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Abstract— This paper considers H∞ filtering for rectangular
descriptor systems with unknown inputs that affect both the
system and the output. An optimal H∞ filter is developed
based on the maximum likelihood descriptor Kalman filtering
(DKF) method. The developed H∞ filter serves as a unified
solution to solve H∞ and Kalman filtering for descriptor
systems and standard systems with or without unknown inputs,
which, however, may also suffer from computational complexity
problem. Three computationally efficient alternatives to the
developed H∞ filter are further proposed based on a novel ma-
trix transformation and the recently proposed gain-covariance
matrix (GCM) concept to remedy the computational problem.
Simulation results are given to illustrate the usefulness of the
proposed results.

I. INTRODUCTION

Unknown input filtering (UIF) serves as a useful technique

to solve many practical state estimation problems that often

arise in systems subject to disturbances, modeling errors,

system uncertainties, and reduced-order filtering (see [1] and

the references therein). As a most general case, there is

no prior information about the unknown input. A general

approach to solve for the state estimation of systems with

unknown inputs that have arbitrary statistics is to apply

unknown input decoupled state estimation, which yields

unbiased minimum-variance filters (UMVFs). Recently, the

global optimality of the UMVF has been established [2].

Apart from the UMVF, optimal state estimation for de-

scriptor systems also serves as a useful method to solve the

UIF problem [3]-[4]. It is shown that standard systems with

unknown inputs can be treated as descriptor systems through

the definition of an extended state that contains the unknown

input. However, these results only apply to unknown inputs

that enter into the system dynamics. Maximum likelihood

(ML) estimation and least-squares data fitting (see, e.g., [5]-

[7]) also serve as useful means to estimate the optimal system

state for standard systems with unknown inputs. Among

these, a generalized Kalman filter, the “3-block” form of

a descriptor Kalman filter (DKF), has been proposed to

optimally estimate the system state for descriptor systems

[5]. The connection between the DKF and the standard

Kalman filter can be found in [8]. However, it is noticed that

the DKF cannot be directly applied to solve the addressed

UIF problem (see [9] for details). Recently, to remedy the
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problem, a 5-block extended DKF (EDKF) was proposed

in [9] to optimally estimate the system state for standard

systems with unknown inputs. It is shown that the 5-block

EDKF is equivalent to the recently developed globally opti-

mal state estimator in [1].

Descriptor systems serve as natural descriptions of systems

that involve both dynamics and constraints among variables

and are a natural starting point to describe noncausal phe-

nomena [10]-[11]. More importantly, the descriptor formu-

lation can treat the standard state-space system as a special

case. More recently, we have extended the 5-block EDKF

to optimally estimate the system state for descriptor systems

with unknown inputs [12]. Specifically, through the proposed

gain-covariance matrix (GCM), two compact versions of

the 5-block EDKF, named as the least-squares data-fitting

filter (LSDFF) and the descriptor recursive three-step filter

(DRTSF), are further proposed. It is shown that the LSDFF

and the DRTSF serve as extensions of the works done by

Ishihara et al. [7] and Hsieh [1], respectively.

Recently, some attention has been focused on H∞ filtering

for descriptor systems (see, e.g., [13]-[14] and the references

therein). It is noticed that the results developed in [13]

and [14] are derived based on data fitting arguments com-

bined with two-players game theory and unbiased filtering

technique, respectively. Nevertheless, all these results are

not directly applicable for descriptor systems with unknown

inputs that affect both the system state and the output.

In this paper, we continue the previous works done by

Hsieh in [9] and [12] and further consider H∞ filtering

for descriptor systems with unknown inputs that affect both

the system and the output. It is shown that the recursive

ML estimation method developed in [5] serves as a unified

filtering framework to yield H∞ and Kalman filtering for

descriptor systems and standard systems with or without

unknown inputs. In the sequel, an H∞ version of the 5-

block EDKF is developed, which, however, may suffer from

computational complexity problem. To remedy this problem,

three computationally efficient alternatives are further pro-

posed based on a novel matrix transformation and the GCM.

II. PROBLEM FORMULATION

Consider a general class of descriptor systems with un-

known inputs as follows:

Ek+1xk+1 = Akxk + Gkdk + wk, (1)

yk = Ckxk + Hkdk + vk, (2)

zk = Lkxk + uk, (3)
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where xk ∈ Rn is the descriptor vector, dk ∈ Rq is the

unknown input, yk ∈ Rp is the measured output, and zk ∈
Rr is the signal to be estimated. Here, the row numbers

of matrices Ek+1 and Ak are equivalent (= m) and may

not equal n. wk, vk, and uk are uncorrelated white noises

sequences of zero-mean and with covariance matrices Qk >

0, Rk > 0, and Sk > 0, respectively. The initial state x0

is with unbiased mean x̆0 and covariance matrix P̆0 and is

independent of wk, vk, and uk.

The problem of interest in this paper is to consider the

optimal recursive estimation of zk, i.e., finding ẑk, for the

descriptor system (1)-(3) with the ML filtering method such

that the following min-max optimization problem is achieved

for all k:

min
x̂k,d̂k

max
ẑk

Jk

(

yk, ẑk, x̂k, d̂k

)

> 0, (4)

where

Jk = ||Ekx̂k − Ak−1x̂k−1|k − Gk−1d̂k−1|k||
2
Q

−1

k−1

+||yk − Ckx̂k − Hkd̂k||
2
R

−1

k

−γ−2||ẑk − Lkx̂k||
2
S

−1

k

, (5)

where γ > 0 is the H∞ tuning parameter. Here, the notation

x̂k represents the filtered estimate x̂k|k, and ||x||2W is used

to represent xT Wx.

For descriptor systems without unknown inputs, i.e., Gk =
0 and Hk = 0, and assuming that matrix [ET

k CT
k ] has

full-row rank, the H∞ descriptor data fitting filter (HDDFF)

developed in [13] may serve as an optimal solution of the ad-

dressed min-max optimization problem. For easy reference,

the HDDFF is listed as follows:

ẑk = Lkx̂k, (6)

x̂k =
(

(P x
k )−1 + γ−2LT

k S−1
k Lk

)−1

×
(

ET
k (P̄ x

k )−1x̄k + CT
k R−1

k yk

)

, (7)

P x
k =

(

ET
k (P̄ x

k )−1Ek + CT
k R−1

k Ck − γ−2LT
k S−1

k Lk

)−1
,(8)

where

x̄k = Ak−1x̂k−1, (9)

P̄ x
k = Ak−1P

x
k−1A

T
k−1 + Qk−1. (10)

Note that, if γ goes to infinity the above HDDFF tends to

the least-squares data-fitting filter (LSDFF) developed in [7].

On the other hand, for descriptor systems with unknown

inputs and assuming that the system state is estimable and γ

goes to infinity, the 5-block EDKFu (or refined EDKF) in [9],

where the superscript u denotes the untrammeled approach,

can be easily generalized to yield the optimal ML estimate

of xk due to a direct extension.

The main aim of this paper is to extend the 5-block

EDKFu to present an H∞ version, which is named as the

6-block HEDKFu, in order to solve the addressed min-max

optimization problem.

III. RE-DERIVATION OF THE HDDFF

To facilitate the derivation of the 6-block HEDKFu, in

this section we present an H∞ version of the (3-block)

DKF, which is named as the 4-block HDKF, that solves

the optimization problem (4) for descriptor systems without

unknown inputs, i.e., dk = 0.

Viewing the dynamics of (1) and (3) as additional mea-

surements, one can transform the original system of (1)-(3)

into the following augmented output equation (AOE):




x̄k

yk

ẑk



 =





Ek

Ck

Lk



xk +





ηk

vk

µk



 , (11)

where x̄k is given by (9), ẑk remains to be determined, and

ηk = −Ak−1(xk−1 − x̂k−1) − wk−1. (12)

From (12), it is clear that cov(ηk) = P̄ x
k . Note that to

account for the negative cost in (5) we assume that µk in (11)

is a fictitious zero-mean signal with the following negative

covariance matrix:

cov(µk) = −γ2Sk. (13)

Assuming that matrix [ET
k CT

k ] has full-row rank and

using the recursive ML estimation procedure in Nikoukhah

et al. [5] based on (11)-(13), one can obtain the following

4-block HDKF:

x̂k =
[

0 0 0 I
]

(Λ4
k)−1

×
[

x̄T
k yT

k ẑT
k 0

]T
, (14)

P x
k = −

[

0 0 0 I
]

(Λ4
k)−1

×
[

0 0 0 I
]T

, (15)

where

Λ4
k =









P̄ x
k 0 0 Ek

0 Rk 0 Ck

0 0 −γ2Sk Lk

ET
k CT

k LT
k 0









, (16)

in which P̄ x
k is given by (10).

In the following, we show that the 4-block HDKF can be

equivalent to the HDDFF if ẑk is chosen as in (6). Denoting

(Λ4
k)−1 =









× × × ×
× × × ×
× × × ×
Ωk ∆k Υk Σk









, (17)

where the entries marked as “×” are irrelevant to the

discussion, we have

Ωk = −ΣkET
k (P̄ x

k )−1, (18)

∆k = −ΣkCT
k R−1

k , (19)

Υk = γ−2ΣkLT
k S−1

k , (20)

ΩkEk + ∆kCk + ΥkLk = I. (21)

Using (18)-(20) in (21) and solving for Σk, we obtain

Σk =

−(ET
k (P̄ x

k )−1Ek + CT
k R−1

k Ck − γ−2LT
k S−1

k Lk)−1.(22)
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Using (17)-(20) in (14)-(15) yields

x̂k = P x
k

(

ET
k (P̄ x

k )−1x̄k + CT
k R−1

k yk

)

−γ−2P x
k LT

k S−1
k ẑk, (23)

P x
k = −Σk. (24)

Finally, using (6) in (23) and solving for x̂k, we obtain

x̂k =
(

(P x
k )−1 + γ−2LT

k S−1
k Lk

)−1

×
(

ET
k (P̄ x

k )−1x̄k + CT
k R−1

k yk

)

, (25)

which has the same expression as that given in (7). Thus, we

conclude that the 4-block HDKF is equivalent to the HDDFF.

Using (6) and (14), the system state estimate (14) can be

rewritten as

x̂k =
[

0 0 0 I
]

(Λ4
k)−1

(

[

x̄T
k yT

k 0 0
]T

+
[

0 0 I 0
]T

Lkx̂k

)

. (26)

Using (17), (20), and (24), and solving (26) for x̂k, we have

x̂k = (I + γ−2P x
k LT

k S−1
k Lk)−1

[

0 0 0 I
]

×(Λ4
k)−1

[

x̄T
k yT

k 0 0
]T

. (27)

IV. DERIVATION OF THE 6-BLOCK HEDKFu

In this section, we extend the 4-block HDKF, presented in

Section III, to account for descriptor systems with unknown

inputs, and the obtained filter is named as the 6-block

HEDKFu.

First, using the augmented state Xk =
[

xT
k dT

k

]T
, we

extend the AOE (11) as follows:




x̄k

yk

ẑk



 =





Ek 0 −Πk−1

Ck Hk 0
Lk 0 0





[

Xk

dk−1

]

+
[

ηT
k vT

k µT
k

]T
, (28)

where

x̄k =
[

Ak−1 Gk−1

]

X̂k−1, (29)

Πk−1 = Gk−1(I − H+
k−1Hk−1), (30)

ηk = −Ak−1(xk−1 − x̂k−1)

−Gk−1(Φk−1dk−1 − d̂k−1) − wk−1. (31)

Second, solving (28) for X̂k using the recursive ML

estimation procedure, we obtain the 6-block HEDKFu as:

X̂k = (T 6
k )T (Λ6

k)+
[

x̄T
k yT

k ẑT
k 0 0 0

]T
, (32)

PX
k = −(T 6

k )T (Λ6
k)+T 6

k , (33)

where M+ is the Moore-Penrose pseudo-inverse of M ,

T 6
k =

[

0 0 0 I 0 0
0 0 0 0 I 0

]T

, (34)

Λ6
k

=

















P̄ x
k 0 0 Ek 0 −Πk−1

0 Rk 0 Ck Hk 0
0 0 −γ2Sk Lk 0 0

ET
k CT

k LT
k 0 0 0

0 HT
k 0 0 0 0

−ΠT
k−1 0 0 0 0 0

















, (35)

in which

P̄ x
k =

[

Ak−1 Gk−1

]

PX
k−1

[

AT
k−1

GT
k−1

]

+ Qk−1. (36)

Third, using (6) in (32) and solving for X̂k yields the

following augmented system state estimate:

X̂k =
(

I − (T 6
k )T (Λ6

k)+ [ 0 0 I 0 0 0 ]
T

L̆k

)−1

×(T 6
k )T (Λ6

k)+
[

x̄T
k yT

k 0 0 0 0
]T

, (37)

where L̆k =
[

Lk 0
]

. The estimated signal ẑk is obtained

as follows:

ẑk = L̆kX̂k. (38)

Finally, we address the filter initialization issue. As noted

in [13], the 6-block HEDKFu can be initialized with the

following substitutions:

x̄0 → x̆0, P̄ x
0 → P̆0, E0 → I, Π−1 → 0. (39)

Remark 1: The proposed 6-block HEDKFu serves as

a unified solution to solve H∞ and Kalman filtering for

descriptor systems and standard systems with or without

unknown inputs. It can be easily checked that the HEDKFu

generalizes the results in [12] and [13].

V. PRACTICAL ISSUES OF IMPLEMENTING THE 6-BLOCK

HEDKFu

It is noticed that the 6-block HEDKFu may not be practical

for implementation due to its tremendous computational load

in implementing a (2(n+q)+p+r)×(2(n+q)+p+r) pseudo-

inverse (see Section VI for an illustration). In this section,

we present three computationally efficient alternatives to the

6-block HEDKFu. Without loss of generality, we assume that

matrix Πk is not null for all k ≥ 0.

A. The 6-Block HEDKFt

The basic idea for deriving a computationally efficient

algorithm of the 6-block HEDKFu is to implement the

pseudo-inverse operation (Λ6
k)+ by using an alternative ma-

trix inverse (Λ̄6
k)−1.

Denote the following full-rank factorizations:

Hk = H̄kH̃k, Πk−1 = Π̄k−1Π̃k−1, (40)

where H̄k and Π̄k−1 are full-column rank matrices and H̃k

and Π̃k−1 are full-row rank matrices. Then, using (40), one

has the following relationship:

[

0 −Πk−1

Hk 0

]

=

[

0 −Π̄k−1

H̄k 0

]

× diag{H̃k, Π̃k−1},

by which one has

Λ6
k = ΨT

k Λ̄6
kΨk, (41)
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where

Ψk = diag{I, I, I, I, H̃k, Π̃k−1}, (42)

Λ̄6
k

=

















P̄ x
k 0 0 Ek 0 −Π̄k−1

0 Rk 0 Ck H̄k 0
0 0 −γ2Sk Lk 0 0

ET
k CT

k LT
k 0 0 0

0 H̄T
k 0 0 0 0

−Π̄T
k−1 0 0 0 0 0

















. (43)

In the following discussions, we assume that the following

matrix:




Ek 0 −Π̄k−1

Ck H̄k 0
Lk 0 0



 , (44)

has full-column rank.

Thus, using (41) and the relationship (AB)+ = B+A+,

where A is of full-column rank and B is of full-row rank,

one has

(Λ6
k)+ = Ψ+

k (Λ̄6
k)−1(Ψ+

k )T . (45)

Moreover, we have the following relationship:

(T 6
k )T Ψ+

k =

[

0 0 0 I 0 0

0 0 0 0 H̃+
k 0

]

≡ (T̄ 6
k )T . (46)

Finally, using (45)-(46) in (33) and (37) yields the follow-

ing 6-block HEDKFt, where the superscript t denotes the

transformed approach:

X̂k =
(

I − (T̄ 6
k )T (Λ̄6

k)−1 [ 0 0 I 0 0 0 ]
T

L̆k

)−1

×(T̄ 6
k )T (Λ̄6

k)−1
[

x̄T
k yT

k 0 0 0 0
]T

, (47)

PX
k = −(T̄ 6

k )T (Λ̄6
k)−1T̄ 6

k . (48)

B. The HDDFF

The 6-block HEDKFt can be further simplified by using

the approach given in Section III.

Denote

(Λ̄6
k)−1 =









P̄ x
k 0 0 Ek

0 Rk 0 Ck

0 0 −γ2Sk Lk

ET
k CT

k LT
k 0









−1

=









× × × ×
× × × ×
× × × ×
Ωk ∆k Υk Σk









, (49)

where

Ek =
[

Ek 0 −Π̄k−1

]

, (50)

Ck =
[

Ck H̄k 0
]

, (51)

Lk =
[

Lk 0 0
]

. (52)

Using (49), we have

Ωk = −ΣkE
T
k (P̄ x

k )−1, (53)

∆k = −ΣkC
T
k R−1

k , (54)

Υk = γ−2ΣkL
T
k S−1

k , (55)

where

Σk =

−(ET
k (P̄ x

k )−1Ek + CT
k R−1

k Ck − γ−2LT
k S−1

k Lk)−1.(56)

Substituting (49) and (52)-(55) into (47)-(48) and using the

following relationship:

LT
k =

[

I 0 0

0 H̃+
k 0

]T

L̆T
k ,

we obtain the following HDDFF corresponding to (1)-(3),

which is a generalization of (6)-(8):

X̂k = −
(

I + γ−2PX
k L̆T

k S−1
k L̆k

)−1
[

I 0 0

0 H̃+
k 0

]

×Σk

(

ET
k (P̄ x

k )−1x̄k + CT
k R−1

k yk

)

, (57)

PX
k = −

[

I 0 0

0 H̃+
k 0

]

Σk

[

I 0 0

0 H̃+
k 0

]T

. (58)

Remark 2: If γ goes to infinity, the above HDDFF tends

to the LSDFF developed in [12]. Moreover, in the special

case Gk = 0 and Hk = 0, the HDDFF will be equivalent to

the original work in [13].

C. The HDRFSF

The HDDFF can be slightly simplified via further reducing

the dimension of matrix inverse. This is achieved by deter-

mining the gain-covariance matrix (GCM) [9] corresponding

to the 6-block HEDKFt as follows:

(Λ̄6
k)−1

=

















× × × × × ×
× Θk × × × ×
× × × × × ×

Γk Kk Kz
k −P x

k −P xd̄
k ×

Ξk Mk Mz
k −(P xd̄

k )T −P d̄
k ×

× × × × × ×

















, (59)

where d̄k is part of the original unknown input vector that

is estimable.

From (43) and (59), we have the following relationships:

ΓkEk = I − KkCk − Kz
kLk, (60)

ΞkP̄ x
k = (P xd̄

k )T ET
k + {•}(5,6)Π̄

T
k−1, (61)

Kk = P x
k CT

k R
†
k, (62)

Mk = H̄∗
k(I − RkΘk − CkKk), (63)

Kz
k = −γ−2P x

k LT
k S−1

k , (64)

Mz
k = −γ−2(P xd̄

k )T LT
k S−1

k , (65)

P x
k ET

k = ΓkP̄ x
k − {•}(4,6)Π̄

T
k−1, (66)

P xd̄
k =

(

KkRk − P x
k CT

k

)

(H̄∗
k)T , (67)

P d̄
k = H̄∗

k

(

RkMT
k − CkP xd̄

k

)

, (68)

ΘkH̄k = 0,

where {•}(i,j) is the i, j entry of the GCM and

R
†
k = R−1

k (I − H̄kH̄∗
k), (69)

H̄∗
k = (H̄T

k R−1
k H̄k)−1H̄T

k R−1
k . (70)
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Now, we are in place to further simplify the expressions in

(63), (67), and (68). This is achieved by using the following

relationships:

H̄∗
kRkΘk = 0, H̄∗

kRkKT
k = 0,

by which we obtain

Mk = H̄∗
k(I − CkKk), (71)

P xd̄
k = −P x

k CT
k (H̄∗

k)T , (72)

P d̄
k = H̄∗

k(CkP x
k CT

k + Rk)(H̄∗
k)T . (73)

Then, we determine the unspecific matrices: Γk, Ξk, and

P x
k , given by (60), (61), and (66), respectively. Using the

following notations:

(P̄ x
k )† = (P̄ x

k )−1(I − Π̄k−1Π̄
∗
k−1), (74)

Π̄∗
k−1 =

(

Π̄T
k−1(P̄

x
k )−1Π̄k−1

)−1
Π̄T

k−1(P̄
x
k )−1, (75)

and the relationship ΓkΠ̄k−1 = 0 in (66) yields

Γk = P x
k ET

k (P̄ x
k )†. (76)

Similarly, we can determine the matrix Ξk in (61) as

Ξk = (P xd̄
k )T ET

k (P̄ x
k )† = −H̄∗

kCkΓk, (77)

where (72) and (76) are used. Using (62), (64), and (76) in

(60), and solving for P x
k we obtain

P x
k =

(

ET
k (P̄ x

k )†Ek + CT
k R

†
kCk − γ−2LT

k S−1
k Lk

)−1

. (78)

Next, comparing (49) with (59) and using (71)-(73) and

(77), (57) and (58) can be expressed as:

X̂k =

[

I + γ−2P x
k LT

k S−1
k Lk 0

−γ−2H̃+
k H̄∗

kCkP x
k LT

k S−1
k Lk I

]−1

×

[

Γkx̄k + Kkyk

H̃+
k H̄∗

k (yk − Ck(Γkx̄k + Kkyk))

]

, (79)

PX
k = diag{I, H̃+

k }

×

[

P x
k −P x

k CT
k (H̄∗

k)T

−H̄∗
kCkP x

k H̄∗
k(CkP x

k CT
k + Rk)(H̄∗

k)T

]

×diag{I, H̃+
k }T . (80)

Finally, summarizing the above results, we obtain the fol-

lowing H∞ descriptor recursive four-step filter (HDRFSF):

Step 1: Estimate the system state xk

x̂k =
(

(P x
k )−1 + γ−2LT

k S−1
k Lk

)−1

×
(

ET
k (P̄ x

k )†x̄k + CT
k R

†
kyk

)

, (81)

P x
k =

(

ET
k (P̄ x

k )†Ek + CT
k R

†
kCk − γ−2LT

k S−1
k Lk

)−1

. (82)

Step 2: Estimate the estimated signal zk

ẑk = Lkx̂k. (83)

Step 3: Estimate the unknown input dk

d̂k = H̃+
k H̄∗

k(yk − Ckx̂k), (84)

P d
k = H̃+

k H̄∗
k(CkP x

k CT
k + Rk)(H̃+

k H̄∗
k)T , (85)

P xd
k = −P x

k CT
k (H̃+

k H̄∗
k)T . (86)

Step 4: Estimate the predicted system state x̄k+1

x̄k+1 = Akx̂k + Gkd̂k, (87)

P̄ x
k+1 =

[

Ak Gk

]

[

P x
k P xd

k

(P xd
k )T P d

k

] [

AT
k

GT
k

]

+Qk. (88)

Remark 3: If γ goes to infinity, the HDRFSF tends to

the DRTSF developed in [12]. Moreover, in the special case

Ek = I , the HDRFSF will be equivalent to the ERTSF [1].

VI. AN ILLUSTRATIVE EXAMPLE

As an illustrative example, we consider a numerical ex-

ample adapted form [7], which is given as follows:

Ek+1 =





1 0
0 1
2 0.7



 , Ak =





0.3 0
0 0.2

0.34 0.21



 ,

Gk =





0.01 0
−1.25 0

0 0



 , Hk =

[

0 0
0 1

]

,

Lk =
[

1.4 0.8
]

, Ck = I2, Sk = 1,

Qk =





0.9 9.3 0
9.3 290 0
0 0 0.05



 , Rk =

[

0.1 0
0 0.001

]

.

In the simulation, we set x̆0 = 0, P̆0 = I2, and

dk =

[

5us[k] − 5us[k − 20] + 5us[k − 79]
4us[k] − 4us[k − 30] + 4us[k − 65]

]

,

where us[k] is the unit-step function. The simulation time is

100 time steps with a Monte Carlo simulation of 100 runs.

In the simulation, the 6-block HEDKFu [(37) and (33)],

the 6-block HEDKFt (47)-(48), the HDDFF (57)-(58), the

HDRFSF (81)-(88), and the DRTSF in [12] are considered.

Note that the DRTSF can be seen as a special case of the

HDRFSF with γ → ∞. We illustrate the root-mean-square-

errors (rmse) in the estimated signal zk of the HDRFSF

and the DRTSF in Fig. 1, from which we observe that the

filtering performance of the HDRFSF will reduce to that of

the DRTSF when γ goes to infinity as expected. Moreover,

the lower the value of γ is the better the performance of the

HDRFSF will achieve. As shown in [13], the lower bound

of γ can be estimated from (82) as follows:

γ2
(

ET
k Q

†
k−1Ek + CT

k R
†
kCk

)

≥ LT
k S−1

k Lk, (89)

where

Q
†
k = Q−1

k − Q−1
k Π̄k(Π̄T

k Q−1
k Π̄k)−1Π̄T

k Q−1
k .

By (89), we obtain that the lower bound of γ in this

simulation is 0.3720.

In illustrating the filtering performance of the proposed

results, we choose the H∞ tuning parameter as γ = 0.545
based on Fig. 1. Because the matrix in (44) has full-column

rank, we can deduce that all the new developed filters, i.e.,

the 6-block HEDKFu, the 6-block HEDKFt, the HDDFF,

and the HDRFSF, will yield the same optimal filtering
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TABLE I

PERFORMANCE OF THE HEDKF, HDDFF, HDRFSF, AND DRTSF.

Filter z̃k x̃
1

k
x̃
2

k
flops

6-block HEDKFu 3.2011 0.4542 4.4218 28175

6-block HEDKFt 3.2011 0.4542 4.4218 2676

HDDFF 3.2011 0.4542 4.4218 1673

HDRFSF 3.2011 0.4542 4.4218 938

DRTSF 3.2533 0.4556 4.4926 837

performance. Moreover, due to that the feedthrough matrix

of the unknown input to the output is not of full-column

rank, the unknown input vector is not completely estimable.

It can be checked that only the second component of the

unknown input vector is estimable. Thus, the dedicated filter

should decouple the first component of the unknown input

vector from the filtering error in order to achieve the optimal

performance. We list the rmse errors in the state estimates of

the considered filters in Table 1, from which we obtain that

all the new proposed H∞ filters yield the optimal estimated

signal and system state estimates, which are slightly better

than those obtained of the previously proposed DRTSF.

Then, we address complexity: we use floating point opera-

tions, or “flops,” in Matlab as a measure of the computational

complexity of the aforementioned filters. The results are

listed in Table 1, from which we have the following findings:

1) the 6-block HEDKFu is most computationally intensive

than the others due to the heavy load of the pseudo-inverse

operation, which, however, can be effectively solved by

using the alternative 6-block HEDKFt; 2) the HDDFF and

the HDRFSF both serve as compact versions of the 6-

block HEDKFt, whereas the latter has the less computational

complexity than the former due to the GCM concept; and 3)

the DRTSF has the least computational complexity, however,

at the expense of sacrificing filtering performance.

VII. CONCLUSION

In this paper, we derived H∞ Kalman filtering recur-

sions for rectangular discrete-time descriptor systems with

unknown inputs that affect both the system and the output.

An alternative to the data fitting approach for deriving an

H∞ filter is developed based on the descriptor Kalman

filtering method. A 6-block HEDKFu is proposed serving as

a unified solution to solve the addressed H∞ unknown input

filtering problem for descriptor systems. Due to computa-

tional complexity consideration, three simplified versions of

the 6-block HEDKFu are presented. Using a novel matrix

transformation, a more efficient 6-block EDKFt is proposed

as an alternative to the HEDKFu, where the pseudo-inverse

operation is implemented by using an alternative matrix

inverse. Moreover, based on the recently developed GCM

concept, two compact versions of the 6-block HEDKFt, i.e.,

the HDDFF and the HDRFSF, are further proposed to reduce

matrix inversion dimension; specifically, the latter is less

computationally intensive than the former. Finally, simulation

results verify the usefulness of the proposed results.

0.55 0.6 0.65 0.7 0.75 0.8 0.85
3.1

3.15

3.2

3.25
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3.35

γ

rm
s
e

(z
)

HDRFSF
DRTSF

Fig. 1. RMSEs of the estimated signal zk .
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