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Abstract— We introduce zonotope bundles for computing the
set of states reachable by a dynamical system, also known as the
reachable set. Reachable set computations suffer from the curse
of dimensionality, which has been successfully addressed by
using zonotopes for linear systems. However, zonotopes are not
closed under intersection leading to challenges when applying
them to nonlinear and hybrid problems. We introduce zonotope
bundles as the intersection of zonotopes (without explicitly
computing the intersection). Zonotope bundles are closed under
intersection, while inheriting many positive properties of zono-
topes. This is demonstrated for linear, nonlinear, and hybrid
systems. A further property of zonotope bundles is that their
computation can be easily parallelized.

I. INTRODUCTION

The reachable set for a dynamical system is the set of all

states reached by all possible trajectories of a system starting

from a specified set of initial states, under the influence of

uncertain inputs and parameters. Safety verification is one of

the most widely used applications of reachability analysis by

demonstrating that no sets specified as unsafe can be reached.

The avoidance of unsafe sets cannot be guaranteed by

selected simulations, since the trajectory hitting an unsafe set

might not be found. Besides the safety verification problem,

reachability analysis is also useful for robustness analysis [1],

abstraction of hybrid systems [2], invariant set computation

[3], and state-bounding observers [4], [5].

Zonotopes are an efficient set representation for many

reachability problems, but suffer from the fact that they

are not closed under intersection (i.e. the intersection of

zonotopes is not a zonotope in general), which is impor-

tant for nonlinear and hybrid systems reachability analysis.

This paper introduces zonotope bundles, which refer to the

intersection of a collection of zonotopes, making them closed

under intersection.

Several representations have been used for reachable sets.

An important class of set representations is the class of

polyhedra. When the continuous dynamics is described as

ẋ ∈ P , where x ∈ R
n and P is a bounded convex polyhedron

(i.e. a polytope), the reachable set can be exactly represented

by polyhedra, which also holds for linear hybrid automata

[6], [7]. For more complicated dynamics, such as linear time

invariant (LTI) systems ẋ = Ax+v(t), where x ∈ R
n, v(t) ∈

V ⊂ R
n, A ∈ R

n×n, the reachable set cannot be exactly

computed in general [8], but always without the wrapping

effect [9], where the wrapping effect is understood as the

propagation of overapproximations through successive time
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steps. Possible set representations for the overapproximation

from the class of polyhedra are polytopes [10], zonotopes

[11], [12], oriented rectangular hulls [13], simplicies [14],

and multidimensional intervals [15], [16].

Other representations, which are not from the class of

polyhedra, are ellipsoids [17], support functions [18] (which

can represent any convex set), and level sets [19] (which

can represent any bounded set). Although ellipsoids offer a

compact representation of reachable sets, they suffer from

not being closed under Minkowski addition and intersection.

The idea of computing with several instances of a set rep-

resentation, similar to the concept in this paper, is described

for ellipsoids in [20].

We will first recall polytopes and zonotopes and operations

on them in Sec. II. Next, zonotope bundles are introduced

in Sec. III. It will be shown that no required operation on

zonotope bundles has complexity greater than O(n3) with

respect to the system dimension n. The gained accuracy

when computing with zonotope bundles compared to zono-

topes is demonstrated for linear systems (Sec. IV) when the

initial set is not a zonotope. For nonlinear systems (Sec. V)

it is shown that the capability of splitting zonotope bundles

makes it possible to verify an evasive maneuver of a car while

zonotopes and polytopes fail. For hybrid systems (Sec. VI) it

is demonstrated that enclosures with guard sets can be much

more accurately obtained with zonotope bundles compared

to zonotopes, while polytopes are infeasible for dimensions

greater than 4. Other advantages of zonotope bundles, such

as parallelization, are summarized in Sec. VII.

II. POLYTOPES AND ZONOTOPES

We first recall the definitions of polytopes and zonotopes

and then discuss the complexity of the required operations for

reachability analysis of linear systems. The most general set

representation considered in this work are convex polytopes,

for which two representations exist (Fig. 1).

Definition 1 (H-Representation of a Polytope): A convex

polytope P is the intersection of q halfspaces H(i) = {x ∈
R

n|ei x ≤ di, ei ∈ R
1×n, di ∈ R}, such that P = {x ∈

R
n
∣
∣E x ≤ d, E ∈ R

q×n, d ∈ R
q}. �

Definition 2 (V-Representation of a Polytope): Given r
vertices v

(i) ∈ R
n, P = CH(v(1), . . . , v(r)) is a convex

polytope, where CH() is the convex hull operator. �

Zonotopes are a special case of polytopes. A polytope is a

zonotope if it can also be represented by so-called generators

(G-representation).
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Fig. 1. Possible representations of a polytope.

Definition 3 (G-Representation of a Zonotope):

Denoting the center by c ∈ R
n (to which a zonotope

is centrally symmetric) and the ith generators by g(i) ∈ R
n,

a zonotope is defined as

Z =
{

x ∈ R
n
∣
∣x = c+

p
∑

i=1

βi g
(i), −1 ≤ βi ≤ 1

}

.
�

The definition can be interpreted as the Minkowski sum1

of a finite set of line segments l̂i = [−1, 1] g(i). Figure 2

illustrates how a zonotope is built step-by-step. The order

of a zonotope is defined as o = p
n

. If the order is less than

one, the zonotope represents a set of lower dimension than

n (Fig. 2(a)) and a zonotope of order one is a parallelotope

(Fig. 2(b)). Zonotopes of order greater than one create sets

with an increasing number of facets and vertices (Fig. 2(c)).

A zonotope is denoted in a concise way by the list of its

center and generators: Z = (c, g(1), . . . , g(p)).
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Fig. 2. Construction of a zonotope by Minkowski addition of line segments.

The representation of reachable sets does not only have

to be compact, but more importantly, relevant operations

have to be efficient with respect to the system dimension

n, which are: linear transformation, Minkowski addition,

box enclosure, and convex hull computation of linearly

transformed sets [9]. For polytopes, Minkowski addition and

convex hull computation, which is denoted by opCH(), are

generally limited to problems with up to 4 − 6 dimensions

[21], [22] and tend to run into numerical problems unless

infinite precision arithmetic is used [23]. Unlike polytopes,

zonotopes are numerically stable and operations for reacha-

bility analysis have a maximum complexity of O(n3). For

Z1 = (c1, g
(1), . . . , g(p)), Z2 = (c2, h

(1), . . . , h(u)), and

L ∈ R
n×n, the required operations are computed according

1Minkowski sum of two sets: A⊕B = {a+ b|a ∈ A, b ∈ B}.

to [12] as:

LZ1 :={Lx|x ∈ Z1} = (Lc1, Lg
(1), . . . , Lg(p)),

Z1 ⊕Z2 :={a+ b|a ∈ Z1, b ∈ Z2}

=(c1 + c2, g
(1), . . . , g(p), h(1), . . . , h(u)),

CH(Z1 ∪ LZ1) :={αa+ (1− α)b|

a ∈ Z1, b ∈ LZ1, α ∈ [0, 1]}

⊆0.5(L̃c1, L̃g
(1), . . . , L̃g(p),

L̂c1, L̂g
(1), . . . , L̂g(p)),

L̃ = (I + L), L̂ = (I − L),

box(Z1) =[c1 − δ, c2 + δ], δ =

p
∑

i=1

|g(i)|,

(1)

where I is the identity matrix, the absolute value |g(i)|
is computed elementwise, and box(Z1) is specified using

interval notation. The convex hull operation has to be over-

approximated since it results in a polytope in general. With

respect to the system dimension, the complexity is only O(n)
for Z1 ⊕Z2, box(Z1), and O(n3) for LZ1, CH(Z1 ∪LZ1).

III. ZONOTOPE BUNDLES

We define a zonotope bundle as the intersection of zono-

topes:

Definition 4 (Zonotope Bundle): Given a finite set of

zonotopes Z , a zonotope bundle is Z ∩ = {
⋂s

i=1 Zi|Zi ∈
Z }, i.e. the intersection of zonotopes Zi. Note that the

intersection is not computed, but the zonotopes Zi are stored

in a list, which we write as Z
∩ = {Z1, . . . ,Zs}

∩. �

We show that operations in (1) can be performed in

an exact or overapproximate way on zonotope bundles by

separately performing them for each zonotope. Thus, the

computational cost is the one for zonotopes times the number

of zonotopes in the bundle, so that the maximum complexity

of O(n3) is inherited. In addition, we provide an upper bound

for the overapproximation of the Minkowski addition.

Proposition 1 (Linear Transformation): The linear trans-

formation of a zonotope bundle LZ ∩, where L has full rank

is performed by

LZ
∩ = {LZ1, . . . , LZs}

∩.

When L does not have full rank, the computation is overap-

proximative: LZ ∩ ⊆ {LZ1, . . . , LZs}∩. �

Proof: We want to show that L
⋂s

i=1 Zi =
⋂s

i=1 LZi, for

which it is sufficient to shown that L(A ∩B) = LA ∩ LB
when L has full rank:

x ∈ A ∩B ↔x ∈ A and x ∈ B

↔Lx ∈ LA and Lx ∈ LB

↔Lx ∈ LA ∩ LB.

When L does not have full rank, it only holds that if x ∈ A
and x ∈ B → Lx ∈ LA and Lx ∈ LB. �
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Proposition 2 (Minkowski Addition): The Minkowski ad-

dition of a zonotope bundle Z ∩ and a zonotope Zadd is

overapproximated by

Z
∩ ⊕Zadd ⊆ {Z1 ⊕Zadd, . . . ,Zs ⊕Zadd}∩. �

Proof: We want to show that (
⋂s

i=1 Zi) ⊕ Zadd ⊆
⋂s

i=1

(
Zi ⊕Zadd

)
, for which it is sufficient to shown that

(A∩B)⊕C ⊆ (A⊕C)∩(B⊕C). After defining x = y+c,
where y ∈ A ∩B, c ∈ C, we have:

y ∈ A ∩B →y ∈ A and y ∈ B

→x ∈ (A⊕ C) and x ∈ (B ⊕ C)

→x ∈ (A⊕ C) ∩ (B ⊕ C).

It is shown that (A∩B)⊕C 6= (A⊕C)∩(B⊕C) by a scalar

counter-example: A = [−1,−0.5], B = [0.5, 1], C = [−1, 1]
so that (A∩B)⊕C is undefined while (A⊕C)∩(B⊕C) =
[−0.5, 0.5]. �

In order to present an upper bound on the overapproxi-

mation of the Minkowski addition procedure, an alternative

overapproximation is considered by pushing the facets of the

set outwards. This is first considered for zonotopes and then

for zonotope bundles:

Proposition 3 (Facet Lifting of Zonotopes): The addition

of a zonotope in H-representation Z = {x|Ex ≤ d} with

a zonotope Zadd can be overapproximated by pushing the

facets of Z outwards:

Z ↑ Zadd := {x|Ex ≤ d̃}, d̃i = di +max(eiZ
add),

where ei is the ith row vector of E and Z ⊕ Zadd ⊆ Z ↑
Zadd. �

Proof: The Minkowski addition of a halfspace H(i) = {x ∈
R

n|ei x ≤ di, ei ∈ R
1×n, di ∈ R} is computed exactly

by pushing the dividing hyperplane outside: H(i) ⊕Zadd =
H(i) ↑ Zadd, see Fig. 3(a). The independent application

results in an overapproximation:

(
q
⋂

i=1

H(i)

)

︸ ︷︷ ︸

=Z

⊕Zadd

Proof of
Prop. 2

⊆

q
⋂

i=1

(

H(i) ⊕Zadd
)

︸ ︷︷ ︸

=H(i)↑Zadd

= Z ↑ Zadd.

�

Proposition 4 (Facet Lifting of Zonotope Bundles): The

facet lifting of a zonotope bundle Z ∩ by a zonotope Zadd

is exactly obtained by

Z
∩ ↑ Zadd = {Z1 ↑ Zadd, . . . ,Zs ↑ Zadd}∩. �

Proof: The proof is straightforward by rewriting the expres-

sions using the halfspace notation:

s⋂

i=1

Zi =

E(1)x ≤ d(1)

E(2)x ≤ d(2)

...

E(s)x ≤ d(s)

↑Zadd

−→

E(1)x ≤ d̃(1)

E(2)x ≤ d̃(2)

...

E(s)x ≤ d̃(s)

.

The right column is equivalent to {Z1 ↑ Zadd, . . . ,Zs ↑
Zadd}∩. �

After combining Prop. 3 and Prop. 4 it follows that

s⋂

i=1

(Zi ⊕Zadd)
Prop.3

⊆
s⋂

i=1

(Zi ↑ Zadd)
Prop.4
= Z

∩ ↑ Zadd

so that Prop. 2 is always better than facet lifting as is shown

for an exemplary zonotope bundle in Fig. 3(b). Moreover,

the Minkowski addition is computationally less expensive

for zonotopes (O(n), see (1)), while face lifting requires

projections for each normal vector (O(n3)).

x1

x2

Zadd

ei

di
max(eiZadd)

(a) Halfspace transla-
tion.

Z ∩ ↑ Zadd
⋂s

i=1

(
Zi ⊕Zadd

)

(
⋂s

i=1 Zi)⊕Zadd

Zadd
Zi

(b) Comparison of Minkowski addition
overapproximations.

Fig. 3. Minkowski addition of a zonotope bundle and a zonotope.

Proposition 5 (Convex Hull Computation): The convex

hull of a zonotope bundle Z ∩ and its map LZ ∩ is

overapproximated by

CH(Z ∩ ∪LZ
∩) ⊆ {CH(Z1 ∪LZ1), . . . , CH(Zs ∪LZs)}

∩.
�

Proof: It is sufficient to shown that

CH((A ∩B) ∪ L (A ∩B)) ⊆ CH(A ∪ LA) ∩ CH(B ∪ LB)).

Define y ∈ CH((A ∩B) ∪ L (A ∩B)), then

∃α : y ∈α (A ∩B)⊕ (1− α)L(A ∩B)
Prop. 1

⊆ (αA ∩ αB)⊕ ((1 − α)LA ∩ (1 − α)LB)
Prop. 2

⊆ (αA⊕ (1 − α)LA
︸ ︷︷ ︸

⊆CH(A∪LA)

) ∩ (αB ⊕ (1− α)LB
︸ ︷︷ ︸

⊆CH(B∪LB)

) ∩

(αB ⊕ (1− α)LA) ∩ (αA ⊕ (1− α)LB)

⊆CH(A ∪ LA) ∩ CH(B ∪ LB).

�

Proposition 6 (Box Enclosure): The enclosing box of a

zonotope bundle Z ∩ is overapproximated by

box(Z ∩) ⊆ {box(Z1), . . . , box(Zs)}
∩. �

The results of the box enclosure are obvious and thus the

proof is skipped. The intersection of two zonotope bundles

is trivially done by concatenating the list of zonotopes:

Z ∩
A ∩ Z ∩

B = {ZA,1, . . . ,ZA,sA ,ZB,1, . . . ,ZB,sB}
∩. In

order to detect if a zonotope bundle intersects an unsafe set,

the following proposition is applied:
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Proposition 7 (Intersection Detection): A zonotope bun-

dle Z ∩ intersects a set S if and only if each zonotope

intersects S: Z ∩ ∩ S 6= ∅ ↔ ∀i = 1 . . . s : Zi ∩ S 6= ∅. �

This result directly follows from the associativity of inter-

section and is useful from a computational point of view for

safety verification: Once a Zi does not intersect an unsafe

set, the check is completed, which is computationally cheaper

than first computing the polytope representation of Z
∩.

A property explored further in Sec. V-A is that two zono-

tope bundles representing the same set might suffer more or

less from overapproximations of operations, depending how

tight the individual zonotopes are enclosing the intersection

of all zonotopes in the bundle.

IV. REACHABILITY ANALYSIS OF LINEAR SYSTEMS

We will evaluate the performance of zonotope bundles for

linear systems given as ẋ = Ax+Bu, where A ∈ R
n×n, B ∈

R
n×m, x(0) ∈ R(0) ⊂ R

n, u(t) ∈ U ⊂ R
m. Reachability

analysis of linear systems does not require intersection of

sets for which zonotope bundles are advantageous over zono-

topes. Nevertheless, zonotope bundles provide tighter bounds

compared to zonotopes when the initial set is not given

as a zonotope. It will also be demonstrated that zonotope

computations scale much better with the system dimension

n compared to general polytopes.

The input set U is restricted to zonotopes. Typically,

bounds for inputs/disturbances are given as intervals for each

dimension (which is a special case of a zonotope), and if

not, efficient methods exist for the enclosure of other sets

by boxes (zonotope of order 1), parallelotopes (zonotope of

order 1), or zonotopes.

A. Basic Procedure

Algorithm 1 shows the basic procedure for computing

reachable sets for linear systems. The algorithm computes

reachable sets of consecutive time intervals [tk, tk+1], where

tk := k r, k ∈ N is the time step and r ∈ R
+ is

the time increment. The superposition principle is used to

separately obtain the reachable set due to the homogeneous

and input solution, denoted by Rh and Ri, respectively.

The computation of the first time interval of Rh([0, t1]) and

Ri([0, t1]) involves linear transformation, convex hull com-

putation, and Minkowski addition, see e.g. [24]. By arranging

the computations for further time intervals according to [9],

as shown in algorithm 1, the wrapping effect is avoided.

The algorithm also obtains correct results when the system

is unstable.

B. Numerical Results

We compare the performance of computing reachable

sets with zonotope bundles to computations using zonotopes

and polytopes by randomized examples. For dimensions

n = {2, 3}, 100 randomized systems are generated, while

for n = 4 only the computational times are compared

since polytope computations often did not terminate due to

numerical problems2.

2used tool: MPT toolbox [25]

Algorithm 1 Compute Rk := R([tk, tk+1]) for k = 1 . . .N

Input: Reachable sets Rh
0 := Rh([0, t1]), Ri

0 :=
Ri([0, t1]), system matrix A, time incr. r, time steps N .

Output: Rk for k = 0 . . .N
P0 = box(Ri

0)
R0 = Rh

0 ⊕ P0

for k = 1 . . .N do

Rh
k = eAr Rh

k−1, Ri
k = eAr Ri

k−1

Pk = Pk−1 ⊕ box(Ri
k)

Rk = Rh
k ⊕ Pk

end for

The state matrix A is randomly generated by uniformly

sampling eigenvalues from a box in the complex plane

with real values in [−5,−0.2], and imaginary values in

[−5, 5]. Eigenvalues are chosen conjugate complex, unless

the number of poles is uneven so that one is chosen real. The

input matrix B is chosen as a n × n matrix whose entries

are uniformly distributed in [−1, 1]. The set of inputs U is a

hypercube centered at the origin with edge length δ = 0.1.

The initial set of states is randomly generated as a V-

polytope with vertices v
(i) = d + l(i) ϕ(i), d = [2, . . . , 2]T ,

ϕ(i) ∈ R
n is a point uniformly distributed on a unit-

hypersphere, and l(i) ∈ R is uniformly distributed within

[0, µ], where µ = 1. The number of sampled vertices is 2n

which equals the number for a hypercube in R
n.

The time increment is chosen as r = ‖A2‖−0.5
∞ which is

motivated by the required enlargement of reachable sets to

ensure enclosure for time intervals (see [26]). The number

of computed time steps N ∈ N is determined by the

highest N fulfilling ‖eANr‖2 ≤ 0.1‖eAr‖2, which indicates

a significant decay of the initial state solution.

For the computation with zonotope bundles, the initial

set is enclosed by a box and a parallelotope using princi-

pal component analysis (see [13] or Sec. V-A), while for

zonotope computations only the parallelotope is used. The

exactness of the computation is measured by a normalized

volume Θ = V
1
n (V is the volume) of the reachable sets,

making the results independent of n.

After normalizing the time of each example from t = 0
to t = 1, the mean value of the relative performance index

Θz/Θp and Θzb/Θp is plotted in Fig. 4, where the super-

scripts refer to zonotopes, zonotope bundles, and polytopes.

It can be seen that the reachable sets are only marginally

larger for zonotope computations and that the result is more

accurate for zonotope bundles. Since the initial state solution

becomes less dominant over time, the normalized volume

ratio tends to 1.

The average computation times per time step t̄ are pre-

sented in Table I showing that zonotope computations are

much more efficient and scalable. There is a jump in the

computation time from n = 2 to n = 3 for the polytope

computation, since the MPT toolbox often has to search for

alternative ways of computing the convex hull (the analytical

method has been initially set). Note that the computation time
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when using two zonotopes in the bundle is less than double

since certain computations, such as the one of Ri
k and Pk

(see Alg. 1) do not involve the bundle. The computations

have been performed in MATLAB on an Intel i7 Processor

with 1.6 GHz and 6 GB memory.

0 0.5 1

1.1

1.15

1.2

normalized time

 

 

Θzb/Θp

Θz/ΘpΘ

(a) Dimension n = 2.
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1.2

1.4
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Θzb/Θp

Θz/ΘpΘ

(b) Dimension n = 3.

Fig. 4. Mean ratios of normalized volumes when comparing randomized
zonotope bundle and zonotope computations with polytope computations.

TABLE I

COMPUTATION TIMES FOR RANDOMIZED LINEAR SYSTEMS.

dimension n 2 3 4 500 1000

t̄p in [s] 0.0248 1.0423 14.836 — —
t̄z in [s] 0.0010 0.0011 0.0011 0.5158 5.0902
t̄zb in [s] 0.0018 0.0019 0.0020 0.6796 7.0438

V. REACHABILITY ANALYSIS OF NONLINEAR SYSTEMS

In this section, the performance of zonotope bundles is

demonstrated for nonlinear systems ẋ = f(x, u), where

x(0) ∈ R(0) ⊂ R
n, u(t) ∈ U ⊂ R

m̂. Recently, it has been

demonstrated that reachability techniques developed for lin-

ear systems can be efficiently extended to nonlinear systems

by on-the-fly linearization [14], [27]. Overapproximation

of the result is ensured by adding the set of linearization

errors as an additional uncertain input. For many nonlinear

problems, it is required to split the reachable set when the

set of linearization errors is large [27]. Since zonotopes

are not closed under intersection (equivalent to not being

closed under splitting), they have to be overapproximated by

parallelotopes (zonotopes of order 1) in order to obtain split

sets in G-representation.

A. Splitting and Enclosing Zonotope Bundles

A zonotope, and thus also a zonotope bundle can be split

by first overapproximating it by a parallelotope Ψ, which

is obtained by defining the directions λi which span the

parallelotope as columns in a matrix Λ = [λ1, . . . , λn]:

Ψ := (c, w(1), . . . , w(n)) = Λ box(Λ−1
Z

∩). (2)

One of the column vectors λj has to be in direction of

the normal vector of the dividing hyperplane, such that the

splitting of the jth generator w(j) = γ λj (γ ∈ R) results

into two parallelotopes Ψ1, Ψ2:

Ψ1 = (c−
1

2
w(j), w(1), . . . , w(j−1),

1

2
w(j), w(j+1), . . . , w(n))

Ψ2 = (c+
1

2
w(j), w(1), . . . , w(j−1),

1

2
w(j), w(j+1), . . . , w(n))

The split parallelotopes are used for the splitting of zonotope

bundles:

Z
∩
1 = Z

∩ ∩Ψ1, Z
∩
2 = Z

∩ ∩Ψ2.

Note that the number of zonotopes in the bundle is increased

by one. In contrast to zonotopes, the result of the split is

exact, i.e. Z ∩
1 ∩ Z ∩

2 = ∅ and Z ∩
1 ∪ Z ∩

2 = Z ∩, no

matter how the other column vectors of Λ besides the jth

one are chosen and how tightly box() in (2) is obtained.

However, subsequent operations such as Minkowski addition

with zonotopes adds a larger error when Λ is chosen badly

or box() returns a large overapproximation. Heuristics for

computations of Λ are addressed next:

a) Box method (box): This method encloses the set

by a box, such that Λ = I and I is the identity matrix.

Good results are obtained when the reachable set is not

stretched out in certain directions, while being compact in

others. This heuristics is especially useful when using several

enclosing zonotopes since there are no numerical problems

when computing Λ−1 such that a worst case enclosure is

guaranteed.

b) PCA method (pca): The method returns directions

with the greatest variance of the vertices of Z ∩ by a

principal component analysis (see [13]) and thus requires

vertex computation in contrast to the other heuristics.

c) Generator filtering (fil): This method is based on

discarding generators of the zonotope bundle, such that only

n generators remain for Λ. First, short generators are sorted

out, next generator combinations are sorted out that do not

span a large parallelogram, i.e. that are too much aligned.

From this subset, the final n generators are picked providing

the smallest volume of Ψ. This technique is equivalent to

method C in [28], except that the union of generators of all

zonotopes of the bundle is used.

d) Flow method (flow): This method is similar to the

box method, but incorporates the flow of the dynamics.

Starting from Λ = I , the column that is most aligned with

the flow direction f , is replaced by f .

The presented methods are evaluated later in Sec. VI-B.

In order to decrease overapproximative effects of operations

(see Prop. 2-6) after the split, one can compute the enclosure

of a zonotope bundle as box(Z ∩) = box

(
⋂s

i=1 Zi

)

in

contrast to Prop. 6. This requires the conversion of the

zonotopes Zi into a H-representation according to [28]

which is linear in the number of generated halfspaces, but

there might be up to 2
(

p
n−1

)
halfspaces. Thus, it is often

required to reduce the number of generators of each Zi in

an overapproximative way using techniques from [11], [12],

or the previously described parallelotope enclosures, which

can be combined such that e.g. Zi ⊆ Ψbox ∩ Ψpca. Finally,

the enclosing box of the H-representation can be obtained

via linear programming.

B. Numerical Example

The effectiveness of the zonotope bundle computations is

shown by an automated evasion maneuver of a car. The car
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is approaching a multi-lane crossing equipped with CICAS

(Cooperative Intersection Collision Avoidance System) [29],

where a standing vehicle is in its lane; see Fig. 5. The initial

velocity is high enough that an evasive maneuver is more

effective compared to a braking maneuver [30].

evading car standing car

evasion path

Fig. 5. Evasion maneuver.

The vehicle model consists of the lateral dynamics, the

longitudinal dynamics, and a geometric model translating

the heading and the velocity of the vehicle to positions on

the road. The lateral dynamics is modeled by a so-called

bicycle model, which neglects the roll and pitch dynamics;

see [31]. The automated steering is performed by first

generating a reference trajectory yd(t) of the lateral positions

(perpendicular to the road direction) and the orientation

Ψd(t) considering the maximal available tire friction. The

steering controller uses the measured lateral position y(t) and

orientation Ψ(t) to update the steering input δ = k1(Ψd(t)−
Ψ(t)) + k2(yd(t) − y(t)). The position and orientation is

obtained by fusing an accurate differential GPS signal from

the CICAS-equipped intersection with inertial accelerations

from the vehicle. The state vector is x = [β,Ψ, Ψ̇, v, x, y],
where all variables are measured at the center of mass: β is

the side-slip angle, Ψ is the yaw angle, Ψ̇ is the yaw rate, v
is the velocity, x and y are the x- and y-position:

ẋ1 =−
1

mx4

(

µ(cr + cf )x1 + µ(cf lf − crlr)
x3

x4
+mx3x4

− cfµ
(
k1(Ψd − x2) + k2(yd − x6)

)

︸ ︷︷ ︸

=δ

)

ẋ2 =x3

ẋ3 =
1

J

(

µ(crlr − cf lf )x1 − µ(crl
2
r + cf l

2
f )

x3

x4

+ µcf lf
(
k1(Ψd − x2) + k2(yd − x6)

)

︸ ︷︷ ︸

=δ

)

ẋ4 =ax

ẋ5 =cos(x1 + x2)x4

ẋ6 =sin(x1 + x2)x4

The parameters of this model are listed in Table II, the set

of initial states is R(0) = [−0.02, 0.02] × [−0.05, 0.05] ×
[−0.2, 0.2] × [19.8, 20.2] × [−0.2, 0.2] × [−0.2, 0.2], and

the set of disturbances is ax ∈ [−0.1, 0.1]. The path of

the maneuver consists of two arcs followed by a braking

maneuver (see Fig. 5).

The different projections of the reachable set are shown

in Fig. 6 when using zonotopes or zonotope bundles. The

splitting of the reachable sets is performed as presented in

TABLE II

VEHICLE PARAMETERS PARTIALLY TAKEN OUT OF [32].

symb. m J lf lr cf ,cr µ k1 k2
value 1573 2873 1.1 1.58 80e3 0.7 2 0.5

unit kg kg m2 m m N/rad — — —

Sec. V-A by choosing Λ = I which is effective since the

reachable set is not stretched out in certain directions. The

box enclosure is computed using Prop. 6 instead of the tighter

version discussed in Sec. V-A. The nonlinear effects are

dominated by the change of the velocity x4, which is more

dominant for small velocities since ẋ1, ẋ3 are obtained by

dividing by the velocity or its square. For x4 → 0 the model

becomes singular, such that the verification is stopped for

x4 < 2 [m/s].

This nonlinear effect towards smaller velocities causes

splitting, which results into a parallel computation of reach-

able sets shown in Fig. 7. When using zonotopes, the number

of required splits explodes such that the verification fails with

zonotopes, while it remains stable using zonotope bundles. It

also fails for polytopes since certain operations such as the

Minkowski addition are infeasible in 6 dimensions.

The system is considered as safe when the vehicle cen-

ter (x5, x6) does not hit the forbidden region indicated in

Fig. 6(c) which would cause a collision with the standing

vehicle. In addition, the vehicle is not allowed to cross the

lane boundary of the neighboring lane. Due to the reduced

splitting, the computation time up to t = 3.6 s (when the

reachable set starts exploding for the zonotope computation)

is 32.8 s using zonotope bundles, which is less than the 115.9
s required for zonotopes. The example was implemented

in MATLAB and executed on an Intel i7 Processor with

1.6 GHz and 6 GB memory.

VI. REACHABILITY ANALYSIS OF HYBRID SYSTEMS

The reachability analysis of hybrid systems requires in-

tersection with so-called guard sets. We will show that

this intersection can be computed much more accurately

with zonotope bundles compared to zonotopes, while the

computation with polytopes typically becomes infeasible for

dimensions greater than 4.

Hybrid systems are a combination of continuous and

discrete dynamics, where to each discrete state an invariant

region is assigned in which a continuous dynamics is valid.

Once the continuous state is within a guard set, the discrete

state may change according to a transition relation between

discrete states, and has to change if it would leave the

invariant. An additional jump of continuous state variables

may be specified for the transition. The reachable set of a

hybrid system is exemplarily illustrated in Fig. 8; a formal

definition of the considered hybrid dynamics is given in [28].

A. Basic Procedure

We restrict ourselves to guard sets specified by polytopes,

which can also be used to overapproximate arbitrarily shaped

guard sets. When representing reachable sets by zonotope
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Fig. 6. Reachable set of the lane changing maneuver. Reachable sets
are light gray when computing with zonotope bundles and dark gray when
computing with zonotopes. Black lines show exemplary trajectories.
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Fig. 7. Number of sets computed in parallel due to the splittings.

bundles, one has to convert them to a H-representation

(which can be efficiently done by several parallelotope

enclosures as presented in Sec. V-A) for intersection with

guard sets using a standard toolbox3. In order to continue

the computation with a G-representation, the vertices of the

intersection are enclosed by parallelotopes as described in

(2), except that the box of vertices instead of zonotopes is

computed. These steps are illustrated in Fig. 9.

B. Numerical Examples

In analogy to linear systems, we randomly generate hybrid

reachability problems consisting of a single guard set. With-

out loss of generality we fix the guard set while randomizing

3used tool: MPT toolbox [25]

initial set

reachable set guard sets

guard sets

jump

etc.
invariant

unsafe set

x1

x2

discr. state z1 discr. state z2

Fig. 8. Illustration of the reachable set of a hybrid automaton.
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Fig. 9. Reachable set intersection with a guard set by a zonotope bundle.

the initial set and the continuous dynamics. The reachable

set is computed until no further set intersects the guard set.

The continuous dynamics is chosen as in Sec. IV-B and

the guard set is a box [1, 1 + ǫ] × [−l, l] × . . . × [−l, l],
where ǫ is uniformly distributed within [0, 1] and l = 103,

see Fig. 9(a). The initial set is a zonotope with an order o
uniformly distributed within [1, 3], where the generators are

randomly generated as the vertices in Sec. IV-B with µ =
1/o, and the center is uniformly distributed within [4, 8] ×
[−4, 4]× . . .× [−4, 4], forcing an intersection with the guard

set before converging to the origin. The hypercube enclosing

the uncertain input has maximum edge length δ = 0.01.

The enclosure of vertices by a zonotope bundle has

been performed using the methods box, pca, fil, and flow

as described in Sec. V-A. The method combining these

enclosures using a zonotope bundle is denoted by comb, and

the enclosure by a polytope is denoted by poly. In addition,

a randomized enclosure method rand is evaluated, which

creates 100 randomly generated parallelotopes by random-

izing Λ (see (2)). Each column of Λ is a vector uniformly

distributed on a unit hypersphere, and the enclosure with

the smallest volume is picked. The relative performance

indices Θmethod/Θpoly (method = {box, . . . , poly}) along

with the computation times for the enclosure are presented

in Table III. The computations are performed in MATLAB

on an Intel i7 Processor with 1.6 GHz and 6 GB memory.

It can be seen that the relative performance for zonotope

bundles (method comb) is only marginally increasing with

n, while the computation time is almost constant, whereas

the computation for poly increases dramatically. Thus, for

n > 4 only the computation time can be evaluated since

Θpoly is infeasible.

TABLE III

ENCLOSURE OF INTERSECTED REACHABLE SETS.

n box pca fil flow rand comb poly

relative performance index Θmethod/Θpoly

2 1.362 1.155 2.068 2.186 1.112 1.018 1

3 1.803 1.339 4.686 3.544 1.945 1.064 1

4 2.246 1.486 8.981 5.628 3.487 1.135 1

computation times in [ms] for vertex enclosure

2 0.385 0.524 0.731 1.214 92.27 2.854 7.778
3 0.359 0.520 0.698 1.240 90.85 2.817 30.42
4 0.400 1.610 0.813 1.255 96.81 4.078 2154

8 11.38 31.37 15.64 16.17 1580 74.57 −
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VII. CONCLUSIONS

This paper introduces zonotope bundles, defined as the

intersection of a set of zonotopes, which in contrast to zono-

topes are closed under intersection. Operations on zonotope

bundles for reachability analysis are computed storing a list

of zonotopes and without performing any intersection. Safety

verification can then be performed by checking for each

zonotope in the bundle if a set of unsafe states is hit. Since

all computations are performed on individual zonotopes,

the computational effort is simply the effort of zonotope

computation times the number of zonotopes in the bundle.

Since all computations are separately performed on zono-

topes, it is straightforward to parallelize the presented oper-

ations. Furthermore, it has been shown that zonotope bundle

computations scale better with the system dimension than

polytopes, while improving the accuracy compared to single

zonotope representations for linear, nonlinear, and hybrid

systems. In the nonlinear example, only zonotope bundles

could successfully verify the safety. Another property is that

one can tune the accuracy by the number of zonotopes in the

bundle. Measuring the improvement compared to zonotopes

in higher dimensions is infeasible for many measures such

as the volume of sets or their Hausdorff distance, such that

introducing a fair and scalable measure is future work.
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