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Abstract— This paper focuses on robust model-based fault
detection and fault-tolerant control of spatially distributed
processes described by parabolic partial differential equations
(PDEs) subject to time-varying external disturbances, control
actuator faults and measurement sampling rate constraints.
Using an approximate finite-dimensional system that captures
the dominant dynamics of the PDE, an observer-based output
feedback controller is initially designed to enforce robust
stability with an arbitrarily small ultimate bound on the closed-
loop state in the absence of faults. A finite-dimensional inter-
sample model predictor is then embedded within the controller
to provide the observer with estimates of the measured output
between the sampling times, and the state of the model is
updated using the measured output at each sampling time.
By formulating the sampled-data finite-dimensional closed-loop
system as a combined discrete-continuous system, a neces-
sary and sufficient condition for robust closed-loop stability
is obtained and used to explicitly characterize the tradeoffs
between the sampling rate, the degree of model uncertainty, the
disturbance size, the size of the achievable ultimate bound on
the closed-loop state, and the choice of actuator/sensor locations.
Based on this analysis, a time-varying alarm threshold on the
fault detection residual is obtained, together with an actuator
reconfiguration law that determines the set of feasible fall-back
actuators that preserve robust closed-loop stability. Finally, the
result is illustrated through an application to a representative
diffusion-reaction process.

I. INTRODUCTION

The growing emphasis on safety and reliability in indus-

trial process operation over the past few decades have drawn

increasing attention to the need for systematic methods for

the detection and handling of faults. The realization that mal-

functions in the control actuators, measurement sensors and

process equipment, if not properly accounted for, can lead to

substantial performance deterioration and even instability has

motivated significant research work on the problems of fault

detection and fault-tolerant control in both the industrial and

academic communities (e.g., see [1]–[11] and the references

therein). At this stage, however, only a few studies have

been dedicated to the development of systematic methods for

the diagnosis and handling of faults in spatially distributed

processes. This is an important problem given that many

industrial processes are characterized by spatial variations

owing to the underlying physical phenomena such as dif-

fusion, convection, and phase-dispersion, and are naturally
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modeled by Partial Differential Equations (PDEs) (e.g., see

[12]–[17] and the references therein). Examples of existing

results for distributed parameter systems include methods

for fault detection and accommodation using approximate

finite-dimensional models (e.g., [18]–[20]), integrated fault

diagnosis and reconfiguration-based fault-tolerant control of

nonlinear distributed processes [21], [22], and safe-parking

of transport-reaction processes [23].

Recently we developed in [24] a model-based approach

for the detection and compensation of actuator faults in

distributed processes described by parabolic PDEs with mea-

surement sampling rate constraints. A key idea was to em-

bed within the fault-tolerant control system an approximate

model of the dominant process dynamic modes to provide

the controller and fault detection filter with estimates of the

measured output between sampling times, and to update the

model state using the measurements whenever they become

available from the sensors at discrete sampling times. An

explicit characterization of the minimum allowable sampling

rate was obtained leading to the derivation of explicit rules

for fault detection and actuator reconfiguration.

In addition to handling sampling rate constraints, an im-

portant property that any model-based fault-tolerant control

system must possess, in order to be well suited for practical

implementation, is robustness with respect to uncertainties,

such as time-varying exogenous disturbances, which are

commonly encountered in process operation. External dis-

turbances, if not properly accounted for in the fault-tolerant

control system design, may not only degrade the stability

and performance properties of the feedback controller, but

can also erode the the fault detection and control system

reconfiguration capabilities, leading to false alarms and poor

supervisory control.

Motivated by these considerations, we present in this work

a robust fault detection and fault-tolerant control structure

for sampled-data spatially distributed processes subject to

time-varying external disturbances. The structure consists

of a family of robust output feedback controllers that en-

force robust closed-loop stability with an arbitrary degree

of disturbance attenuation, observer-based fault detection

filters that account for the discrete sampling of measurements

and the disturbances, and a switching law that orchestrates

the transition from the faulty actuator configuration to a

healthy fall-back following fault detection. The rest of the

paper is organized as follows. Following some preliminaries
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in Section II, an approximate finite-dimensional system is

obtained using modal decomposition techniques, and used in

Section III to design model-based output feedback controllers

that robustly stabilized the closed-loop system in the absence

of faults. An explicit characterization of the interdependence

between the achievable ultimate bound, the sampling rate,

the disturbance size, the plant-model mismatch, the spatial

placement of the control actuator locations, and the con-

troller/observer design parameters is obtained and used in

Section IV to derive appropriate rules for robust fault detec-

tion and actuator reconfiguration based on the approximate

finite-dimensional system. Finally, in Section V the proposed

methodology is applied to achieve fault-tolerant stabilization

of an unstable steady-state of a representative diffusion-

reaction process under actuator faults and disturbances.

II. PRELIMINARIES

As a motivating example, we consider spatially distributed

processes modeled by parabolic PDEs of the form:

∂x̄

∂t
= α

∂2x̄

∂z2
+ βx̄ + ω

m∑

i=1

bk
i (z)[uk

i (t) + fk
ai(t)]

+υ

n∑

j=1

dj(z)θj(t), |θj(t)| ≤ θj
b

k ∈ K := {1, 2, · · · , N}, N < ∞

yl =

∫ π

0

ql(z)x̄(z, t)dz, l = 1, · · · , p

(1)

subject to the boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0, x̄(z, 0) = x̄0(z) (2)

where x̄(z, t) ∈ IR denotes the process state variable, z ∈
[0, π] is the spatial coordinate, t ∈ [0,∞) is time, uk

i denotes

the i-th manipulated input associated with the k-th actuator

configuration, bk
i (·) is the actuator distribution function, fk

ai

denotes a fault in the i-th actuator of the k-th configuration,

θj is an uncertain variable that represents an exogenous

disturbances, θj
b is a positive real number that captures the

maximum size of θj , dj(·) is a square-integrable function

that specifies the positions of action of the disturbance θj in

the spatial domain, yl(t) ∈ IR is a measured output, ql(·)
is the sensor distribution function, the parameters α > 0, β,

ω, υ are constants, and x̄0(z) is a smooth function of z.

Throughout the paper, the norm notations | · |, ‖ · ‖ and ‖ · ‖2

will be used to denote the standard Euclidean norm, the L2

norm associated with a finite-dimensional Hilbert space, and

the L2 norm associated with an infinite-dimensional Hilbert

space, respectively. Furthermore, a bounded linear operator

N is said to be power-stable if there exists positive real

numbers β and γ such that ‖N j‖ ≤ βe−γj , for any non-

negative integer j. The spectral radius of a bounded linear

operator N is defined as r(N ) = lim
j→∞

‖N j‖1/j ≤ ‖N‖.

From these definitions, it can be verified that N is power-

stable if and only if r(N ) < 1. Finally, the notation x(t−k )
will be used to denote the limit limt→t−

k

x(t).

Using standard techniques from operator theory [25], the

PDE of (1)-(2) can be formulated as an infinite-dimensional

system of the following form:

ẋ(t) = Ax(t)+Bk[uk(t)+fk
a (t)]+Wθ(t), x(0) = x0 (3)

y(t) = Qx(t) (4)

where x(t) = x̄(z, t), t > 0, 0 < z < π, is the state function

defined on the Hilbert space H = L2(0, π) endowed with

inner product and norm:

〈ω1, ω2〉 =

∫ π

0

ω1(z)ω2(z)dz, ‖ω1‖2 = 〈ω1, ω1〉
1

2 (5)

where ω1, ω2 are two elements of L2(0, π), A is the differen-

tial operator defined by Aφ = αd2φ
dz2 +βφ, 0 < z < π, where

φ(·) is a smooth function on (0, π) with φ(0) = φ(π) = 0,

Bk is the input operator defined by Bkuk = ω
∑m

i=1b
k
i (·)uk

i ,

uk = [uk
1 uk

2 · · · uk
m]T , fk

a = [fk
a1 fk

a2 · · · fk
am]T , W is the

uncertainty operator defined by Wθ = υ
∑n

j=1dj(z)θj(t),

θ = [θ1 θ2 · · · θn]T , Q is the measurement operator

defined by Qx = [〈q1, x〉, 〈q2, x〉, · · · , 〈qp, x〉, ]T , y =
[y1 y2 · · · yl]

T and x0 = x̄0(z).
For A, the eigenvalue problem is given by Aφj =

λjφj , j = 1, . . . ,∞, where λj denotes an eigenvalue

and φj denotes an eigenfunction. The solution to this

eigenvalue problem is given by λj = β − αj2, φj(z) =√
2
π sin(jz), j = 1, . . . ,∞. By analyzing this solution,

it can be seen that all the eigenvalues of A are real and

ordered. Also, for a given α, only a finite number of

unstable eigenvalues exists, and the distance between two

consecutive eigenvalues (i.e., λj and λj+1) increases as j
increases. Furthermore, the spectrum of A can be partitioned

as σ(A) = σ1(A)
⋃

σ2(A), where σ1(A) = {λ1, . . . , λm}
contains the first m (with m finite) ”slow” eigenvalues and

σ2(A) = {λm+1, λm+2, . . .} contains the remaining ”fast”

stable eigenvalues where |λm|/|λm+1| = O(ǫ) and ǫ < 1
is a small positive number that characterizes the extent of

separation between the slow and fast eigenvalues of A. This

separation property implies that the dominant dynamics of

the PDE can be described by a finite-dimensional system, and

motivates the application of modal decomposition techniques

to decompose the infinite-dimensional system of (3)-(4) into

the following form:

ẋs=Asxs + Bk
s [uk + fk

a ] + Wsθ, xs(0) = Psx0 (6)

ẋf=Afxf + Bk
f [uk + fk

a ] + Wfθ, xf (0) = Pfx0 (7)

y = Qxs + Qfxf (8)

where xs = Psx ∈ Hs := span{φ1, . . . , φm} is the state of

a finite-dimensional system that describes the evolution of the

slow modes, xf = Pfx ∈ Hf := span{φm+1, φm+2, . . . }
is the state of an infinite-dimensional system that captures

the evolution of the fast eigenvalues, Hs, Hf are modal

subspaces of A, and Ps and Pf are the orthogonal projection

operators, where As = PsA is an m × m diagonal matrix

of the form As = diag{λ1, · · · , λm}, Bk
s = PsBk and

Ws = PsW , Af = PfA is an unbounded differential

operator which is exponentially stable (due to the fact that

λm+1 < 0 and the selection of Hs and Hf ), Bk
f = PfB

k

and Wf = PfW . Qs : Hs → IRp and Qf : Hf → IRp

are bounded operators associated, respectively, with the slow

and fast parts of the measured output. Neglecting the fast and

stable xf -subsystem of (7), the following approximate, m-

dimensional slow system can be obtained:
˙̄xs = Asx̄s + Bk

s [uk + fk
a ] + Wsθ, ȳ = Qsx̄s (9)

where the bar symbol denotes that the variable is associated

with a finite-dimensional system.
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III. ROBUST STABILIZATION OF THE FAULT-FREE

SAMPLED-DATA FINITE-DIMENSIONAL SYSTEM

A. Controller synthesis and implementation

Referring to the system of (9), we consider first the case

when fk
a ≡ 0, and synthesize, for each k ∈ K, an observer-

based output feedback controller of the form:

uk(x̄s) = Fkη, η̇ = Âsη + B̂k
suk + L(ȳ −Qsη) (10)

where F is the feedback gain, η is an observer estimate of

x̄s using ȳ, Âs and B̂k
s are bounded operators that represent

models of As and Bk
s , respectively, and L is the observer

gain. Note that in general Âs 6= As and B̂k
s 6= Bk

s to account

for possible plant-model mismatch. When the measured out-

puts are available continuously from the sensors, and in the

case when Âs = As and B̂s = Bs, practical stability of the

fault-free closed-loop system can be enforced by appropriate

selection of the controller and observer gains. Specifically,

it can be shown using standard Lyapunov arguments that

given any set of positive real numbers, {θ1
b , · · · , θn

b , r}, one

can choose the controller and observer gains such that if

|θi(t)| ≤ θi
b for all t ≥ 0, the closed-loop states are ultimately

bounded by r, where r can be chosen arbitrarily small

by appropriate selection of F and L (i.e., by appropriate

placements of the eigenvalues of As +Bk
sF

k and As −LQs

in the left half of the complex plane).

Since the measured outputs are available from the sensors

only at discrete time instances, however, the observer cannot

be implemented directly. To deal with this problem, a model

of the slow system of (9) is embedded within the controller to

supply the observer with an estimate of the outputs between

consecutive sampling times. The state of this inter-sample

model predictor is then updated using the measured outputs

whenever they become available from the sensors. This

model-based control strategy is implemented as follows:

uk(t) = Fkη(t), t ∈ [tj , tj+1)

ω̇(t) = Âsω(t) + B̂k
suk(t), ŷ(t) = Qsω(t)

η̇(t) = Âsη(t) + B̂k
suk(t) + L(ŷ(t) −Qsη(t))

ŷ(tj) = ȳ(tj), j ∈ {0, 1, 2, · · · }

(11)

where ω is the model state (which is an estimate of x̄s),

ŷ is the model output (which is an estimate of ȳ), and

∆ := tj+1 − tj is the sampling period (which is typically

constant – extension to the case of a time-varying sampling

period is the subject of other research work). To facilitate the

closed-loop stability analysis, we will also consider in the

remainder of the paper that the operator Qs is invertible (or

pseudo-invertible in the case of a non-square system). This

requirement, which can be satisfied by appropriate selection

of the locations of the measurement sensors [14], renders

resetting the model output to match ȳ equivalent to resetting

the model state to match x̄s, since ω(tj) = Q−1
s ȳ(tj).

B. Characterizing the minimum allowable sampling rate: A

condition for ultimate boundedness

Defining the model estimation error ēs(t) = ω(t)− x̄s(t),
the augmented state ξ = [x̄s η ēs]

T in the extended state

space Hξ
s = Hs × Hs × Hs, the fault-free augmented slow

system can be formulated as a combined discrete-continuous

system and written in the following operator-matrix form:

ξ̇(t) = Λkξ(t) + Dθ(t), t ∈ [tj , tj+1)
ēs(tj) = 0, j ∈ {0, 1, 2, · · · }

(12)

where

Λk =




As Bk
sF

k O
LQs C LQs

Ãs B̃k
sF

k Âs


 , D =




Ws

O
−Ws


 , (13)

C = Âs + B̂k
sF

k −LQs and Ãs = Âs −As, B̃k
s = B̂k

s −Bk
s

represent the modeling errors. In order to derive conditions

for closed-loop stability in terms of the sampling period,

we need to express the closed-loop response as a function

of the sampling period. The following proposition provides

an explicit characterization of the sampled-data closed-loop

system behavior in the absence of faults. The proof can be

obtained by solving the linear system of (12)-(13) and using

induction, and is omitted for brevity.

Proposition 1: The system described by (12) with initial

condition ξ(0) = [x̄s(0) η(0) ēs(0)] = ξ0, has the following

response:

ξ(t) = TΛk(t − tj)(Nk)jξ0 +

∫ t

tj

TΛk (t − τ)Dθ(τ)dτ

+TΛk(t − tj)

j−1∑

i=0

(Nk)jIoΓj−i, t ∈ [tj , tj+1)

(14)

where TΛk
(t) : Hξ

s → Hξ
s is a C0-semigroup generated by

Λk on Hξ
s, Nk = IoTΛk(∆)Io, Io = diag{I I O}, I is the

identity operator, and

Γj =

∫ ∆

0

TΛk(τ)Dθ(tj − τ)dτ, j ∈ {0, 1, 2, · · · }

where ∆ = tj+1 − tj .

Based on the result of Proposition 1, a necessary and suffi-

cient condition for practical stability and ultimate bounded-

ness of the state of the finite-dimensional closed-loop system

under the sampled-data control structure can be obtained, and

is presented in the following proposition.

Proposition 2: Consider the augmented system of (12)-

(13), for a fixed k ∈ K, with the initial condition ξ(0) = ξ0,

and let θb be a positive real number such that |θ(t)| ≤ θb

for all t ≥ 0. Then the state of the sampled-data closed-loop

system is ultimately bounded if and only if r(Nk(∆)) < 1.

Proof: Sufficiency can be shown by evaluating the

norm of the solution given in (14), which yields, for t ∈
[tj , tj+1), j ∈ {0, 1, 2, · · · }:

‖ξ(t)‖ ≤ ‖TΛk(t − tj)(Nk)jξ0‖ + ‖

∫ t

tj

TΛk(t − τ)Dθ(τ)dτ ‖

+ ‖TΛk(t − tj)

j−1∑

i=0

(Nk)iIoΓj−i‖

(15)
Since r(Nk) < 1, we have ‖(Nk)j‖ ≤ βke−γkj , for some

βk, γk > 0, then the first term on the right hand side of (15)

satisfies the following exponentially-decaying bound:

‖TΛk(t − tj)(Nk)jξ0‖ ≤ ᾱkβ̄ke−γ̄kt‖ξ0‖ (16)

where ᾱk = eµk∆, µk = sup{Re σ(Λk)}, β̄k = βkeγ
k > 0

and γ̄k = γk/∆ > 0. Evaluating the second term on the right

hand side of (15) and using the fact that ‖TΛk(t)‖ ≤ eµkt,

one can obtain:

‖

∫ t

tj

TΛk(t − τ)Dθ(τ)dτ‖≤

∫ t

tj

eµk(t−τ)‖D‖θbdτ

≤
ᾱk − 1

µk
‖D‖θb := F

(17)
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With (17) in mind, ‖Γj−i‖ can also be bounded as follows:

‖Γj−i‖ ≤

∫ ∆

0

eµkτ‖D‖θbdτ

≤
eµk∆ − 1

µk
‖D‖θb =

ᾱk − 1

µk
‖D‖θb = F

(18)

Substituting (18) into the third term on the right hand side of

(15) and considering the fact that ‖Is‖ = 1, ‖TΛk(t−tj)‖ ≤
ᾱk and ‖(Nk)i‖ ≤ βke−γki, we have:

‖TΛk(t − tj)

j−1∑

i=0

(Nk)iIsΓj−i‖≤ ᾱkF

j−1∑

i=0

βke−γki

≤
ᾱkβkF

1 − e−γk

(19)

where we have used the fact that for γk > 0, 0 < e−γk < 1
and 0 < 1 − (e−γk)j < 1. Combining (16), (17) and (19),

we conclude that:

‖ξ(t)‖ ≤ ᾱkβ̄ke−γ̄kt‖ξ0‖ + δk(∆) (20)

where δk(∆) :=
ᾱkβkF

1 − e−γk
+ F , and consequently

lim sup
t→∞

‖ξ(t)‖ ≤ δk(∆), which implies that the state of

the sampled-data closed-loop system is ultimately bounded

if r(Nk(∆)) < 1. To prove necessity, we proceed by

contradiction. Let the state of the system of (12) be bounded

and assume that Nk has at least one eigenvalue outside the

unit circle. This assumption implies that the first term on the

right hand side of (14) will grow unbounded as time goes

on, and therefore the third term cannot be bounded as well.

Thus, we have a contradiction. This completes the proof.

Remark 1: It can be seen from the result of Proposi-

tion 2 and the structure of Λk in (13), that the spectral

radius condition given in the proposition can be used to

quantitatively examine the interplays between the maximum

allowable sampling period, the choice of the inter-sample

model predictor, the maximum disturbance size, and the

choice of control actuator and measurement sensor locations.

For example, for a fixed model, a given disturbance size,

and given actuator/sensor locations, one can compute the

maximum allowable sampling period that ensures bounded

stability. Alternatively, for a fixed sampling period, one

can use the stability condition to determine the maximum

allowable disturbance size, the maximum allowable plant-

model mismatch, as well as the range of allowable actua-

tor/sensor locations that ensure bounded stability. Note also

from the proof of Proposition 2 that the ultimate bound

is dependent on all these parameters and can be tuned by

appropriate selection of the sampling period, the model and

the actuator/sensor locations. Finally, since Nk is defined

over a finite-dimensional space, its spectral radius can be

determined by computing the eigenvalues of Nk.

IV. ROBUST FINITE-DIMENSIONAL FAULT-TOLERANT

CONTROL SYSTEM DESIGN

A. Fault detection using a time-varying alarm threshold

To determine the fault or health status of the control actua-

tors in the operating control configuration, the state observer

in (10) is used as a fault detection filter and its output is

compared with the actual output at the sampling times. The

following proposition provides an explicit characterization of

the expected fault-free evolution of the residual, which can

be used as the basis for fault detection.

Proposition 3: Consider the closed-loop system of (9) and

(11), for a fixed control configuration, k ∈ K, with fk
a ≡

0, and consider the augmented system of (12)-(13) where

the sampling period ∆ is chosen such that r(Nk(∆)) < 1.

Then there exist positive real numbers, α̂k > 1, β̂k, and a

continuous function, δ̂k(·), such that the residual defined by

rd(t) = ‖ȳ(t) −Qsη(t)‖ satisfies a time-varying bound:

rd(t) ≤ α̂k‖ξ0‖e
−γ̂kt + δ̂k(∆, θb), ∀t ≥ 0 (21)

Proof: Since ȳ = Qsx̄s and the operator Qs is bounded,

we have rd(t) ≤ ‖Qs‖‖x̄s(t) − η(t)‖ ≤ k1‖x̄s(t) − η(t)‖,

for some k1 > 0. From the result of Proposition 2, we have

that if ∆ is chosen such that r(Nk(∆)) < 1, then (20) is

satisfied. This, together with the facts that ‖x̄s(t)‖ ≤ ‖ξ(t)‖
and ‖η(t)‖ ≤ ‖ξ(t)‖, implies that rd(t) ≤ 2k1‖ξ(t)‖ ≤
2k1ᾱkβ̄ke−γ̄kt‖ξ0‖+2k1δk(∆, θb). Finally, the bound in (21)

can be established by identifying α̂k = 2k1ᾱkβ̄k, γ̂k = γ̄k,

and δ̂k(∆, θb) = 2k1δk(∆, θb).
Remark 2: The result of Proposition 3 suggests that, for a

given sampling rate that satisfies the stability condition and

a given upper bound on the disturbance size, a fault can be

declared at time Td if the residual breaches the time-varying

alarm threshold given in (21), i.e.,:

rd(Td) > α̂k‖ξ0‖e
−γ̂kTd + δ̂k(∆) =⇒ fk

a (Td) 6= 0 (22)
Note that the alarm threshold accounts for the influences

of sampling and external disturbances. Note also that the

residual can be evaluated only at the sampling times, i.e.,

fault detection can take place only at tj , j ∈ {0, 1, 2, · · · }
regardless of when the fault actually occurs. In general,

detection delays can be minimized by proper choice of

the constants α̂k and γ̂k to ensure that the threshold is

sufficiently tight, however, the smallest possible delay is

ultimately determined by the given sampling rate.

B. Stability-based control actuator reconfiguration
Following the detection of a fault in the operating actuator

configuration, corrective action in the form of switching

to a healthy fall-back actuator configuration is needed to

preserve robust closed-loop stability. Given the dependence

of the actuator configuration (i.e., the spatial placement of

the control actuators) on the measurement sampling rate (see

Proposition 2 and Remark 1), the fall-back actuators must

be chosen such that the given sampling rate continues to be

stabilizing in the absence of faults. This logic is formalized

in Theorem 1 below. The proof follows directly from the

result of Proposition 2 and is omitted for brevity.

Theorem 1: Consider the closed-loop system of (9) and

(11), where |theta(t)| ≤ θb, for some θb > 0, for some

i ∈ K, and the sampling period ∆ is chosen such that

r(Ni(∆)) < 1. Let Tf be the earliest time such that a fault

is detected. Then the following switching rule:

k(t) =

{
i, 0 ≤ t < Tf

ν 6= i, t ≥ Tf , r(Nν (∆)) < 1
(23)

guarantees that the state of the switched closed-loop system

is ultimately bounded.

Remark 3: In cases where several actuator configurations

satisfy the stability requirement, it is possible to incorporate
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additional performance criteria in the switching logic to nar-

row down the number of possible candidates. For example,

one can select the configuration that enforces the smallest

ultimate bound. Note also that while Theorem 1 considers

the case of a single fault, the same logic can be applied in

cases of multiple consecutive faults. In this case, however,

and given the fact that the structure of Λk changes after each

actuator switching, a new alarm threshold should be used for

the residual following each actuator switching to allow for

the detection of future faults.

Remark 4: It can be shown that the robust fault-tolerant

control system designed on the basis of the approxi-

mate finite-dimensional system continuous to enforce fault-

tolerance in the infinite-dimensional system provided that

the separation between the slow and fast eigenvalues of the

differential operator is sufficiently large. This argument can

be justified using singular perturbation techniques (e.g., [21],

[22]) and is omitted for brevity.

V. SIMULATION STUDY

In this section, we illustrate through computer simulations

how the robust fault detection and fault-tolerant control

methodology earlier can be used to robustly stabilize the

open-loop unstable zero solution of a linearized diffusion-

reaction process of (1) subject to the boundary and initial

condition of (2), where α = 1, β = 1.66 and ω = υ = 2.

It can be verified that the operating steady state x̄(z, t) = 0
(with u = θ = fa = 0) is unstable. Therefore the control

objective is to stabilize the closed-loop system near this

unstable steady state in presence of external disturbance

and actuator faults. We consider the first eigenvalue as the

dominant one and use standard Galerkins method to derive an

ODE that describes the temporal evolution of the amplitude

of the first eigenmode of the fault-free system: ȧ1 = λ1a1 +
g(za)u+ω(zd)θ, where x̄(z, t) =

∑
∞

i=1 ai(t)φi(z), g(za) =
βU 〈φ1(z), b(z)〉, ω(zd) = βU 〈φ1(z), d(z)〉, and a single

point actuator (with finite support) is used for stabilization,

i.e., b(z) = 1/(2µ) for z ∈ [za − µ, za + µ], where µ
is a sufficiently small number, and b(za) = 0 elsewhere.

This ODE is used to design the output feedback controller

and fault detection filters which are then implemented on a

30th order Galerkin discretization of the PDE (higher order

discretizations led to identical results).

Following the methodology outlined in Section IV, we

consider a feedback controller of the form: u = F kη, where

F k is the feedback gain, η is an estimate of a1 generated

by an observer: η̇ = λ̂1η + ĝ(za)u + L(y − Qs(zs)η),
y(t) = 〈q(z), x̄(z, t)〉, provided by a point sensor located

at zs where Qs(zs) = 〈q(z), φ1(z)〉, q(z) is sensor

distribution function. Following the analysis presented

in Section III, it can be verified that the closed-loop

system is ultimately bounded if and only if the spectral

radius of the matrix Nk = I0e
Λk∆I0 is less than one, where:

Λk =




λ1 g(zk

a)F k 0

LQs(zs) λ̂1 + ĝ(zk
a)F k − LQs(zs) LQs(zs)

λ̂1 − λ1 [ĝ(zk
a) − g(zk

a)]F k λ̂1





and I0 = diag{1 1 0}.

We consider the first case when no faults are present in the

operating actuator configuration, and analyze the dependence

of closed-loop stability on the selection of the actuator

location and the sampling period where a point disturbance

is introduced at zd = π/8 with an amplitude θb = 0.2. The

contour plots in Fig.1 show the dependence of the spectral

radius of Nk (plot(a)) and the size of the ultimate bound

(plot(b)) on both the actuator location, za and the sampling

period, ∆, when an uncertain model (with λ̂1 = 0.3 and

ĝ(za) = 0.5) is used to estimate the evolution of a1 between

sampling instances and the output feedback controller is

designed with F = −15 and L = 100, respectively. The

uncolored area in Fig.1(a), which is enclosed by the unit

contour lines, represents the stability region within which the

sampled-data closed-loop system can be robustly stabilized

under a given control configuration. It can be seen that the

set of stabilizing actuator locations increases as the sampling

period decreases, and that the maximum stabilizing sampling

period shrinks as the actuator is moved closer to the middle.

In Fig.1(b), the value of each contour line represents an

upper bound on the size of the terminal set that the closed-

loop state will converge to when the values of actuator

location and sampling period are chosen within the stability

region shown in Fig.1(a). As expected, for a given ultimate

bound, the range of stabilizing actuator locations shrinks as

the sampling period is increased. Also, for a given actuator

placement, the size of the terminal set grows as the sampling

period is increased (i.e., the performance deteriorates). The

prediction of Fig.1 are confirmed in Fig.2 which shows that

the closed-loop system is robustly stable around zero solution

for (∆ = 0.2, za = 0.25) ((a)) and becomes unstable for

(∆ = 0.2, za = 1.5) ((b)).
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Fig. 1. Dependence of the spectral radius of Nk (a) and the ultimate bound
(b) on the sampling period and actuator location, for a fixed model predictor.

(a) (b)

Fig. 2. Closed-loop state profiles for (∆ = 0.2, za = 0.25) (a) and
(∆ = 0.2, za = 1.5) (b) in the presence of external disturbances, and in
the absence of faults

To illustrate the fault detection and handling capabilities

of the sampled-data control system, the process is initialized

using a healthy actuator placed at za = 0.25 with the

sampling period ∆ = 0.2. Based on the evolution of the
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residual in the absence of faults, a time-varying bound

of the form: rd(t) = 0.4e−0.05t + 0.005 is used as an

alarm threshold for fault detection. In order to ensure fault-

tolerance, two backup control actuators, placed at za = 0.6
and za = 1.5, respectively. At Tf = 2.0, a fault is introduced

in the operating actuator. As can be seen from Fig. 4(a), the

fault is detected at Td = 2.2 when it causes the residual

to breach the alarm threshold. At this time, the supervisor

needs to switch to a backup actuator to maintain closed-

loop stability. For the given sampling period, it can be seen

from Fig.1(a) that the actuator placed at za = 0.6 lies

inside the unit contour line and is therefore expected to be

stabilizing , while the actuator placed at za = 1.5 lies outside

and therefore can not stabilize the closed-loop system. This

prediction is confirmed by the closed-loop state profiles in

panels (a) and (b) in Fig.3. It can also be seen in Fig.4(a) that

following the activation of the new actuator, a new residual

threshold is calculated and used so as to allow for continued

fault detection in the new configuration (see the red profiles).

(a) (b)

Fig. 3. Closed-loop state profiles when a fault is detected in the primary
actuator and subsequent reconfiguration to an actuator placed at za = 0.6

(a) and to an actuator at za = 1.5 (b) take place.
In addition to closed-loop stability considerations, we have

also investigated the performance-based reconfiguration to

determine the best actuator configuration which the con-

trol system switch to when all the backup candidates can

successfully stabilize the closed-loop system. In this case,

we choose two point actuator at za = 0.6 and za = 0.15,

respectively. From Fig.1(a), it can be seen that while both

backup actuators lie inside the unit contour zone (for ∆ =
0.2), Fig.1(b) shows that the actuator placed at za = 0.6
enforces a smaller ultimate bound than the one located at

za = 0.15. This is confirmed in Fig.4(b), which shows that

following fault detection at Td = 2.2, the amplitude of the fist

eigenmode settles closer to zero when the actuator located

at za = 0.6 is activated (black), while the steady state offset

is larger when the actuator at za = 0.15 is activated (red).
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Fig. 4. (a): Evolution of the residual (blue) when a fault is introduced
at Tf = 2.0 in the primary actuator and subsequent reconfiguration to
an actuator placed at za = 0.6 takes place. b(b): Evolution of the first
eigenmode when the actuator placed at za = 0.6 (black) or at za = 0.15

(red) is activated, respectively, following fault detection.
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