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Abstract— This paper introduces a new method for reducing
large directed graphs to simpler graphs with fewer nodes. The
reduction is carried out through node and edge aggregation,
where the simpler graph is representative of the original large
graph. Representativeness is measured using a metric defined
herein, which is motivated by thermodynamic free energy and
vector quantization problems in the data compression literature.
The resulting aggregation scheme is largely based on the
maximum entropy principle. The proposed algorithm is general
in the sense that it can accommodate a large class of functions
for characterizing distance between the nodes. As a special
case, we show that this method applies to the Markov chain
model-reduction problem, providing a soft-clustering approach
that enables better aggregation of state-transition matrices than
existing methods. Simulation results are provided to illustrate
the theoretical results.

I. INTRODUCTION

The reduction, or simplification, of graph-based models is

critical to the analysis, simulation and control design for sys-

tems arising in many diverse areas, such as network routing

[1], consensus and cooperation in multi-agent systems [2],

image processing [3], statistical learning [4], neuroscience

studies of functional relationships in the brain [5], and in

distributed control of networked dynamical systems [6], to

name a few. Typically, the models for these systems, created

from first principles and/or data-based methods, are overly-

complicated, rendering the analysis of fundamental system

behavior intractable. A common goal in the study of these

systems thus is to find a simple mathematical model to

represent the behavior of the complex system, such that the

resulting coarseness of the simplified model is as negligible

as possible. In this paper, we propose a class of graph reduc-

tion algorithms aimed at simplifying graph-based models for

systems arising in the aforementioned areas. Specifically, we

propose a general clustering-based algorithm to reduce the

dimensions of the graph. Reduction of Markov chain models

is discussed as a special case of our general framework.
Graph-reduction problems, in general, can be formulated

as combinatorial optimization problems, where the the objec-

tive is to minimize a distance function between the original

and aggregated (or reduced) graphs. These problems are

computationally complex (NP-hard). The numerical com-

plexity mainly stems from the combinatorial nature of the

number of ways in which the nodes and edges can be

aggregated. The resulting cost functions are non-convex and

typically exhibit multiple local minima. In this aspect, graph-

reduction closely resembles widely studied data-clustering
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problems (such as resource allocation) [7]–[11] and therefore

can avail tools from the latter. A critical difference lies in the

difficulty of formulating a cost function since this requires

defining a metric that compares two graphs (the original and

the reduced) that are of different dimensions. This difficulty is

typically overcome by defining the metrics in terms of inter-

mediate graphs that are obtained either by lifting (where extra

nodes and edges are added to the reduced graph [12]) or col-

lapsing (where nodes of the original graph are aggregated),

so that the dimensions of graphs become equal. Most of the

graph-reduction methods can be broadly classified as either

spectral-decomposition or clustering-based approaches. In

the spectral-decomposition approach, an adjacency matrix

comprising the pairwise distances between nodes is formed;

the eigenvectors of this matrix are used to identify the under-

lying node clusters [13]. Moreover, these eigenvalues provide

useful analytical information such as convergence rates of

the associated algorithms. However, these methods become

increasingly intractable as the number of nodes become large

since determining the eigenvalues and eigenvectors of the

corresponding adjacency matrices becomes computationally

difficult. On the other hand, clustering algorithms [14], [15]

provide numerically efficient approaches for reduction. In

these algorithms, nodes and edges in the graph are aggre-

gated leading to simpler but coarser graphs, for example

as in the kernel k-means algorithm [16]. In general, these

algorithms first determine a partitioning of the nodes into

cells, and then assign a representative node (or supernode)

for each cell, specifying new edges between each pair of

cells. However, most of these algorithms provide iterative

schemes that achieve certain necessary (but not necessarily

sufficient) conditions that the global minimum satisfies. The

main disadvantage of the existing algorithms is that they

are highly sensitive to the initialization step and typically

converge to non-optimal local minima on the cost surface.

Reduction of Markov chains usually appears as an inde-

pendent class of model reduction problems. In [17], singular

perturbation approaches are used to characterize Markov

chain models as completely decomposable or nearly com-

pletely decomposable models; the notion of decomposability

was first proposed by Ando and Simon in a landmark

paper [18]. A survey of additional model reduction meth-

ods for these types of models can be found in [19]; this

includes spectral methods and optimal prediction techniques.

Recently, a simulation-based method has been developed

[12], where minimizing the reduction error is posed as the

minimization of the Kullback-Leibler (K-L) divergence rate

between two stationary Markov chains in the same state

space, one of which is a lifted version of the reduced Markov

chain.

In this paper, we present a method for graph reduction

that is motivated by data-clustering algorithms. In the context
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which when substituted into (6), the free energy becomes

F =−T
N

∑
i=1

pi log

{

M

∑
k=1

exp

[

−
1

T
d(x(i),z(k))

]

}

. (8)

On minimizing F with respect to Z by setting

∇z( j)F(Gx,Gz) = 0, we get:

∇z( j)F(Gx,Gz) =
N

∑
i=1

pi p(z j|xi)∇z( j)d(x(i),z( j)) (9)

⇒ 0 =
N

∑
i=1

p[z( j)]p(xi|z j)∇z( j)d(x(i),z( j)).

The optimal Z⋆ is obtained from above equation when the

distance function d(·, ·) is specified. After determining the

intermediate weighting matrix Z⋆, we apply step (II) of our

procedure and compute Y (and therefore achieve Gy) by using

following soft partition version of (3):

Ykl =
N

∑
j=1

p(zl |x j)Zk j. (10)

In summary, at every fixed temperature T , we compute

(7) - (10) and obtain a soft reduced graph model G ⋆
y (T ).

Since the association weight (7) is uniform at high tem-

perature, when the entropy maximization is the main goal,

and becomes more differentiated as T decreases, when F

gradually recovers to the distortion ρ , we gradually lower the

temperature while track G ⋆
y . During this annealing process,

the system undergoes phase transitions, where each hidden

node recursively splits into multiple distinct nodes (see [20]

for details) at critical values of T . In fact at T = ∞, there

is only one distinct hidden node (supernode) solution (z j =
constant for all j), and as annealing progresses (T decreases),

this solution persists till a critical temperature T , when the

number of distinct hidden nodes increases; and this number

remains the same till the next critical temperature, and

so on. This splitting can be interpreted as a hierarchical

graph reduction, where successive splits identify clusters

and consecutive sub-clusters of the nodes in the graph.

This phase-transition property implies a multi-scaled graph

reduction objective can be approached through the annealing

process, which can be terminated once a target distortion is

achieved. (See Figure 3 and Figure 4 in the simulation section

for an illustration of this multi-scaled reduction.)

We demonstrate the solution procedure developed above

by using squared-Euclidean distance d(u,v) = ‖u− v‖2, one

of the most popular distance metrics in data-clustering and

vector quantization literature [20], [22], to characterize dis-

tance between nodes. By substituting d(·, ·) into the optimal-

ity condition (9), we get

∇z( j)F(Z) = 2p(z j)
N

∑
i=1

p(xi|z j) [z( j)− x(i)] = 0,

⇒ z⋆( j) =
N

∑
i=1

p(xi|z
⋆
j)x(i), (11)

where p(xi|z j) is the posterior probability of the association

weights (7) and is computed using Bayes’ Rule. Equation

(11) indicates that the edge weights of Gz⋆ are the weighted

average of the edge weights in Gx. Moreover, from (11) and

(10), we obtain the weighting matrix Y given by

Ykl =
N

∑
j=1

N

∑
i=1

p(z⋆l |x j)p(xi|z
⋆
k)Xil ,

which is the cluster-wise weighted average of Z⋆.

IV. MODEL REDUCTION FOR MARKOV CHAINS

Markov chains can be viewed as directed graphs, where

nodes represent the states and edges represent the corre-

sponding transition probabilities, and therefore, in general

form, the model reduction algorithm from Section III is

directly applicable to Markov chains. Consider a discrete

Markov chain X (t) = {X1,X2, · · ·} with a finite-state space

|X | = N and one-step transition matrix P. We construct

the graph Gx(Vx,Ex,X), whose node set Vx represents the

set of states, the set of directed edges represents one-step

transitions, and with a weighting matrix X defined by the

state-transition matrix of the Markov chain, that is, Xi j
△
=

Pi j = P(X j|Xi),1≤ i, j ≤N. Therefore, the model reduction

objective becomes: find a similar Markov model with fewer

states. Without loss of generality, constructing a reduced

Markov chain, Y (t) = {Y1,Y2, · · ·} with |Y |= M (M < N),
can be viewed as the construction of the hidden graph

Gy = (Vy,Ey,Y ), where the goal is to maximize a similarity

metric (or, minimize a dissimilarity metric).

We note the following properties of Markov chains and the

implication of these properties on the corresponding graph-

reduction problem in our framework:

(i) Since the weighting matrices are defined by the prob-

ability transition matrix, all node weights have to be

one, that is both equations X ·1 = 1 and Y ·1 = 1 have

to be satisfied.

(ii) Assume, in addition, that the Markov chain is irre-

ducible and aperiodic, then there exists a stationary

distribution π = [π1,π2, · · · ,πN ], satisfying π = πP and

∑
N
i=1 πi = 1. We also know that this is the limiting

distribution under above assumptions, so πi represents

the long range proportion of time that the random

process spends in the ith state. This interpretation

provides a way to define the node importance by

pi
△
= πi for all i.

(iii) The weighting matrix Z of the intermediate graph Gz
now represents the transition probabilities from meta-
states [19] to observed states. Therefore, we apply
node weight constraints on Gz to ensure each row of
Z represents a distribution, that is,

N

∑
k=1

Z jk = 1,∀ j. (12)

An appropriate metric to quantify the distance between two

distributions x(i) and z( j) is the K-L divergence [23] given

by

d(x(i),z( j))
△
=

N

∑
k=1

Xik log
Xik

Z jk

, (13)

where we assume that the distributions in Z are absolutely

continuous with respect to the distributions in X , that is Z jk =
0 ⇒ Xik = 0,∀i, j,k.
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We employ the graph reduction procedure developed in
Section III for the Markov-Chain reduction problem by
substituting the K-L divergence (13) in (4) with pi = πi. On
accounting for the constraints (12) in the solution procedure,
(8) becomes

F =−T
N

∑
i=1

pi log

{

M

∑
k=1

exp

[

−
1

T
d(x(i),z(k))

]

}

+
M

∑
j=1

N

∑
k=1

ν j(Z jk −1) ,

where the ν j’s are the Lagrange multipliers. To obtain the

optimal weighting matrix Z⋆, we set ∂F
∂Zlm

= 0 for each l and

m, and get

νlZ
⋆
lm = ∑

i

pi p(z
⋆
l |xi)Xim,

⇒
N

∑
m=1

νlZ
⋆
lm =

N

∑
m=1

N

∑
i

pi p(z
⋆
l |xi)Xim = νl .

⇒ Z⋆
lm =

∑i p(xi,z
⋆
l )Xim

∑m ∑i p(xi,z
⋆
l )Xim

= ∑
i

p(xi|z
⋆
l )Xim.

We obtain the reduced-order transition matrix Y from (10),
where each row of Y sums up to one since

M

∑
l=1

Ykl =
M,N

∑
(l, j)=(1,1)

p(z⋆l |x j)Z
⋆
k j =

N

∑
j=1

Z⋆
k j = 1.

V. SIMULATION

We demonstrate our reduction algorithm for graphs on a

test example comprised of 10 nodes with edges as shown in

Figure 3(a). The weighting vector of each node is generated

as follows: If node i and node j are connected, the connection

weight Xi j is a realization of a Gaussian random variable

with (prescribed, but random) significant mean and variance;

otherwise Xi j is some Gaussian noise (with mean 0 and

small variance). Figure 3 shows the multi-scaled reduction

graphs on the application of our algorithm where the squared

Euclidean distance function was used as the dissimilarity

metric. Note that the number of distinct supernodes increases

from 2 to 4 as the annealing parameter T is decreased,

exhibiting the phase-transition property as well as the hier-

archical reduction process of the graph. Figure 4 shows the

simulation results for the Markov-Chain reduction problem

using the same data set as above except that each row of

the matrix X was scaled so that the elements summed to

1. Again the results demonstrate a useful reduction of the

original Markov chain. These examples with 10 nodes were

executed primarily to verify the algorithm, where the under-

lying data for the 10-node graph was generated based on

a 4-supernode graph. These preliminary results demonstrate

that the algorithm works well, and in fact, recovers the

underlying supernode structure. Figures 5 and Figure 6 show

the reduction results when we apply our algorithm to a graph

with 40 nodes; this is of the equivalent size of many neural

science examples (∼ 20 to ∼ 60 neurons). We generated the

original graph and the location coordinates in the same way

stated above and use the same group connections.
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Fig. 3. The reduction results on a original graph with 10 nodes, when
the Euclidean distance is adopted. (a) is the original directed graph, in
which the red dots denote the observed nodes, and the blue arrows denote
the connection weights. (b) depicts the values of free energy achieved by
different orders of model reduction, in which there is a downward trend.
The second to the fourth rows are reduced graphs with 2 to 4 hidden nodes,
whose locations are denoted by stars (The locations are not important in
determining graph structures, so we just take the weighted average locations
of observed nodes). Plot (b), (c) and (c) show the connections from hidden
nodes to observed nodes (i.e., Gz in our context), and Plot (f), (g) and (h)
show the connections among hidden nodes (i.e. Gy). In all figures, the width
of an arrow is proportional to the weight of the edge.
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Fig. 4. The reduction results on a Markov model with 10 states, when the
K-L divergence rate is adopted. Reduced graphs with 2, 3 and 4 meta-states
are displayed.
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VI. ANALYSIS AND DISCUSSION

The maximum-entropy-principle based approach presented

in this paper yields a tractable algorithm for (directed) graph

reduction that identifies hierarchically the natural supernodes

and that is designed to avoid local minima. This approach

is flexible in terms of the distance functions that can be

used in its formulation (e.g. squared Euclidean and K-

L divergence used in Sections III and IV) and therefore

accommodates many application areas (discussed in Section

I). Also, the algorithm presented in this paper is for a simple

graph-reduction problem; however the approach can eas-

ily incorporate dynamic, communication, and computational

constraints by adapting the tools that we have developed

for clustering/classification problems in our previous work

[7]–[10]. For instance, we have applied this approach to

simplification of influence diagrams obtained from neuro-

scientific community with good results, where we could

account for the distance functions and constraints that are

unique to that particular application area. Another advantage

of this approach is that it is independent of the specific

representation of the graph unlike many existing approaches

whose solutions differ based on the permutations of the

adjacency matrix associated with the graph.

At the outset, the algorithm presented in this paper can

be thought to be computationally expensive, since it is not

distributed - in fact, it uses computations that involve infor-

mation from all the nodes to determine the reduced graph.

However, the phase-transition property makes this algorithm

progressively localized; which when exploited makes it com-

putationally efficient [7], [9], [24]. Thus this algorithm makes

use of the global information in its initial steps to avoid

local minima while the localization of the latter iterations

for reducing computational expense. In comparison to other

annealing-based approaches (such as simulated annealing),

the proposed approach is significantly faster (the annealing

parameter is reduced geometrically as opposed to logarithmic

rates for simulated annealing) [9].
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