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Finite-Time Average Consensus based Protocol for Distributed
Estimation over AWGN Channels

Alain Y. Kibangou

Abstract— This paper studies the problem of distributed
estimation of a static parameter with sensors communicating
through an additive white Gaussian noise (AWGN) channel. In
the noiseless case, we first introduce the concept of finite-time
average consensus, in which nodes can compute exactly the
average in a finite number of steps for an arbitrary graph,
provided the topology is time-invariant. In fact, finite-time
consensus is achieved owing to joint diagonalizable matrices. By
considering a linear iterations scheme, we derive closed form
expressions for such matrices. Then, based on an ensemble
averaging method we show how average consensus can be
asymptotically reached over AWGN channels. Performance
analysis of the suggested protocol is given along with com-
parisons with other methods in the literature.

I. INTRODUCTION

The problem of unknown parameter estimation using a
sensor network that consists of a given number of distributed
nodes over an area have attracted a considerable attention
in the last decade. In a centralized fusion scheme, each
sensor sends its measurement to a fusion center. Then, the
fusion center extracts the minimum variance estimate of the
parameter from aggregate measurements of the sensors. Such
a scheme suffers from communication overheads and is vul-
nerable to fusion center failure. Several approaches suggested
in the literature consider distributed fusion schemes, where,
from its own measurements and those of its neighbors,
each node computes a local estimation, which iteratively
converges to the intended result. It is well known that, the
noise variance is the same for the sensor nodes, the best
linear unbiased minimum variance estimator is reduced to an
averaging over the measured values of the sensors. Therefore,
in such a case, distributed estimation can be solved as an
average consensus problem (see [1] and references therein).

In a consensus problem, a group of agents or network
nodes try to reach agreement on a given quantity of interest
that depends on their states [2]. Algorithms that enable
such consensus reaching belong typically to two classes:
Distributed averaging based algorithms and probabilistic
counting approaches, such as randomized gossip schemes
[3].

Average consensus can be reached using a linear iterations
scheme where each node repeatedly updates its value as a
weighted linear combination of its own value and those of
its neighbors. The main benefit of using a linear iterations
scheme is that, at each time-step, each node only has to
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transmit a single value to each of its neighbors. Based on
such a scheme, several algorithms have been proposed in
the literature. However, in the majority of the proposed
algorithms the weights are chosen so that all the nodes
asymptotically converge to the same value.

Consensus can be embedded as a step of more sophis-
ticated distributed algorithm as it is the case for the Dis-
tributed Kalman filter [4] and the Distributed Alternating
Least Squares algorithm [5]. Asymptotic convergence are
not suitable for these kinds of distributed methods. Even
though, speed convergence of consensus algorithm have been
explored [6], [7] in order to derive fast consensus algorithms,
running standard consensus in finite-time constitute a source
of errors not easily quantifiable. Sometimes, bounds can be
derived. Therefore, it is interesting to address the question
of exact consensus in finite-time.

A number of authors have studied finite-time consensus
in the framework of continuous-time systems [8], [9]. In
general, the results therein cannot be directly translated to
discrete-time systems.

In the discrete-time framework, in [10], finite-time average
consensus was briefly discussed. However, the described
method requires the graph to be fully connected for at least
one time-step. A data aggregation based algorithm was pro-
posed in [3]. Such an approach requires additional memory
compared to linear iterations strategies. Another approach
requiring less memory, but linear iterations, is derived in
[11] by calculating weights so that the observability matrix
of the network is contained in some defined space. The
basic idea is that given enough time, the nodes will have
observed enough to reconstruct the initial state of the system.
At which time, they can compute the correct average. In
[12], the same authors have shown that each node can
calculate the consensus value as a linear combination of
its own past values over at most D time-steps, D being the
degree of the minimal polynomial of the associated weight
matrix. In [13], based on properties of de Bruijn’s graph
and block Kronecker product, it has been shown that the
average consensus problem can be reached in finite time if
the number of nodes is an exact power of the maximum
in-degree of the graph. Another interesting contribution is
that in [14] where finite-time average consensus problem
is formulated as a matrix factorization problem. However,
the proposed approach is fully centralized and requires
scheduling of nodes connection.

In this paper, for time-invariant topologies and in the
perfect information exchange case, i.e. without channel noise
nor quantization, we show that the finite-time average con-
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sensus problem can be solved as a matrix factorization prob-
lem with joint diagonalizable matrices. Then, by periodically
restarting the consensus algorithm, we show that, in the noisy
case, average consensus can be achieved asymptotically. The
remainder of the paper is organized as follows: in section II,
the estimation problem using average consensus is posed.
Then, in section III, we derive closed-form expressions and
conditions for reaching average consensus in finite-time for
ideal data exchange. In section IV, finite-time average con-
sensus is periodically used for reaching asymptotic consensus
for noisy data exchange. Before concluding the papers, some
simulation results are presented in section V.

II. PROBLEM SETTING

Let us consider a network of N distributed nodes. Each
sensor has a measurement m(x,) of a non-random parameter
0:

m(x,) =0+v,, n=12,--- N

where v,,’s are assumed to be zero mean noise. The Max-
imum Likelihood (ML) is simply the average of the local
N

measurements, i.e. 6 = % Y m(x,). The goal is to compute

this averaged value distribril_tively through the network.

Let us assume that the communication links in the network
are modeled via an undirected graph ¢ = (2,&), where
X ={x1, -+ ,xn} is the set of nodes and & C 2" x Z is
the set of edges. We denote by .4; the set of nodes that can
transmit information to node x;. Its cardinality is denoted N;.
The elements of the adjacency matrix A are defined as a;; =1
if there is an edge between nodes i and j, otherwise they are
zero. Since the graph is undirected, the adjacency matrix
is symmetric (A = AT). The degree matrix D is a diagonal
matrix such that its entry d;; is equal to N;. The Laplacian
matrix is then defined as L =D — A. It is also symmetric
for undirected graphs. Its eigenvalues, ;] <Ay <--- < Ay,
contain very significant information about the topology of
the graph ¢. In particular, we have A; = 0 with 1, an all
ones vector, as eigenvector.

Let us aggregate the values of all nodes at time-ste7p k into
the vector x(k), with x(0) = ( m(x;) m(x,) )" . In the
linear iterations framework, each node updates its value as a
linear combination of its own value and that of its neighbors:

x(k+ 1) = Wx(k) (1)

where the off-diagonal entries w; ; of W are nonzero if and
only if x; € 4. The average consensus is reached if

lim x(k) = %IITX(O),

k—o0
meaning that
1
lim W= —117.
k—so0 N
It is now well known that consensus is achieved if and only
if W admits 1 as a simple eigenvalue while the remaining
eigenvalues have magnitude strictly less than 1, the left and
right eigenvectors of W associated with the eigenvalue 1

being %1 and 1 [6]. With these conditions asymptotic con-
vergence is guaranteed. That is the case for the Perron matrix
W =1—19L, with 0 <y < 1/Npax, Nyax = max {Ny,--- ,Ny}.

In the following section, for a static network topology,
we investigate the way for achieving average consensus in a
finite number of steps.

III. CONVERGENCE IN A FINITE NUMBER OF TIME-STEPS
USING JOINT DIAGONALIZABLE MATRICES

Our goal is to find a set of matrices {W;},_, ... ;,, consis-
tent with the network topology!, so that

D 1 r
W, =-—11 2
[wi-y @

Finding this set of matrices is equivalent to solve a multi-
variate polynomial system of equations. In general, studying
the existence of solutions to such a system of equations can
be untractable. However, assume that the matrices W; are
jointly diagonalizable. Let U be the orthogonal matrix that
diagonalizes the matrices W;. We get:

W;=UE U, U'u=1Iy

E; being a diagonal matrix. We can therefore rewrite (2) as:

U <IQIE> U= L’ 3)
’ N
i=1

If U can be written as U= ( ﬁl U ) with UTU =1Iy_,
and UT1 = 0 then (3) can be rewritten as:

D
U (HE,-) U” = Udiag(1 0---0)UT, 4)
i=1

This condition implies that 1 should be an eigenvector of
W,. Therefore, our aim in the sequel is to define a set of
topology consistent matrices W; jointly diagonalizable, with
1 as eigenvector, so that solutions of equation (4) be tractable.
For this purpose, we define the matrix A = N,,,, ] — L whose
properties are:

1) A is symmetric;

2) TIts eigenvalues & are such that & = Nyqx — A;, where
A; are the eigenvalues of the Laplacian matrix L. In
particular N, is a simple eigenvalue.

3) The eigenvectors of the Laplacian matrix are also
eigenvectors of A. In particular 1 is the eigenvector
associated with the eigenvalue N,y.

We can now state the following lemma:

Lemma 1: The matrices W; = a;1+ BA are jointly diago-
nalizable, consistent with the network topology, and admits
1 as eigenvector.

Proof: The eigenvalue decomposition of A yields
A = UAU7, with A = diag(ey,---,ey) and U containing

'A matrix is said to be consistent with the network topology if its off-
diagonal (i, j)th entry equals to zero for j ¢ A
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the eigenvectors of the Laplacian matrix. Therefore, since
W, = i1+ BUAUT, we get

U'wWU = al+BA

= diag(o;+Per,--- 0+ Pey).  (5)

Note that the consistency with the network topology comes
directly from the dependence with the Laplacian matrix. M
Since U contains the eigenvectors of the Laplacian matrix,
the set of matrices W; is completely determined by solving

D D
HE = diag H((X[+ﬁ81>7"' 7H(ai+ﬁ£N))
i=1 i=1
= diag(l 0---0). (6)
or equivalently:
D
H(az+ﬁ£1)
lzl (7)
H(az+ﬁ€k): k=2,---,N

=1

A solution to this problem is stated in the following theorem:

Theorem 1: Given a connected undirected graph associ-
ated with the Laplacian matrix L, the set of matrices Wy =
(0 + NpaxB)I— BL, k=1,---,D, B # 0, allows reaching
the average consensus in D steps if:

1) D+ 1 is the number of distinct eigenvalues of the

Laplacian matrix;
2) the parameters B and o are given by

1

B = oo — ()
Akr1—N,
o = g k=1--D 9
I VA
i=2
Ai, i=2,---,D+1 being the nonzero distinct eigen-
values of L.

Proof: The system of equations (7) to be solved can
be rewritten as follows:

D
H(ak+Nmaxﬁ) = 1 (10)
k=1
D
[T(ow+NparB—BA) = 0, i=2,---,N (11)
k=1

One can note that the second equation can be redundant
for non simple eigenvalues A;. Let D+ 1 be the number
of the distinct eigenvalues. Therefore, we get D distinct

equations H (0 + NypaxB — BA)) =0, i=2,--- D+ 1. A
solution parameterlzed by B is given by:
& = B(M+1— Nyax),

Replacing these expressions in (10), we get:

k=1,---.D

D
BP T Aesr =1
k=1

Hence the solutions given above. [ ]
We can note that the structure of the weighting matrix is sim-
ilar to that of the Perron matrix commonly used in standard
average consensus problems. However, the main difference,
in the proposed scheme, is that each node modifies the weight
allocated to its own value while the weights of the values
coming from the neighbors remain constant.

Example 1: Let us consider the network characterized by
the following Adjacency and Laplacian matrices:

01 0 01 1
1 01 1 11
01 01 10
A= 011 010
I 11 1 0 1
1 1.0 010

We have N, =5 and the nonzero distinct eigenvalues of
L are 2, 4 and 6. Therefore, D =3 and § = 0.2752, o) =
—0.8255, op = —0.2752, and o3 = 0.2752.

A. Case of a ring topology

The Laplacian matrix associated with a ring topology is a
circulant matrix given by:

N—1 2 lf n=20
L= chJn7 Cn = -1 if n=1,N—-1
n=0 0 otherwise
where
01 0 0
0 0 1 0
J =

1 00 0

Its eigenvalues A;, i=1,--- N, can be computed as:

A= Z cpe (l—cos (2”(;\]_1)» (12)

One can check that L has 1+ |[N/2] distinct eigenval-
ues,where |x| denotes the integer part of x. Therefore,
applying Theorem 1, average consensus is reached in D =
[N/2] steps, with the set of matrices W; parameterized by:

1

B= - D (13)
2 (H (1—cos 21(,“))
i=1
and
—Coszﬁk
o = k=1,--,D  (14)

/D’
(]:I (1 —cos 2;&))

Example 2: For a ring with 9 nodes. We get D =4, =
0.5774, a; = —0.8846, op = —0.2005, oz = 0.5774, and
oy = 1.0851.
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B. Case of cubic lattice graphs

A cubic lattice graph is defined to be a graph ¢, whose
vertices are the ordered triplets on n symbols, such that
two vertices are adjacent if and only if they have two
coordinates in common [15]. The network has 7> nodes and
each node has 3(n— 1) connections. The adjacency matrix
has 4 distinct eigenvalues: —3, n—3, 2n—3, and 3(n—1).
As a consequence, the Laplacian matrix has 0,n,2n, and
3n as distinct eigenvalues. Applying Theorem 1, average
consensus is reached in 3 steps, with the set of matrices
W, parameterized by:

15)

and

3 _ —n+3 _ —2n+3
e T e T e

Example 3: As stated before, for a cubic lattice graph
with 27 nodes, exact average consensus is computed in 3
steps. By computing the spectral radius p of W — %IIT,
with W the weights matrix in standard consensus schemes.
p* is the spectral radius of WX — %IIT and informs us about
the disagreement between W¥ and %IIT [16].

o] = (16)

) pD pIOD pZOD
Best Perron matrix | 0.5 | 0.125 | 9.3x10° 10 [ 87x 107
Local degree 0.571 | 0.187 | 51x107% | 2.6x 1071

The best Perron matrix [6] is given by I — ﬁL. In this
case, it is equivalent to the maximum-degree policy. We can
note than more than 10D steps are needed for being close
to the exact average value, D being the number of steps for
finite-time average consensus.

IV. ASYMPTOTIC CONSENSUS WITH NOISY DATA
EXCHANGE

The results derived in the previous section allow reaching
an average consensus in a finite number of steps when perfect
data exchange is considered. Now, we will study the case of
noisy data exchange:

x(k+1)=Wx(k)+v(k+1),

where v denotes the additive noise.

In such a case, standard average consensus algorithms are
known to suffer from a linear increase of noise variance with
time [16]. What happens is that deviation between the values
achieved by the sensors maintains a bounded variance, but
the average value follows a random walk [17]. In order to
limit or circumvent this undesired effect, alternative methods
for designing the weights of average consensus algorithms
have been proposed in the literature. For example, in [16],
it was shown how to derive the weighting matrix in order to
minimize the deviation between the nodes values. Starting
from a Perron matrix, decreasing step-size methods have
been proposed in the literature (see [18], [19] and references
therein). A first order difference equation approach, which
is resilient to noise, has been also proposed in [20]. In

this section, we suggest a new protocol based on finite-time
average consensus matrices.
The suggested protocol is as follows:

x(k+(n—1)D) = (1—81)Wix(k—1+(n—1)D)

+6,1 Wix(0) (17)
yk+(n—-1)D) = (1- (S]CTD)y(k— 1+(n—1)D)
+6]{7Dx(k—1+(nf D) (18)

where k=1,---,D, n=1,--- 00, §;; denotes the Kronecker
delta, i.e. §;; =1 if i = j and &; = O elsewhere. In this
protocol, each node keeps in memory its initial value and
re-send it periodically to its neighbors. With a period equals
to D, in the noiseless case, one can note that

x(nD) = H Wix(0) =x = %11&(0)
i=D

Periodically the local values are all equal to the exact
averaged value. When the data exchange is noisy, we get
x(nD) = X+ ¥(nD) where ¥(nD) accounts for the noise
effect. The idea represented by equation (18) is to average
these noisy estimates of X. Therefore each node keeps in
memory a value y, initialized with zero, and updates it at
each period D. The price to be paid with such a scheme
concerns the additional memory requirement for the initial
value and for the consensus value y. With this scheme the
consensus is reached on y and not on x.

For noisy data exchange, equation (17) can be rewritten
as:

x(k+(n—1)D) = (1—681)Wix(k—1+(n—1)D)
+06,1 Wix(0) + v(k+ (n—1)D),

k=1,---D, n>1 (19)

Theorem 2: Considering the consensus protocol (17)-(18),
suppose that the noise sequence {v(k—+(n—1)D)} is in-
dependent with zero mean and covariance 62Iy. Then the
sequence y(k -+ (n— 1)D) asymptotically converges to the
average value X of the initial state.

Proof: 'We have to prove that }Egoy(k+ (n—1)D) =

X. Since by construction, y(k + (n — 1)D) is stepwise

constant, it suffices to prove the above condition for a

given value of k, k = D for instance. We can show that

y(nD) =1 )n: x(mD), meaning that, at each node y;(nD) =
m=1

n
% Y x;(mD) acts as an unbiased estimator of a constant
m=
parameter observed in a zero mean noise. Therefore E =

lim y(nD) = X. Now, let us compute the mean square error
n—oo

E|(y(k+(n—1)D)—%) (y(k+ (n—1)D) _x)] . From (19),
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we get:

1 D—1i+1
x(nD) = []W;x(0)+ Z W,v(i+ (n—1)D) +v(nD)
j=D i=1 j=D
D=1 it1
= X+ W;v(i+ (n—1)D)+v(nD).
i=1 j=D
Defining z(nD) = y(nD) — X yields:
1 n D—1i+1 1 n
fZ Wv(i+ (n—1)D)+ = Y v(mD)
=1 i=1 j=D =1
We have then to compute E[z'(nD)z(nD)] =
trace(E [z(nD)z" (nD))). Owing to the independence

property, the matrix E [z(n D)| can be written as:

T 0-2 n D—1i+1 (72
E[z(nD)z" (nD)] = =Y, Z [Tw +—1Iy
" m=1i=1 j=D  j=itl n
c? c?
== 7Q+7IN
n n
D—1 i+1
where Q= Y H W; H WT As a consequence, we get:
i=1 j=D Jj=i+l1
T o’
E [z (nD)z(nD)] = — (trace(Q) +N) (20)
n
that yields lim E [z (nD)z(nD)] = 0. ]
Nn—o0

It is important to notice that the proposed approach differs
from the Monte-Carlo approach in [19]. Herein, each D time
steps we get a noisy observation of the actual average value.
Then y reaches a strong consensus instead of a mean square
consensus.

In figures 1 and 2, we have plotted the theoretical
mean square error (20) normalized by the noise power,
ie. ET(y(k—k (n—1)D) — X)T (y(k+(n—1)D)—%)| /No?
respectively for a cubic lattice graph and for a ring. In
both case, as expected, we get a decreasing error with
approximately the same rate for any number of nodes N.
We can note that one interesting property of the cubic lattice
graph is to be more scalable than the ring topology. Indeed,
the number of steps D is the same for any N and the mean
square error does not significantly change.

V. SIMULATION RESULTS

We consider the estimation of a parameter 0 = 3
through a network of N sensors. Each observation is cor-
rupted by a white Gaussian noise with variance 1072, The
nodes communicate through an AWGN with variance 1074,
The performance are evaluated by means of the Normal-
ized Mean Square Error (NMSE) defined as NMSE;, =
Ix(k) — % %||%, % being the average of the initial values
of the nodes. The results below are averaged values over 100
independent runs.

Figures 3 and 4 depict the NMSE respectively for a ring
Topology with 10 nodes and a cubic lattice graph with 27
nodes. We have compared the proposed scheme with two
decreasing step-size ones and with a first order difference

T
—N=4
—N=8
o | —N=16 ||
N=32

— N=64

N=128
N=256 |3

0 05 1 1.5 2 25 3

n x 10"
Fig. 1. Theoretical mean square error normalized by the noise variance
(case of a cubic lattice graph).

N=3
N=12
N=15
10" N=18

Normalized error

0 0.5 1 15 2 25 3
n x 10*

Fig. 2. Theoretical mean square error normalized by the noise variance

(case of a ring).

based algorithm. Recall that decreasing step-size policies
consist in varying the weighting matrix as follows W(k) =
I—¢(k)L, with &(k) = 5 for Decreasing step-size 1 and

g(k) = m for the second one. We set a = 0.4, b = 0.6,

and pu = 0.9. The first order difference scheme is such that
dk+1) = x(0)+X—yL)P(k)
x(k) = ®k)—DPk—-1)

Its noise resilience comes from the difference operation
which counteracts the effect of the eigenvalue 1 of the weight
matrix. We set Y= 1/2N,4y.

From Figures 3 and 4 we can note that the proposed
method outperforms the three others in terms of precision.
Its convergence speed can be dramatically lower than that
obtained with the first order difference scheme. In figure 5
where the nodes trajectory are depicted, we can see that after
the D first iterations the local values are very close to the
actual average value.

VI. CONCLUSION

In this paper, we have derived closed form expressions
for designing weight matrices in order to reach the average
consensus in a finite number of steps given by the number of
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NMSE

1 1
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Number of iterations

1
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Fig. 3. Evaluation of the NMSE for a ring topology with 10 nodes.
10’ ‘
Proposed method
+ Decreasing step—size 1
= First-order
1072+ = = Decreasing step—size 2 ||
107 1
m
N YO
z \
10° N d
T e e —
10° :
l()’w L L
0 500 1000 1500

Number of iterations

Fig. 4. Evaluation of the NMSE for a cubic lattice graph with 27 nodes.

distinct nonzero eigenvalues of the graph Laplacian matrix.
The proposed finite set of weight matrices is completely char-
acterized by the nonzero eigenvalues of the graph Laplacian
matrix. By periodically restarting the finite-time consensus
protocol, we have derived a new scheme for achieving
asymptotic consensus in a noisy network. We have shown
that strong consensus is achieved in a mean square sense.
Our approach necessitates a time-invariant topology and a
network configuration step for node counting and Laplacian
matrix evaluation. For asymptotic convergence in the noisy
configuration, our approach is very promising but the speed
convergence should be improved. In addition, robustness of
the proposed procedure with respect to perturbations arising
from link failures and the way of computing the weighting
matrices in a fully distributed scheme are to be investigated.
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