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Abstract— In this work, a robust method to estimate sinu-
soidal signals of unknown frequency, amplitude and phase is
described. The stability properties of the devised estimation
method under perturbed condition are studied by Input-to-
State Stability (ISS) analysis. Compared to averaging ap-
proaches, the ISS-Lyapunov theory allows to study the stability
for any value of adaptation parameters.

Index Terms— Frequency estimation, phase locking loops,
adaptive systems, input-to-state stability.

I. INTRODUCTION

Algorithms which are capable of extracting sinusoids from

periodic signals and to estimate their parameters in real-time

are a very active area of research in the fields of signal

processing, power quality assessment (see [1], [2], [3], [4]),

active noise cancellation (see [5] and the references therein),

and sinusoidal disturbance rejection (i.e., vibration control),

(see [6], [7], [8]).

Many techniques have been proposed in the literature to

provide robust estimates of amplitude, frequency and phase

of sinusoidal signals, among which the Kalman Filter, [9],

and the Extended Kalman Filter (EKF) represent the most

used tools for their ease of implementation and the popularity

gained among signal processing practitioners (see [10]). The

main disadvantage of using Kalman Filtering consists in

that the models of both the process and the noise must be

assumed for the design of the filter. Indeed, this technique

is strongly related to the class of Internal Model (IM)-based

methods, in which a lumped model of the signal generator

is assumed and its parameters are adapted by using real-

time measurements, (see [11] and [12]). Nonetheless, both

the the EKF and the IM are known to be very sensitive with

respect to their design parameters. In this regard, adaptive

notch filtering represents a valid alternative when an accurate

model of the process is not available (see [13], [14] and [15]).

It consists of a of a very sharp notch whose base frequency

adaptively tracks that of the input signal.

Recently, with the aim of providing simple algorithms

suited for the digital implementation, orthogonal finite im-

pulse response (FIR) discrete-time adaptive filters have been

proposed to perform real-time frequency estimation (see e.g.,

[16] and [17]).

Also nonlinear methods have been recently proposed to

obtain more robust estimates in presence of noisy signals
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and for Amplitude-Frequency-Phase (AFP) reconstruction of

non-stationary sinusoids (see [18], [19], [20], [21] and the

references therein). These techniques have been successfully

used to monitor the quality of electrical power delivery

and have been shown to provide accurate and reliable real-

time frequency estimates [2]. On the other side, the stability

results available for the existing nonlinear AFP algorithms

can provide only local stability guarantees, or, when averag-

ing analysis is used, global results are valid only for small

adaptation gains (see [22]).

In this framework, we are going to present a new AFP

method with semi-global stability guarantees for any value

of the adaptation parameters. Moreover, the stability of the

method against bounded perturbations (noise or limited-

amplitude disturbnce signals) will be proven by ISS anal-

ysis. The ISS-Lyapunov dissipation inequalities can be also

used to assess the transitory performance of the frequency-

estimator.

II. NOTATION AND BASIC DEFINITIONS

Let R, R≥0 and R>0 denote the real, the non-negative

real and the strict positive real sets of numbers, respectively.

Given a vector x ∈ R
n, we will denote as |x| the Euclidean

norm of x. Moreover, given a time-varying vector x(t) ∈ R
n,

t ∈ R≥0 we will denote as ‖x‖∞ the quantity

‖x‖∞ = sup
t≥0

|x(t)|.

Moreover, let Ln
∞ denote the set of piece-wise continuous

signals u(t),u : R≥0 → R
m with finite ‖u‖∞ norm.

The notions of functions of class K, class K∞, and class

KL are used to characterize stability properties. A function

α : R≥0 → R≥0 belongs to the class K if it is continuous,

stricly increasing and α(0) = 0. If, in addition lims→∞ =
∞ then it belongs to the class K∞. A continuos function

β : R≥0 × R≥0 → R≥0 belongs to the class KL if, for

any fixed t ∈ R≥0, the function β(·, t) is a K-function with

respect to the first argument and if, for any fixed s ∈ R≥0,

the function β(s, t) is monotonically decreasing with respect

to t and limt→∞ β(s, t) = 0.

Consider now the following system

ẋ = f(x,u) (1)

with x ∈ R
n, u ∈ R

m, f(0, 0) = 0 and f(x,u) locally

Lipschitz in R
n × R

m.

Definition 2.1 (ISS): The system (1) is ISS (Input to State

Stable) if there exist a KL-function β(·, ·) and a class K-

function such that, for any input u ∈ Lm
∞ and any initial

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 6104



condition x0 ∈ R
n, the trajecotory of the system verifies

|x(t)| ≤ β(|x0|, t) + γ(‖u‖∞) (2)

�

Definition 2.2 (ISS-Lyapunov Function): A function V :
R

n → R≥0 of class C1 is an ISS-Lyapunov function for

(1) if there exist three K∞-functions α(·), α(·), α(·) and a

K-function X (·) such that

α(|x|) ≤ V (x) ≤ α(|x|), ∀x ∈ R
n (3)

and

|x|≥X (|u|) ⇒ ∂ V

∂x
f(x, u)≤−α(|x|), ∀x∈Rn, ∀u∈Rm

(4)

�

Theorem 2.1 ([23]): The system (1) is ISS if and only if

it admits an ISS-Lyapunov function. �

III. PROBLEM STATEMENT

Consider the task of detecting the frequency ω∗ ∈ R, the

phase ϑ0 ∈ R and the amplitude A ∈ R of the sinusoidal

signal:
y(t) = A cos(ϑ(t)), t ∈ R≥0
{

ϑ̇ = ω∗, t ∈ R≥0

ϑ(0) = ϑ0,
(5)

Let us introduce the auxiliary filtered signals x1(t), x2(t)
and x3(t) obtained as:

{

ẋ1(t) = λ (y(t)− x1(t)) , t ∈ R≥0

x1(0) = x10 .
(6)

{

ẋ2(t) = λ (x1(t)− x2(t)) , t ∈ R≥0

x2(0) = x20 .
(7)

and
{

ẋ3(t) = λ (x2(t)− x3(t)) , t ∈ R≥0

x3(0) = x30 .
(8)

where λ ∈ R>0 is an arbitrary positive constants. In the

sequel we will denote as H3(s) the transfer function in the

Laplace domain such that

[x3](s) = H3(s)[y](s). (9)

with

H3(s) =
λ3

(λ + s)3
. (10)

The time-derivatives of x3(t) are available up to the 3-rd

order, that is:

ẍ3(t) = λ (ẋ2(t)− ẋ3(t))
= λ2 (x3(t)− 2x2(t) + x1(t))

...
x3(t) = λ2 (ẋ3(t)− 2ẋ2(t) + ẋ1(t))

= λ3(x2(t)−x3(t)−2(x1(t)−x2(t))+(y(t)−x1(t)))
= λ3 (−x3(t) + 3x2(t)− 3x1(t) + y(t))

(11)

Now, let us define the following time-dependent variables

obtained as linear combinations of variables x1(t), x2(t),

and x3(t):

z0(t) , x3(t)

z1(t) , −ẋ3(t) = λ (x3(t)− x2(t)))

z2(t) , −ẍ3(t) = −λ2 (x3(t)− 2x2(t) + x1(t))

z3(t) ,
...
x3(t) =λ3 (−x3(t)+3x2(t)−3x1(t)+y(t))

(12)

Let us consider the sinusoidal equilibrium reached asymp-

totically for t → +∞ (or for a suitable specific choice

of the initial states x1(0) = x10, x2(0) = x2
∗
0, x2(0) =

x2
∗
0, x3(0) = x3

∗
0), denoting with x0(t), x1(t), x2(t), x3(t),

the stationary filtered sinusoidal signals and z0(t), z1(t),
z2(t), z3(t) the correspondent stationary auxiliary signals,

whose amplitude depends on the actual frequency ω∗ of the

measured variable y(t):

z0(t) = Az cos(ϑz(t))
z1(t) = Azω

∗ sin(ϑz(t))

z2(t) = Azω
∗2 cos(ϑz(t))

z3(t) = Azω
∗3 sin(ϑz(t))

(13)

where
Az = A|H3(jω

∗)|
ϑz(t) = ϑ(t) + ∠H3(jω

∗)
(14)

Now, it is convenient to solve the problem in the unknowns

Az , ϑz(t) and ω∗ from the set of equations (13) and then

to infer the original parameters by (14). At any time instant

t : ϑz(t) 6= π/2 + kπ , the problem of detecting the squared

frequency Ω∗ = ω∗2 can be solved in algebraic way as

Ω∗ = z2(t)(z0(t))
−1 . (15)

Moreover, for any time instant t : ϑz(t) 6= kπ , it holds that

Ω∗ = z3(t)(z1(t))
−1. (16)

As the actual phase ϑz(t) is not known, it is not possible to

choose a priori which of the two expression has to be used. A

possible solution consists in minimizing a mixed objective:

Ω∗ = arg min
Ω∈R>0

(Ωz0(t)− z2(t))
2 + (Ωz1(t)− z3(t))

2

=
z0(t)z2(t) + z1(t)z3(t)

(z0(t))2 + (z1(t))2
(17)

Note that the previous expression holds for any t at the

sinusoidal equilibrium, due to the orthogonality of z0(t)
and z1(t). Moreover, from the first two equation in (13),

it follows that

ω∗2(z0(t))
2 + (z1(t))

2 = A2
zω

∗2 . (18)

Then, the parameter Az can be computed by

Az =

√

Ω∗(z0(t))2 + (z1(t))2

Ω∗
(19)

and, finally, the phase of the signal under concern can be

determined as

ϑz(t) = atan

(

z1(t)

Azω∗
/
z0(t)

Az

)

. (20)
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Now, considering that H3(s) = (H1(s))
3
, with

H1(s) ,
λ

λ+ s
, (21)

it follows that

|H3(jω
∗)| =

λ3

(

λ2 + ω∗2
)3/2

,

∠H3(jω
∗) = 3 atan

(−ω∗
λ

)

.

(22)

Finally, in view of (14) and (22), the original parameters can

be retrieved as:

A = Az

(√
λ2 + ω∗2

λ

)3

,

ϑ(t) = ϑz(t)− 3 atan

(−ω∗

λ

)

,

= ϑz(t) + 3 atan

(

ω∗

λ

)

.

(23)

Summing up, the problem of estimating three unknown

parameters has been solved by introducing three auxiliary

signals and by solving, at each time instant, a scalar alge-

braic equation in the unknown ω∗. At this point, we have

solved the problem assuming that the auxiliary signals are

considered during the sinusoidal equilibrium, but during the

transient modes of behavior or in the likely situation where

external disturbances affect the measured signal y(t), the

stationary signals z0(t), z1(t), z2(t), z3(t) are not available.

Then, we seek an estimation method depending only on

measurable quantities. Note that the instantaneous values of

the signals z0(t), z1(t), z2(t), z3(t), evolving from arbitrary

initial conditions, cannot be used in (17) in place of station-

ary ones, because the denominator may eventually assume a

0-value, thus a singularity-free estimation method is needed.

Instead of directly computing a minimizer for (17), it is

preferable to set up a dynamic optimization scheme with

guaranteed asymptotic convergence properties.

In the next section, by using Lyapunov arguments, we

will propose an adaptation law capable to ensure the semi-

global input-to-state stability (i.e. for any compact set of

initial conditions) of the estimtor dynamics in nominal and

in perturbed (noisy) conditions.

IV. INPUT-TO-STATE STABILITY OF THE FREQUENCY

ESTIMATION SYSTEM

Given the perturbed sinusoidal signal

ŷ(t) = A cos(ϑ(t)) + d(t),
{

ϑ̇(t) = ω∗, t ∈ R≥0

ϑ(0) = ϑ0,
(24)

where d(t) ∈ L1
∞ is an unmeasureable additive distur-

bance with ‖d‖∞ ≤ d, d ∈ R≥0 finite, let us denote as

x̂(t) = [x̂1(t) x̂2(t) x̂3(t)]
⊤ the filter’s states evolving from

an arbitrary initial condition x̂0 = [x̂10 x̂20 x̂30 ]
⊤ according

to:
{

˙̂x1(t) = λ (ŷ(t)− x̂1(t)) , t ∈ R≥0

x̂1(0) = x̂10 .
(25)

{

˙̂x2(t) = λ (x̂1(t)− x̂2(t)) , t ∈ R≥0

x̂2(0) = x̂20 .
(26)

{

˙̂x3(t) = λ (x̂2(t)− x̂3(t)) , t ∈ R≥0

x̂3(0) = x̂30 .
(27)

and let ẑ = [ẑ0(t) ẑ1(t) ẑ2(t) ẑ3(t)]
⊤ be the vector of the

corresponding auxiliary signals obtained by (see (13) for the

nominal case)

ẑ0(t) = x̂3(t)
ẑ1(t) = λ (x̂3(t)− x̂2(t)))
ẑ2(t) = −λ2 (x̂3(t)− 2x̂2(t) + x̂1(t))
ẑ3(t) =λ3 (−x̂3(t)+3x̂2(t)−3x̂1(t)+ŷ(t))

(28)

We propose the following frequency adaptation law, using

perturbed signals:

Ω̇(t) =−µ
[

(ẑ0(t)ẑ2(t)+ẑ1(t)ẑ3(t)) (Ω(t)ẑ0(t)−ẑ2(t))ẑ0(t)

+
(

(ẑ0(t))
2+(ẑ1(t))

2
)

(Ω(t)ẑ1(t)−ẑ3(t)) ẑ1(t)
]

(29)

with µ ∈ R>0 arbitrary.

To analyze the stability properties of the frequency

estimation system (25), (26), (27), (28) and (29), let

us consider the dynamics of the error vector x̃(t) ,

[x̂1(t)−x1(t) x̂2(t)−x2(t) x̂3(t)−x3(t)]
⊤, that can be ex-

pressed in state-space form as follows:
{

˙̃x(t) = Ax̃(t) + b d(t), t ∈ R≥0

x̃(0) = x̂0 − x0

(30)

with

A =





−λ 0 0
λ −λ 0
0 λ −λ



 .

and b = [λ 0 0]⊤. A being Hurwitz, there exists a posi-

tive definite matrix P : PA+A
⊤
P = −I. Let W (x̃) =

x̃
⊤
Px̃, then there exist two positive scalars a1, a2 ∈ R>0

such that

a1|x̃|2 ≤ W (x̃) ≤ a2|x̃|2 , ∀x̃ .

The derivative of W along the system’s state trajectory

satisfies the inequality

∂W

∂x̃
(Ax̃+ bd) ≤ −|x̃|2 + 2 ‖P‖ |b| |d| |x̃|.

For any 0 < ǫ < 1, let

X (s) =
2 ‖P‖ |b|

1− ǫ
s

with s ∈ R≥0. It is easy to show that

|x̃| ≥ X (|d|) ⇒ ∂W

∂x̃
(Ax̃+ bd) ≤ −|x̃|2,

and that the system is ISS with asymptotic gain

γx(s) = a1
−1a2 X (s).

In view of the ISS property of the linear auxiliary filter (30),

the error vector x̃(t) will enter in a closed ball of radius

γx(‖d‖∞) + ν ≤ γx(d) + ν in finite time Tν , for any ν ∈
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R>0. As a consequence, the auxiliary error vector z̃(t) =
[ẑ0(t) − z0(t), z̃1(t) − z1(t), z̃2(t) − z2(t), z̃3(t) − z3(t)]

⊤

will enter in finite-time Tδ = Tν in a closed ball of radius

γz(d) + δ centered at the origin, with

δ=

3
∑

i=0

{2iλi}ν, γz(s)=

3
∑

i=0

{2iλi} γx(s), ∀s ∈ R≥0. (31)

Let us now write

Ω̇(t) = −µ
{[

(z0(t)+z̃0(t))(z2(t)+z̃2(t))+(z1(t)+z̃1(t))

× (z3(t) + z̃3(t))
][

Ω(t)(z0(t) + z̃0(t)) − (z2(t) + z̃2(t))
]

× (z0(t) + z̃0(t)) +
[

(z0(t) + z̃0(t))
2 + (z1(t) + z̃1(t))

2

]

×
[

Ω(t)(z1(t) + z̃1(t)) − (z3(t) + z̃3(t))
]

(z1(t) + z̃1(t))
}

= −µ
{

[z0(t)z2(t) + z1(t)z3(t)][Ω(t)z0(t)− z2(t)]z0(t)

+ [(z0(t))
2 + (z1(t))

2][Ω(t)z1(t)− z3(t)]z1(t)
}

+ µf̃z(t, z̃) + µf̃Ω(t, z̃)Ω(t) (32)

where

f̃z(t, z̃) , −
[

(z0(t) + z̃0(t))(z2(t) + z̃2(t))

+ (z1(t)+ z̃1(t))(z3(t) + z̃3(t))
]

[−(z2(t) + z̃2(t))] z̃0(t)

+
[

(z0(t)+z̃0(t))
2+(z1(t)+z̃1(t))

2

]

[−(z3(t) + z̃3(t))] z̃1(t)

+
[

z̃0(t)z2(t) + z̃0(t)z̃2(t) + z̃2(t)z0(t) + z̃1(t)z3(t)

+ z̃1(t)z̃3(t) + z̃3(t)z1(t)
][

− (z2(t) + z̃2(t))
]

z0(t) (33)

and

f̃Ω(t, z̃) , −
[

(z0(t) + z̃0(t))(z2(t) + z̃2(t))

+ (z1(t) + z̃1(t))(z3(t) + z̃3(t))
]

(z0(t) + z̃0(t)) z̃0(t)

+
[

(z0(t)+ z̃0(t))
2+(z1(t)+ z̃1(t))

2

]

(z1(t) + z̃1(t)) z̃1(t)

+
[

z̃0(t)z2(t) + z̃0(t)z̃2(t) + z̃2(t)z0(t) + z̃1(t)z3(t)

+ z̃1(t)z̃3(t) + z̃3(t)z1(t)
]

(z0(t) + z̃0(t)) z0(t)

+
[

(2z0(t) + z̃0(t))z̃0(t) + (2z1(t) + z̃1(t))z̃1(t)
]

× (z1(t) + z̃1(t)) z1(t) (34)

The adaptation law (29), rewritten in terms of nominal

auxiliary z signals and relative errors, is described by (32).

Note that, the functions f̃z(t, z̃) and f̃Ω(t, z̃) introduced in

(32) and defined in (33) and (34), verify

f̃z(t, 0) = 0, f̃Ω(t, 0) = 0;

for all t ∈ R≥0. Moreover, being y(t) bounded and

z0(t), . . . , z3(t) bounded, there exist two K∞-functions

σz(·) and σΩ(·) such that:

|f̃z(t, z̃(t))| ≤ σz(|z̃(t)|),
|f̃Ω(t, z̃(t))| ≤ σΩ(|z̃(t)|),

(35)

In order to characterize the stability properties of the esti-

mator, let us consider the following candidate cost-function

in Ω:

J(Ω) ,
z0(t)z2(t) + z1(t)z3(t)

(z0(t))2 + (z1(t))2
(Ωz0(t)− z2(t))

2

+(Ωz1(t)− z3(t))
2

= Ω∗[Ω2(z0(t))
2 + (z2(t))

2 − 2Ωz0(t)z2(t)]
+Ω2(z1(t))

2 + (z3(t))
2 − 2Ω(z1(t))(z3(t))

= Ω∗A2

z

[

Ω2 +Ω∗2 − 2ΩΩ∗
]

(cos(ϑ(t)))2

+Ω∗A2

z

[

Ω2 +Ω∗2 − 2ΩΩ∗
]

(sin(ϑ(t)))2

= Ω∗A2

z (Ω− Ω∗)2 (cos(ϑ(t)))2

+Ω∗A2

z (Ω− Ω∗)2 (sin(ϑ(t)))2

= Ω∗A2

z (Ω− Ω∗)
2
,

(36)

then, J is a time-invariant function of Ω, derived from the

stationary sinusoidal z signals. Introducing the error variable

Ω̃ = Ω − Ω∗, let us denote with V (Ω̃) , J(Ω) a candidate

ISS-Lyapunov function for the estimator’s dynamics.

The derivative of the candidate ISS-Lyapunov function V
along the system’s trajectory verifies the following inequal-

ities:

∂ V

∂Ω̃
Ω̇ =

[

2Ω∗
(

Ω(t)z0(t)−z2(t)
)

z0(t)

+2
(

Ω(t)z1(t)−z3(t)
)

z1(t)

]

Ω̇(t)

=− 2µ
(

(z0(t))
2+(z1(t))

2
)

×
[

Ω∗(Ω(t)z0(t)−z2(t))z0(t)+(Ω(t)z1(t)−z3(t)) z1(t)

]2

+ 2µ
(

f̃z(t, z̃)+f̃Ω(t, z̃)Ω(t)
)(

(z0(t))
2+(z1(t))

2

)

×
[

Ω∗(Ω(t)z0(t)−z2(t))z0(t)+(Ω(t)z1(t)−z3(t)) z1(t)

]

≤−2µA4

z min {1,Ω∗}Ω∗2 (Ω(t)−Ω∗)
2
+

2µA3
zΩ

∗ |Ω(t)−Ω∗|
(

σz(|z̃(t)|) + σΩ(|z̃(t)|)Ω(t)
)

≤−µ
(

α∗− σ2(|z̃(t)|)
)

|Ω̃(t)|2 + µσ1(|z̃(t)|)|Ω̃(t)|
(37)

where

α∗ , 2A4
z min {1,Ω∗}Ω∗2

σ1(|z̃(t)|) , 2A3
zΩ

∗
(

σz(|z̃(t)|)+Ω∗σΩ(|z̃(t)|)
)

σ2(|z̃(t)|) , 2A3
zΩ

∗ σΩ(|z̃(t)|)|Ω̃(t)|2
(38)

Now, the following result characterizes the ISS stability

properties of the frequency estimator in presence of bounded

disturbances.

Theorem 4.1 (ISS of frequency estimation system):

Given a signal y(t) generated by (24), with nominal

fundamental frequency ω∗, the frequency estimation system

given by (25), (26), (27), (28) and (29) is ISS with respect

to any additive disturbance signal d(t) ∈ L1
∞ such that

‖d‖∞ < d < γ−1

z

(

σ−1

2
(α∗)

)

(39)

6107



where α∗ is defined as in (38), Ω∗ = ω∗2, with Az given by

(14), σ2 by (38) and γz by (31). �

Proof: Due to the the ISS property of the auxiliary

filter (see (31)), for any positive δ ∈ R>0 there exists a

finite time-instant Tδ such that |z̃(t)| ≤ γz(d) + δ, ∀t ≥ Tδ,

which implies

σ2(|z̃(t)|) ≤ σ2(γz(d) + δ), ∀t ≥ Tδ. (40)

If the bound on disturbances d verifies

α∗ − σ2(γz(d) + δ) > 0, (41)

for some δ ∈ R>0, then, for any t > Tδ, the following bound

on the derivative of V can be established

∂ V

∂Ω̃
Ω̇(t)≤−µ

(

α∗− σ2(γz(d)+δ)
)

|Ω̃(t)|2+µσ1(|z̃(t)|)|Ω̃(t)|
≤−c |Ω̃(t)|2+µσ1(|z̃(t)|)|Ω̃(t)|, ∀t ≥ Tδ

(42)

where c , µ
[

α∗− σ2(γz(d)+δ)
]

is a positive constant.

Finally, for any 0 < ǫ < 1, let

XΩ(s) =
1

c(1− ǫ)
µσ1(s).

It is easy to prove that

|Ω̃(t)| ≥ XΩ(|z̃(t)|) ⇒ ∂ V

∂Ω̃
Ω̇(t) ≤ −c|Ω̃(t)|2, ∀t ≥ Tδ.

(43)

Considering that, for any finite initial condition Ω0, the

derivative Ω̇(t) is bounded in the interval [0, Tδ], then Ω(Tδ)
is finite and Ω̃(Tδ) is, in turn, finite. Hence, thanks to (42)

and (43), for any disturbance signal d(t) bounded by (39),

V is an ISS-Lyapunov function for the frequency estimator

dynamics with respect to the z̃(t) input. Being the dynamics

of z̃ ISS with respect to the disturbance d(t), is follows

that the frequency estimation system is in turn ISS with

respect to d(t), that is, there exist a KL-function β(·, ·) and

a K-function γΩ(·) such that |Ω̃(t)| ≤ β(Ω̃(Tδ), t − Tδ) +
γΩ(‖d‖∞). In particular, the asymptotic ISS gain is given

by:

γΩ(s) = XΩ (γz(s)) , s ∈ [0, d).

A graphical representation of the ISS transient and asymp-

totic bounding functions involved in the present proof is

depicted in Figure 1.

V. DIGITAL IMPLEMENTATION AND EXAMPLE

A simulated experiment of frequency detection and track-

ing has been carried out by discretizing in time the fil-

ter’s dynamics and the frequency adaptation law (Euler’s

implicit integration step), with sample time Ts = 5−3 s. The

simulated signal takes the form of (24), with A = 1 and

ω∗ = 5 rad/s, t ∈ [0, 10]; ω∗ = 15 rad/s, t > 10, while

d(t) is a L1
∞ random noise with uniform distribution in the

interval [−0.25, 0.25]. As shown in Figures 2 and 3, the

sudden frequency changed has been traked even in presence

of noise. The effect of the filter’s parameter λ on the noise

sensitivity and on the convergence speed of the frequency

estimator has been shown in Figure 3.

t

|z̃0|

γz(d̄)+δ

Tδ t

|Ω̃0|
γΩ(d̄)

|Ω̃(t)|

|Ω̃(Tδ)|
βΩ(|Ω̃(Tδ)|, t− Tδ) + γΩ(d)

|z̃(t)|

γz(d̄)

Tδ

βz(|z̃0|, t) + γz(d)

Fig. 1. Bounds on the norms of the auxiliary error vector |z̃| and of the

frequency estimation error |Ω̃| established by ISS analysis. The bound on
the norm of the frequency estimation error decreases starting from time Tδ ,
being |z̃(t)| ≤ γz(d) + δ ≤ α∗, ∀t ≥ Tδ (see (40), (41) and (42)).
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Fig. 2. Noisy input signal, with step-wise frequency change at time t = 50s
and linear amplitude decrease.

It emerges clear from Figure 4 that, for constant λ = 5, the

convergence speed of the estimator depends on the amplitude

of the input sinusoid, as predicted by the Lyapunov stability

analysis. Conversely, the sensitivity to the noise (which has

not been scaled), does not change significatively.

Notably, when the filter is fed only by noise (starting

from t = 150 s), the frequency estimate starts to diverge.

Indeed, inequality (41) does not hold in this case, and the

boundedness of the estimate cannot be guaranteed.
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