such that the manifold

M ,{(y,M,R, x, θ, ξ) ∈ R× R2n−1 × R2n−1×n × R2n−1

× Rn × Rn : [x′, θ′]′ = hLR(β(y,M,R, ξ))},

is forward invariant and globally attractive. To this aim we
exploit the hybrid systems introduced in [15] to cope with
the saturation nonlinearity. A few basic definitions [15] that
are extensively used in the sequel are recalled.

Definition 1: A compact hybrid time domain is a set T ⊂
R≥0 × N≥0 given by:

T =

J−1⋃
j=0

([tj , tj+1], j ),

where J ∈ N≥0 and 0 = t0 ≤ t1 · · · ≤ tJ . A hybrid
time domain is a set T ⊂ R≥0 × N≥0 such that, for each
(T, J) ∈ T , T ∩ ([0, T ]× {0, . . . , J}) is a compact hybrid
time domain. �

Definition 2: A hybrid trajectory is a pair (dom χ, χ)
consisting of a hybrid time domain dom χ and a function
χ defined on dom χ that is continuously differentiable on
(dom χ) ∩ (R≥0 × {j}) for each j ∈ N≥0. �

Definition 3: For the hybrid system H given by the open
state space O ⊂ Rn, and the data (F,G,C,D) where F :
O → Rn is continuous, G : O → O is locally bounded, and
C and D are subsets of O, a hybrid arc χ : dom χ→ O is
a solution to the hybrid system H if χ(0, 0) ∈ C ∪ D and
the following hold.

1) For all j ∈ N≥0, and for almost all t ∈ Ij := dom
χ ∩ (R≥0 × {j}), we have χ(t, j) ∈ C and χ̇(t, j) =
F (χ(t, j)).

2) For all (t, j) ∈ dom χ, such that (t, j + 1) ∈ dom χ,
we have χ(t, j+1) = G(χ(t, j)) with χ(t, j) ∈ D. �

The hybrid system model that we consider is of the form:

χ̇(t, j) = F (χ(t, j)) χ(t, j) ∈ C,
χ(tj+1, j + 1) = G(χ(tj+1, j)) χ(tj+1, j) ∈ D.

F (·) and G(·) are called flow map and jump map, respec-
tively. In the sequel, as in [16], we omit the time arguments
when possible and write:

χ̇ = F (χ) χ ∈ C, (9)
χ+ = G(χ) χ ∈ D,

where we denoted χ(tj+1, j+ 1) as χ+ in the last equation.

Note that, unlike standard observer design in which flow
maps are considered such that M is forward invariant and
attractive, we have also to ensure thatM is forward invariant
with respect to jumps when Θ̂ = Θ.
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III. MAIN RESULT

We define two hybrid time sub-intervals Tu(i) = [ti, ti+1]
and Ts(j) = [tj , tj+1], for some i and j such that |y(t)| <
σ, ∀t ∈ Tu(i), and |y(t)| ≥ σ, ∀t ∈ Ts(j). In the sequel,
without loss of generality, we assume that |y(t0)| < σ.
To prove Theorem 1 below we exploit the result presented in
[17] and define P (ρ) = P>(ρ) > 0, P (ρ) ∈ R(2n−1)×(2n−1)

such that

A′P (ρ) + P (ρ)A+ 2C ′C = −ρP (ρ), (10)

for some ρ > 0, where the matrix P (ρ) can be evaluated
from (10) fixing ρ = 1 and then defining

P (ρ)ij =
1

ρi+j−1
P (1)ij .

The classical definition, see [5], of Persistency of Excitation
(PE) for non-autonomous linear systems is recalled next.

Definition 4: Consider an asymptotically stable and reach-
able linear time invariant system η̇ = Aη + Bu, η ∈ Rm,
with scalar input u rich of order greater or equal than m.
Then for all t ≥ 0 there exist δT > 0 and δ > 0 such that

∫ t+δT

t

η(τ)η
′
(τ)dτ ≥ δI. (11)

�

This means that the state of a reachable and asymptotically
stable linear time invariant system excited by a persistently
exciting input is persistently exciting. In this work we
need inequality (11) to holds not just for some δT but for
any δT > 0 and some δ(δT ) > 0, a property that follows
immediately from (11) as stated in the following result.

Lemma 1: Under the assumptions of Definition 4, if
inequality (11) holds, then it holds for any δT > 0 and
some δ(δT ) > 0.

We state now the main theorem.

Theorem 1: Consider the extended hybrid dynamical sys-
tem

χ̇ = Fq(χ), χ ∈ C, (12)
χ+ = Gq(χ), χ ∈ D, (13)

with χ = (y, x,R,M, ξ, q, τ) ∈ O ⊂ R × R2n−1 ×

R(2n−1)×n × R(2n−1) × Rn × N× R≥0 and

F1 =



Cx
Ax−QΘy

(A−KC)R−Qy/γ1
(A−KC)(M +Ky/γ1)

Wu(y,R,M, ξ)
0
1


, F0 =



Cx
Ax−QΘy

0
0
0
0
1


(14a)

G1 =



y
x
R
M
ξ
0
0


,G0=



y
x

Φ̂2(τ)R

Φ̂2(τ)M+
(
(Φ̂2(τ)−I)K+Φ̂1(τ)

)
y/γ1

ξ + γ2y
((
I − Φ̂2(τ)

)
R
)′

1
0


,

(14b)

with K = P (ρ)−1C>, and

ξ̇=−γ2
(
(CṘ)′y+R′C ′C(Ky+γ1M+γ3R(γ2(CR)′y+ξ)

)
,Wu(y,R,M, ξ), (15)

eÂθτ =

[
? ?

Φ̂1(τ) Φ̂2(τ)

]
, (16)

with flow set C , {χ ∈ O : (|y| ≤ σ, q = 1) ∨ (|y| ≥
σ, q = 0)}, and jump set D , {χ ∈ O : (|y| ≥ σ, q =
1) ∨ (|y| ≤ σ, q = 0)}. Let Assumption 1 hold. Then the
equilibrium (zx, zθ) = (0, 0) of the estimation error system
is semi-globally in ρ, uniformly in (R,M, ξ), asymptotically
stable. Furthermore, (R,M, ξ) are bounded. �

The observer proposed in Theorem 1 is such that the flow
map of the estimation error when t ∈ Tu(2i) (|y(t)| ≤ σ)
has a lower triangular structure, namely

żx = (A−KC)zx, (17a)
żθ = −γ2R′C ′Czx − γ2γ3R′C ′CRzθ. (17b)

As a result, the parameter ρ can be determined numerically
from the following conservative bound

cρ

(
cδρ||z̄x||+ 2(σ + cx)s(||z̄θ||)

∑δ−1
j=0 c

j
ρ

)
ehρδT

<
ε||z̄x||

λmin(P (ρ))
,

(18)

where ε < 1, hρ = ρ−γ2cρ, cρ = λmax(P (ρ))/λmin(P (ρ))
is the condition number of P (ρ) in (10), and cx > 0 is such
that ||x̂|| ≤ cx since y and x are bounded.

Note that by (4) and the definition of the jump and
flow sets, Zeno solutions cannot exist. The implementation
of the hybrid observer (12) requires the evaluation
of (M,R, ξ, q, τ) to retrieve the estimates (8). When
implementing (8), the jumps of the hybrid observer are
triggered when the measured signal y(t) reaches or leaves

2579



the selected threshold value σ.

Remark 1: In Theorem 1, it is possible to prove that
the signal z(t) and (M(t), R(t), ξ(t), q(t)) are bounded for
every ρ > 0.
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Fig. 2. Time histories of the parameter estimates without saturation (σ >
||y(t)||max). The estimates converge to Θ = [13, 36]′.

IV. NUMERICAL SIMULATIONS

To illustrate the behavior of the proposed observer we
consider the signal y(t) generated by the system (2) with
ω1 = 2 rad/s, ω2 = 3 rad/s, yielding θ1 = 13 and θ2 = 36,
and [y(0), x(0)′] = [0, 15, −15, 1].
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Fig. 3. Time histories of the parameter estimates with σ = 10 and λi(A−
KC) = −7 for i = 1, 2, 3.

In the first two simulations the observer gain matrix
K = [21, 147, 343]′ has been chosen such that the matrix
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Fig. 4. Time histories of the parameter estimates with σ = 10 and λi(A−
KC) = −6 for i = 1, 2, 3.

A − KC has all poles in −7. This yields ||zx(t, j)|| ≤
e−7tv(|zx(tj , j)|) with (t, j) ∈ Tu and some class-K func-
tion v(·). The initial conditions of M , R and ξ are set equal
to zero, whereas according to equation (17) we have selected
γ2 = 0.2 to limit the induced oscillations of zx on zθ,
γ3 = 104 to improve convergence of zθ and γ1 = 0.1 to limit
the magnitude of the oscillations during the transients of zx.
In Fig. 2 the estimated Θ when the signal is not saturated,
i.e. σ > maxt∈R+

{y(t)}, are depicted.
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Fig. 5. Time histories of the parameter estimates with σ = 10 and λi(A−
KC) = −6 when a purely continuous time observer is selected (G1 =
G0).

In Fig. 3 the estimated Θ with a saturation level σ =
10, which corresponds to a cut of 30% of the maximal
signal amplitude (see Fig. 1) is shown. Fig. 4 illustrates
the degradation of performances when K is selected such
that the eigenvalues of A −KC are equal to −6, which is
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Fig. 6. Time histories of the parameter estimates with σ = 14 and λi(A−
KC) = −6 when a purely continuous time observer is selected (G1 =
G0).

equivalent to decrease ρ in (18). It is possibile to note in
Fig. 5 the error induced by the saturation when the same K
is considered, but with G1 = G0, i.e. when there are not
jumps in the observer state. It is also interesting to note in
Fig. 6 that with a larger saturation threshold σ = 14 the
observer performances do not improve with respect to the
previous case with σ = 10. This highlight the usefulness of
the proposed method.
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Fig. 7. Time histories of the parameter estimates with σ = 7 and λi(A−
KC) = −6 for i = 1, 2, 3. In this case the gain matrix K of the observer
is not adequate to ensure asymptotic convergence to zero of the estimation
error.

According to Theorem 1 if σ = 7 (corresponding to less
than 50% of the maximum amplitude of y(t)) and the gain
matrix K is not adequately chosen to recover the error
induced by the saturation during the time intervals Tu when
|y(t)| ≤ σ, a limit cycle appears as shown in Fig. 7, where
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Fig. 8. Time histories of the parameter estimates with σ = 7, and λi(A−
KC) = −7 for i = 1, 2, 3.

K is such that λi(A − KC) = −6, i = 1, 2, 3. In this
case, a gain K such that λi(A − KC) = −7, i = 1, 2, 3,
guarantees convergence to zero of the estimation error as
shown in Fig. 8.

It is possible to see in Fig. 9 the total time
∑
Tu that

monotonically decreases with the decrease of σ, whereas the
number of jumps shows a maximum for σ = 3. Values of∑
Tu and

∑
Tu/jmax are given in Table I for two level of

the saturation threshold σ.

σ
∑
Tu

∑
Tu/jmax

7 13.8343 0.4323
10 18.1476 0.7562

TABLE I
UNSATURATED TIME AND ITS RATIO WITH THE NUMBER OF JUMPS OVER

25 SECONDS OF SIMULATION.

We recall that the angular frequencies ωi’s can be eval-
uated by Θ̂ finding the roots of (λ2 + ω̂2

1)(λ2 + ω̂2
2) =

λ4 + θ1λ
2 + θ2. As would be expected given the high-

gain approach, further simulation results have shown the
sensitivity of the estimation error to additive noise.

V. CONCLUSIONS

We have proposed a hybrid observer to estimate the n un-
known frequencies of a multi-frequency saturated signal. The
observer convergence relies on a high-gain type approach
and observer state reset to recover the error induced by
the saturation. The effectiveness of the approach is showed
via numerical simulations and dependency of the observer
performances by the matrix K and the saturation threshold σ
have been discussed. Further refinements for the selections of
ρ in Theorem 1 are necessary. The robustness of the approach
to measurement noise, although theoretically inherited by
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Fig. 9. Unsaturated hybrid time (
∑
Tu) for different levels of σ with

simulation time tf = 25 s.

satisfaction of the standard assumptions in [15], needs to be
improved, whereas the case in which σ is not known exactly
can be easily addressed considering a lower bound.
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