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Abstract— The average cost criterion has held great in-
tuitive appeal and has attracted considerable attention. It
is widely employed when controlling dynamic systems that
evolve stochastically over time by means of formulating an
optimization problem to achieve long-term goals efficiently. The
average cost criterion is especially appealing when the decision-
making process is long compared to other timescales involved,
and there is no compelling motivation to select short-term
optimization. This paper addresses the problem of controlling
a Markov chain so as to minimize the average cost per unit
time. Our approach treats the problem as a dual constrained
optimization problem. We derive conditions guaranteeing that
a saddle point exists for the new dual problem and we show
that this saddle point is an equilibrium control policy for
each state of the Markov chain. For practical situations with
constraints consistent to those we study here, our results imply
that recognition of such saddle points may be of value in
deriving in real time an optimal control policy.

I. INTRODUCTION

New technologies in mechatronics and actuators have in-
duced significant enhancement in the complexity of modern
engineering systems. Exact modeling of complex systems
is often infeasible or expensive, and thus deriving an op-
timal control policy can be intractable. This challenge has
motivated continuing research on computational learning
methods towards making autonomous intelligent systems
that can learn how to improve their performance over time
while interacting with their environment. The problem is
formulated as decision-making under uncertainly in which
an intelligent system (decision maker), e.g., hybrid-electric
vehicle, robot, automated manufacturing system, etc, is faced
with the task to select those actions in several time steps
(decision epochs) to achieve long-term goals efficiently. In
this paper, we focus on the system’s decision-making process
rather than its learning mechanism.

Decision-making problems have been the object of intense
study for many decades. Blackwell’s [1] influential paper
provided considerable incentive in this area by utilizing
the discounted cost criterion extensively. In this work, the
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vanishing discount approach was developed, i.e., treating the
average cost criterion as the limit of the discounted one.
Derman [2] showed that Blackwell’s optimality can be also
considered in problems employing the average cost criterion.
Blackwell optimal policies, however, do not necessarily exist
when the state space is countable infinite or the action
space is an arbitrary compact metric space. For such models,
Feinberg [3] proved that under certain conditions an optimal
policy may exist.

The average cost criterion for Markov chains with fi-
nite state and arbitrary action spaces has been extensively
reported in the literature (see, e.g., [3], [4], [5], [6] and
references therein). Mathematically, the average cost crite-
rion is prominent as being complex to analyze compared to
others; while other classical criteria lead to rational complete
solutions, the long-run cost does not. Although the average
cost criterion in Markov chains with finite state and action
spaces is well understood [7], [8], [9], [10], [11], [12], there
are numerous counterexamples in which models with infinite
state or action spaces do not have a nice solution. Bather [13]
reviewed various techniques for a controlled Markov chain
with a finite state space when there is a finite set of possible
transition matrices. Feinberg [14] considered four average
reward criteria on discrete time Markov decision model with
a finite state space, and prove the existence of persistently
nearly optimal strategies in various classes of strategies for
models with complete state information.

A significant amount of research on infinite horizon,
discrete-time Markov decision processes (MDPs) has focused
on more general state and action spaces. Hordijk [15] ex-
tended some earlier results to countable state and action
spaces by introducing the Lyapunov function method for
controlled Markov processes. Borkar [16], [17], [18], [19],
[20] presented a convex analytic approach to address this
problem in a general framework with unbounded cost by
treating the control problem as a constrained optimization
problem on a suitably defined closed convex set of ergodic
occupation measures. In this work, the necessary and suf-
ficient conditions for the existence of an optimal stable
stationary deterministic policy were established; moreover,
Borkar provided conditions for optimality in terms of the
dynamic programming when an optimal stable stationary
policy is known to exist. Sennott [21] introduced conditions
that guarantee an optimal control policy in problems with
possibly unbounded, non-negative costs. Zhu, Guo, and Dai
[22] presented another set of conditions under which an
optimal stationary policy exists when both the limit of
the supremum and infimum average criteria are employed.
Cavazos-Cadena [23] considered denumerable state spaces
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and stationary control policies that induce an ergodic chain;
the value iteration scheme was utilized to construct conver-
gent approximations of a solution to the optimality equation
as well as a sequence of stationary policies whose limit
points are optimal. Leizarowitz and Zaslavski [24] recently
addressed the problem of uniqueness and stability of optimal
control policies when a complete set of unicost MDPs is
endowed.

Hermandez-Lerma and Lasserre [25] provided weak as-
sumptions for MDPs on Borel state and action spaces with
possibly unbounded costs. In this paper, it was shown that
the optimality inequality holds everywhere and there exists
a stationary policy which is optimal whenever the initial
state lies in a possibly proper subset of the state space.
Montes-de-Oca and Vega-Amaya [26], [27] considered the
same problem and employed a variant of the vanishing
discount factor that ensures the existence of a solution to the
optimality equation. Guo and Shi [28] presented a new set
of conditions under which the existence of both a solution to
the optimality equations and the limiting average ε-optimal
Markov policies is derived.

In this paper, we address the problem of controlling a
Markov chain with a finite state space and compact action
space so as to minimize the long run, average cost per unit
time. We formulate the problem as a dual constrained opti-
mization problem and we derive conditions that guarantee the
existence of a saddle point solution. Furthermore, we show
that this saddle point is an equilibrium stationary control
policy for each state of the Markov chain. Equilibrium
control policies may be of value in problems required to
extract optimal control policies in real time, e.g., powertrain
systems modeled as a controlled Markov chain, as has been
shown in earlier work [29].

The remainder of the paper proceeds as follows: In Sec-
tion II, we introduce our notation and develop the general
framework of the long-run, average cost problem. In Section
III, we reformulate the problem as minimax constrained
optimization problem and provide conditions that the saddle
point solution exists. In Section IV, we define the equilibrium
control policies and prove that the control policy yielding
the saddle point is an equilibrium control policy for all
states in the Markov chain. A simple example illustrating the
equilibrium control policy in a controlled Markov chain is
demonstrated in Section V. Concluding remarks are presented
in Section VI.

II. PROBLEM FORMULATION
A. Controlled Markov Chain

We consider a controlled Markov chain with a state space
S ⊂ Rn on which a controlled stochastic process evolves,
and a control space U ⊂ Rm from which control action
are chosen. We assume that S and U are bounded and
measurable. The dynamics of the system are described by
a Borel measurable function P : S × S × U → [0, 1]. In
our formulation a state-dependent constraint is incorporated;
that is, for each state i ∈ S , we are given a nonempty set
C(i) ⊂ U of admissible control actions.

Definition 2.1: We define the set of admissible state/action
pairs

Γ: = {(i, u)|i ∈ S and u ∈ C(i)}.
We assume that Γ is the intersection of a closed subset

of Rn × Rm with the set S × U . That is, Γ is closed with
respect to the induced topology on S ×U . It follows that for
any i ∈ S, C(i) is compact.

Definition 2.2: We define the set of Borel
measurable functions as Πi : = {µi : S →
U|µi is Borel measurable and µi ∈ C(i)},∀i ∈ S.

Let Π: = Π∞i , i ∈ S , be the set of all set of all
sequences π = {µ1, µ2, ..., µn}. Each sequence in Π is
called a stationary control policy and operates as follows.
Associated with each state i ∈ S is the Borel measurable
function µi ∈ C(i). If at any time the controller finds the
system in state i, then the controller always chooses the
action µi.

The evolution of the system occurs at each of a sequence
of stages t = 0, 1, ..., and it is portrayed by the sequence
of the random variables Xt and Ut corresponding to the
system’s state and control action. At each stage, the controller
observes the system’s state Xt = i ∈ S , and executes an
action Ut = µi, from the feasible set of actions µi ∈ C(i)
at this state. At the next stage t, the system transits to the
state Xt+1 = j ∈ S imposed by the conditional probability
P (Xt+1 = j|Xt = i, Ut = µi), and a cost k(Xt = i, Ut =
µi) = k(i, µi) is incurred. After the transition to the next
state has occurred, a new action is selected, and the process
is repeated. The completed period of time over which the
system is observed is called the decision-making horizon and
is denoted by T . The horizon can be either finite or infinite;
in this paper, we consider infinite-horizon decision-making
problems.

B. Optimal Control Policy
We are concerned with deriving a stationary optimal

control policy to minimize the long run average cost per
unit time, that is

J(π) = min
π∈Π

lim
T→∞

1

T + 1
E

[
T∑
0

k(Xt, Ut)

]
. (1)

For each policy π ∈ Π we denote P(π) the transition
probability matrix, the elements of which represent the
conditional probability of moving from one state to another
under the policy π, that is, P (Xt+1 = j|Xt = i, Ut = µi).
To guarantee that the limit in Eq. (1) exists, we assume
that for each stationary control policy π = {µ1, µ2, ..., µn},
the Markov chain {Xt|t = 1, 2, ...} has a single ergodic
class. Namely, for each stationary policy π ∈ Π, there
is a unique probability distribution (row vector) β(π) =
[β1(π), β2(π), ..., βi(π), ...βn(π)],∀i ∈ S, such that β(π) =
β(π) ·P(π), with

∑
i∈S βi(π) = 1. A proof of this assertion

may be found in [[30], p. 227]. Under our assumption, it is
known [[31], p.175] that

lim
T→∞

1

T + 1

T∑
t=0

[P(π)]
t

= 1 · β(π), (2)
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where 1 = [1, 1, ..., 1]T is the column vector whose elements
are all unity. Substituting Eq. (2) into Eq. (1) shows that long
run average cost, J(π), does not depend on the initial state
and is given more simply as

J(π) = β(π) · k(π), (3)

where k(π) = [k(1, µ1), k(2, µ2), ..., k(i, µi), ...k(n, µn)]T

is the column vector of the cost function. Consequently, a
stationary control policy is optimal if

J∗ = J(π) = inf {J(π)|π ∈ Π} . (4)

Since we assume P(π) to be continuous, it follows from
Eq. (2) that β(π) is continuous. Since k(π) is also assumed
continuous, so is J(π). Hence, by compactness of U , an
optimal stationary control policy exists. Our objective is to
investigate the policies where the average cost is minimized.

III. CONDITIONS FOR EXISTENCE OF A SADDLE
POINT

A. Dual Problem Formulation

In this section, we formulate the problem of deriving an
optimal control policy with the average cost criterion as
a dual constrained optimization problem and we provide
conditions for existence of a saddle point solution. The
motivation behind this new formulation is the structure of the
average cost as expressed in Eq. (3). In particular, the average
cost depends on two vectors, i.e., the stationary probability
distribution, β(π), and the vector of the cost function, k(π).
The summation of the elements of β(π) equals to one, that
is,
∑
i∈S β(π) = 1, and the Markov chain has a single

ergodic class; since we permit the single ergodic class to
depend on π, different control policies will yield different
probability distributions for each state i ∈ S. The elements of
the vector of the cost function, k(π), on the other hand, even
though depend on the control policy they are constant and
known a priori for each state as designated by the problem.
Consequently, we seek a solution ensuring that the control
policy endows a stationary probability distribution of the
states in the Markov chain that yields higher probability at
the states with low cost, and lower probability at the states
with high cost.

The implication behind the aforementioned observations
is that we can formulate the problem of deriving an optimal
control policy, Eqs. (3) and (4), as a dual constrained
optimization problem. Namely, we try to obtain a control
policy, π, that not only minimizes the cost at each state
but also maximizes the probability of that state. In similar
fashion, we could state that we aim at deriving a control
policy that maximizes the probability of the states incurring
minimum cost.

Thus, we can formulate the problem as the following dual
optimization problem. Consider a function f : K × B → R,
where K and B are nonempty subsets of Rn. We wish to
either mink∈K supβ∈B f(k, β) = mink∈K supβ∈B β · k, or
maxβ∈B infk∈K f(k, β) = maxβ∈B infk∈K β · k

Definition 3.1: A pair of vectors k ∈ K and β ∈ B, where
K,B ⊆ Rn, is called a saddle point of the function f(k, β) =
β · k, if

f(k∗, β) ≤ f(k∗, β∗) ≤ f(k, β∗),∀k ∈ K,∀β ∈ B. (5)

Note that (k∗, β∗) is a saddle point if and only if k∗ ∈
K, β∗ ∈ B, and

sup
β∈B

f(k∗, β) = f(k∗, β∗) = inf
k∈K

f(k, β∗). (6)

B. Conditions of Existence

Employing the framework for duality analysis, we
can derive the conditions guaranteeing that the mini-
max equality holds, namely, supβ∈B infk∈K f(k, β) =
infk∈K supβ∈B f(k, β).

Theorem 3.1 (Classical Saddle Point Theorem): If K and B
are nonempty convex and compact subsets of Rn and Rm,
respectively, and f : K × B → R is a function such that
f(·, β) : K → R is convex and closed for each β ∈ B, and
−f(k, ·) : B → R is convex and closed for each k ∈ K, then
the minimax equality holds and the set of saddle points of
f : K × B → R is nonempty and compact.

Proof: See [[32], Proposition 5.5.3, p.204].
In our dual constrained optimization problem formula-

tion, the properties of the probability distribution are fixed,
i.e., unique probability distribution for each policy and∑
i∈S βi(π) = 1. So the hypotheses of Theorem 3.1 will

aim to establish the desired inherent properties of the vector
of the cost function. The following result inaugurates the
structure of the vector cost that guarantees the existence of
the saddle point in our problem formulation, that is, Eq. (6)
holds.

Proposition 3.1: If f : K×B → R is a function such that
f(·, β) : K → R is convex and closed for each β ∈ B, then
the set of saddle points of f : K × B → R is nonempty.

Proof: In our dual problem formulation of the average
cost, the set B of the stationary probability distribution of
the Markov chain is B = [0, 1]n, and the set K of one-stage
cost function is K ⊂ Rn. Both are convex and compact
subsets of Rn; so this portion of Theorem 3.1 is satisfied.
Furthermore, the function −f(k, ·) : B → R is convex and
closed for each k ∈ K since

∑
i∈S βi(π) = 1. So, if the

function f(·, β) : K → R is convex and closed for each β ∈
B, the conditions of Theorem 3.1 are satisfied, and thus the
set of saddle points of f : K × B → R is nonempty.

IV. EQUILIBRIUM CONTROL POLICY

A. Basic Definitions

In this section we define the equilibrium control policies
and prove that the control policy yielding the saddle point in
Eq. (6) is an equilibrium control policy for all states in the
Markov chain.

Let U be a Borel measurement subset of the Euclidean
space Rm. We use B(U) to denote the space of all continu-
ous, bounded Borel measurable functions on U . We view the
Euclidean space Rm as a normed vector space by endowing
it with the sup-norm ||·||∞. We also use ||·||∞ to denote the

7095



sup-norm on B(U). It is well known that B(U) is a Banach
space with respect to sup-norm [33], [34].

An operator T : B(U)→ B(U) is called monotone opera-
tor if J 6 J ′ implies TJ 6 TJ ′. Furthermore, if there exist
some k ∈ (0, 1) such that ||TJ − TJ ′||∞ 6 k · ||J − J ′||∞
for all J, J ′ ∈ B(U) then T is called a contraction operator
on B(U) with contraction factor k.

Definition 4.1: Let π ∈ Π be a control policy with π =
{µ1, µ2, ..., µi, ..., µn}. We define the continuous function
θ : B(U)→ R by

θ(π, π′) = θ(π) : = max {0, β(π) · k(π)− β(π′) · k(π′)} ,
(7)

where π′ = {µ′1, µ′2, ..., µ′i, ..., µ′n} is any other control
policy in Π; β(π) = [β1(π), β2(π), ..., βi(π), ...βn(π)],
β(π′) = [β1(π′), β2(π′), ..., βi(π

′), ...βn(π′)],∀i ∈ S,
are the stationary probability distributions (row
vectors) endowed by the control policies π and
π′ respectively; and k(π), k(π′) with k(π) =
[k(1, µ1), k(2, µ2), ..., k(i, µi), ...k(n, µn)]T , and k(π′) =
[k(1, µ′1), k(2, µ′2), ..., k(i, µ′i), ...k(n, µ′n)]T ,∀i ∈ S , are
the column vectors of the cost function incurred when the
control policies π and π′ are employed respectively. Recall
that we have assumed that for each control policy π, the
Markov chain has a single ergodic class; that is, we permit
the single ergodic class to depend on π.

Definition 4.2: We define the following continuous func-
tion of π by

λ(π) :=

{
1, if θ(π) = 0.
0, if θ(π) 6= 0.

(8)

Definition 4.3: Let π be a control policy in Π. We define the
continuous operator T : B(U)→ B(U) by

TJ(π, π′) = TJ(π) :=
λ(π) · J(π) + (1− λ(π)) · J(π′)

1 + λ(π) · θ(π)
,

(9)
where π′ is any other control policy in Π.

Lemma 4.1: For any function J : B(U) → R such that
J(π1) 6 J(π2) and for any control policy π1, π2 ∈ Π, we
have

TJ(π1) 6 TJ(π2). (10)

Proof: For the following two control policies π1 =
{µ1, µ2, ..., µi, ..., µn}, and π2 = {µ′1, µ′2, ..., µ′i, ..., µ′n} ,
let J(π1) 6 J(π2). We compute the functions
θ(π1) and θ(π2) using Eq. (7), and also the
functions λ(π1) and λ(π2) using Eq. (8); that is,
θ(π1) = max {0, β(π1) · k(π1)− β(π2) · k(π2)}, and
θ(π2) = max {0, β(π2) · k(π2)− β(π1) · k(π1)} .

Since J(π1) 6 J(π2) we have that θ(π1) = 0, and
θ(π2) 6= 0 yielding λ(π1) = 1 and λ(π2) = 0. Substituting
the above functions into Eq. (9) for each control policy
π1, π2 ∈ Π separately we have:

TJ(π1) =
λ(π1) · J(π1) + (1− λ(π1)) · J(π2)

1 + λ(π1) · θ(π1)
= J(π1).

(11)

Following the same procedure when the operator is applied
to J(π2) we have:

TJ(π2) =
λ(π2) · J(π2) + (1− λ(π2)) · J(π1)

1 + λ(π2) · θ(π2)
= J(π1).

(12)
That is, for any control policy π1, π2 ∈ Π, if J(π1) 6 J(π2)
then TJ(π1) 6 TJ(π2).

Lemma 4.2: For any function J : B(U)→ R, a stationary
policy π ∈ Π, and a scalar c ∈ R we have

T (J(π) + c) 6 TJ(π) +
c

1 + λ(π) · θ(π)
. (13)

Proof: We apply the operator defined in Eq. (9) to
J(π) + c. So, ∀π′ ∈ Π we have

T (J(π) + c) =
λ(π) · (J(π) + c) + (1− λ(π)) · J(π′)

1 + λ(π) · θ(π)

= TJ(π) +
c

1 + λ(π) · θ(π)
. (14)

Proposition 4.1: For any two bounded functions
J : B(U)→ R there holds

||TJ(π)− TJ(π′)||∞ 6 k · ||J(π)− J(π′)||∞ , k ∈ (0, 1).
(15)

Proof: Denote c = ||J(π)− J(π′)||∞ ,∀π ∈ Π. Then
we have J(π) − c 6 J(π′) 6 J(π) + c,∀π ∈ Π. Applying
the operator T : B(U) → B(U) using Lemma 4.1 and then
Lemma 4.2, we obtain

T (J(π)− c) 6 TJ(π′) 6 T (J(π) + c), (16)

Since c = ||J(π)− J(π′)||∞ < 1 + θ(π), it follows that
||TJ(π)− TJ(π′)||∞ 6 k · ||J(π)− J(π′)||∞, where 0 6
k = c

1+θ(π) < 1.

B. Equilibrium Control Policy

Definition 4.4 : A control policy π =
{µ1, µ2, ..., µi, ..., µN} is an equilibrium control policy
if and only if the policy yields the saddle point of the
product of the stationary probability distribution β(π) and
cost function k(π), that is

β∗(π) · k∗(π) = β(π) · k(π) 6 β(π′) · k(π′), (17)

where π′ = {µ′1, µ′2, ..., µ′i, ..., µ′n} is any other control
policy in Π.

Thus an equilibrium control policy yields those probability
distribution and cost function vectors that minimize the
average cost of the controlled Markov chain.

Theorem 4.1: The control policy π =
{µ1, µ2, ..., µi, ..., µN} that yields the saddle point at
each state of the Markov chain is an equilibrium control
policy.

Proof: If the control policy is fixed under the operator
T , then θ(π) = 0, and so λ(π) = 1, since

β∗(π) · k∗(π) 6 β(π′) · k(π′). (18)

7096



This means there is no control policy that can do any better.
Conversely, if π = {µ1, µ2, ..., µi, ..., µN} is an equilibrium
policy, it is immediate that θ(π) = 0, and so λ(π) = 1,
making the control policy π ∈ Π a fixed point of the operator
T : B(U) → B(U). Since B(U) is a Banach space, the
operator T : B(U) → B(U) is a contraction operator on
B(U). According to Banach fixed-point theorem the operator
T : B(U)→ B(U) has unique fixed point, which must be the
equilibrium point.

V. ILLUSTRATIVE EXAMPLE

A. Problem Formulation

We consider a controlled Markov chain with a state space
S consisting of two states numbered 1 and 2,S = {1, 2},
and a control space consisting of two control actions -
also numbered 1 and 2 - for each state, namely, C(1) =
C(2) = U = {1, 2}. The transition probability matrices
associated with the control actions 1 and 2 respectively are:

P1 =

[
0.7 0.3
0.4 0.6

]
, and P2 =

[
0.9 0.1
0.2 0.8

]
. The transition

cost matrices associated with the control actions 1 and 2

respectively are: R1 =

[
6 5
7 12

]
, and R2 =

[
10 17
14 13

]
.

In this problem there are 4 possible control policies that
can be employed to control the Markov chain, namely,
π1 = {1, 1}, π2 = {1, 2}, π3 = {2, 1} and π4 = {2, 2} .
We seek to derive the optimal control policy that minimizes
the average cost per unit time. The transition probability and

cost matrices for each control policy are: Pπ1 =

[
0.7 0.3
0.4 0.6

]
,

Pπ2
=

[
0.7 0.3
0.2 0.8

]
, Pπ3

=

[
0.9 0.1
0.4 0.6

]
, Pπ4

=

[
0.9 0.1
0.2 0.8

]
,

Rπ1
=

[
6 5
7 12

]
, Rπ2

=

[
6 5
14 13

]
, Rπ3

=

[
10 17
7 12

]
, and

Rπ4 =

[
10 17
14 13

]
.

B. Average Cost

The stationary probability distributions endowed by the
control policies π1, π2, π3 and π4 can be computed by Eq.
(2) employing the transition probability matrices correspond-
ing to each policy; namely, β(π1) = [0.57, 0.43], β(π2) =
[0.40, 0.60], and β(π3) = [0.80, 0.20], β(π4) = [0.67, 0.33].

The column vectors, k(π), of the cost function for each
control policy is computed as follows:

k(π1) = [k(1, 1), k(2, 1)]T

= [Pπ1(1, 1) · Rπ1(1, 1) + Pπ1(1, 2) · Rπ1(1, 2),

Pπ1
(2, 1) · Rπ1

(2, 1) + Pπ1
(2, 2) · Rπ1

(2, 2)]T

= [5.7, 10]T .

(19)

The cost functions for the control policies
π2, π3, and π4 are computed in a similar fashion
yielding: k(π2) = [k(1, 1), k(2, 2)]T = [5.7, 13.2]T ,
k(π3) = [k(1, 2), k(2, 1)]T = [10.7, 10]T , and
k(π4) = [k(1, 2), k(2, 2)]T = [10.7, 13.2]T .

The average cost per unit time as imposed by
each control policy is computed by Eq. (3) and are

equal to: J(π1) = β(π1) · k(π1) = 7.55, J(π2) =
β(π2) · k(π2) = 10.20, J(π3) = β(π3) · k(π3) = 10.56,
and J(π4) = β(π4) · k(π4) = 11.53. The optimal
control policy can be derived by Eq. (4); namely, J∗ =
inf {J(π1), J(π2), J(π3), J(π4)|π1, π2, π3, π4 ∈ Π} =
J(π1). That is, the control policy π1 is the optimal control
policy.

C. Equilibrium Control Policy

To demonstrate the equilibrium control policy in this
problem we compute both supβ∈B infk∈K β(π) · k(π) and
infk∈K supβ∈B β(π) · k(π) among the control policies
π1, π2, π3, and π4 for each state. The infimum over the
product of the stationary probability distribution β(π) and
cost function k(π) is

inf
k∈K

β(π) · k(π) = inf
k∈K


β(π1) · k(π1)
β(π2) · k(π2)
β(π3) · k(π3)
β(π4) · k(π4)



=


[0.57, 0.43]
[0.40, 0.60]
[0.80, 0.20]
[0.67, 0.33]

 · inf
k∈K


[5.7, 10]T

[5.7, 13.2]T

[10.7, 10]T

[10.7, 13.2]T



=


[0.57, 0.43]
[0.40, 0.60]
[0.80, 0.20]
[0.67, 0.33]

 · [5.7, 10]T .

(20)

Taking the supremum over the Eq. (20), we have

sup
β∈B

inf
k∈K

β(π) · k(π) = sup
β∈B


[0.57, 0.43]
[0.40, 0.60]
[0.80, 0.20]
[0.67, 0.33]

 · [5.7, 10]T

= [0.57, 0.43] · [5.7, 10]T = 7.55.
(21)

since the supremum of the probability distribution is the one
which is closest to 0.5 in this simple case with two states.

To compute infk∈K supβ∈B β(π) · k(π) we first compute
the supremum of the product of the stationary probability
distribution β(π) and cost function k(π) is

sup
β∈B

β(π) · k(π) = sup
β∈B


β(π1) · k(π1)
β(π2) · k(π2)
β(π3) · k(π3)
β(π4) · k(π4)



= sup
β∈B


[0.57, 0.43]
[0.40, 0.60]
[0.80, 0.20]
[0.67, 0.33]

 ·


[5.7, 10]T

[5.7, 13.2]T

[10.7, 10]T

[10.7, 13.2]T



= [0.57, 0.43] ·


[5.7, 10]T

[5.7, 13.2]T

[10.7, 10]T

[10.7, 13.2]T

 .

(22)
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Taking the infimum over the Eq. (22), we have

inf
k∈K

sup
β∈B

β(π) · k(π) = [0.57, 0.43] · inf
k∈K


[5.7, 10]T

[5.7, 13.2]T

[10.7, 10]T

[10.7, 13.2]T


= [0.57, 0.43] · [5.7, 10]T = 7.55.

(23)

In this problem, the hypotheses of Proposition 3.1 hold,
and thus, the saddle point exists. By applying the equilibrium
control policy we achieve the optimal average cost per unit
time.

VI. CONCLUDING REMARKS

The results presented here address the problem of min-
imizing the average cost per unit time for a controlled
Markov chain. The problem is essentially formulated as a
dual constrained optimization problem on nonempty convex
and compact subsets of Rn. Conceptually, we seek a solution
ensuring that the control policy endows a stationary probabil-
ity distribution yielding higher probability at the states with
low cost and lower probability at the states with high cost.
The control policy that yields the saddle point solution of
this optimization problem is an equilibrium control policy.
Recognition of such saddle points may be of value in prac-
tical situations with constraints consistent to those studied
here when deriving an optimal control policy in real time is
required. Solving the original stochastic control problem is
computational expensive and real-time implementation may
be prohibitive; alternatively, we can design a controller with
the aim to achieve higher probability for the states with low
cost and lower probability for the states with high cost.
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