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Abstract—This paper consider the inventory robust control
problem with an uncertain demand and bounded control
actions. The considered system deals with a nonlinear discrete-
time stochastic model of a special structure. The robust control
designing, consisting in the inventory product level minimiza-
tion by the corresponding adjustment of the production rate, is
shown to be converted into certain averaged attractive ellipsoid
"minimization" problem under some specific constraints of
BMI’s (Bilinear Matrix Inequalities) type. The application of
an adequate coordinate changing transforms these BMI’s into
a set of LMI’s (Linear Matrix Inequalities) that permits to
use directly the standard MATLAB - toolbox. The matrix
generalization of the SLLN (Strong Law of Large Numbers)
provides an instrument for the stochastic analyses of the
considered process.

I. INTRODUCTION

Inventory control and revenue management have become

very active research topics and have been extensively studied

in the academic literature in Economics, Operations Man-

agement, and Marketing [7], [8] and [10]. In these settings,

suppliers maximize their profits over a time horizon (subject

to some constraints) or minimizes their inventory product

level by adjusting their prices and production allocations. The

comprehensive reviews of modern inventory management

techniques under the complete information on the system

dynamics and demands can be found in [14] and [26].

The analogous problems in the presence of uncertainties

or incomplete information on random demands are consid-

ered in [20] and [22]. The simplest case of such type of

uncertainties is studied in [15] where the demand is treated

as a discrete random variable that leads to the multi-model

consideration and the control action is a production rate. This

optimization problem is of the "min-max" type where the

maximum is taken over the set of possible dynamic models

and minimum - over admissible production rate referred

below to as the inventory control. The solution is based on the

Robust Stochastic Maximum Principle implementation [17].

Here we consider the more complicated case of uncertain-

ties:

- the demands are random and generated by an exogenous

(may be, non-stationary) linear system from a given class

with a "wight noise" as an input,

- the demand (as a random signal) is unmeasurable on-line.

Since the model under consideration is nonlinear, but,

in some sense, is "quasi-linear" (i.e., the regular part of
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the right-hand side of a corresponding stochastic differential

equation belongs to a "cone" or a stripe containing an origin),

then it seems to be natural to use a feedback controller which

is linear on current state estimates generated by an observer

of the Luenberger-like type. In the presence of unmodelled

dynamics or non-decreasing perturbations, obviously, the

minimization of a market demands can not be made as small

as one wishes, but may be located (in some "average sense")

within some bounded convex zone contained in an ellipsoid

of the corresponding dimension, or in other word, in an

"averaged attracting ellipsoid". Varying the gain matrices

of both the linear feedback and an observer device one can

"minimize" this ellipsoid providing more preferable robust

dynamics for this controlled uncertain model.

The synthesis problem for a class of deterministic lin-

ear systems with bounded uncertainties and disturbances

traced back to the pioneer works of Bertsekas [3], [9] and

Chernous’ko [6] among others where the Dynamic Program-

ming Method and Ellipsoidal Calculus were applied. For

the perturbation of a bounded energy (L2 (0,∞)-case) the
explicit solution for the control designing was summarized

in [24] using H∞-approach and extended (to l1-case) with
Linear Matrix Inequality (LMI) application in [11]. The

extension of the H∞-technique for the class of stochastic
continuos systems with completely measurable states and

stochastic noises of the multiplicative-type was done in [23].

The stability of stochastic nonlinear models was studied also

in [2] but under the assumption that all state are complete

measurable. The closely related numerical procedure for the

gain matrix optimization of a stochastic continuous time

linear observer (filter) has been suggested and analyzed in

[16], but, in our opinion, the joint stochastic "observation-

control" problem still remains a great challenge for the

control society.

The concept of an Invariant Ellipsoid, where all trajectory

of a the market demands asymptotically arrive, in its more

complete form were presented in [4]. In [13] the problem

of synthesis of a static state-feedback controller for a linear

time-invariant system, minimizing the size of the correspond-

ing invariant ellipsoid, was reduced to optimization of a

linear function under some set of LMI constraints. This

method is very close in its philosophy with the, so-called,

Robust Attractive Ellipsoid Method (RAEM) designed and

applied here. Although many robust control problems can be

formulated in terms of LMI and be solved with semi-definite

programming [5], a significantly wider class of problems

can be formulated in terms of Bilinear Matrix Inequalities

(BMI) as in [18]. As for their numerical resolution, it can
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be mentioned that only in very few cases ( such as static

state feedback and dynamic output feedback) it is possible

to convert the original problem to a convex one with the

appropriate change of variables and obtain the equivalent

LMI’s.

In this paper we deal with demands of a stochastic nature

and with a model dynamics given in a discrete time. The

overall goal of this research is to introduce and study a

inventory control problem. In particular, this paper considers

an unmeasurable demand affecting a factory regime. We are

interested in the adjustment of its production rate to mini-

mize the inventory production level y under given class of
unmeasured demands. Our "free" parameters to be adjusted

are the gain matrices K (in the designed feedback) and L
(in the designed state-observer)

The main constraints accepted in this paper are:

- the inventory production level y is assume to be

bounded, i.e., y ∈ [0, y+], with a known upper bound;
- the admissible production rate u (or, the inventory

control) constitutes the given interval [0, u+] ;
- the scalar control action u is considered as a nonlinear
saturation function (Projectional Control) (see Fig.1) of

the current estimate x̂ of the state vector x which is not
always available;

u = π (Kx̂) =






Kx̂ if Kx̂ ∈ [0, u+]
0 if Kx̂ < 0
u+ if Kx̂ > u+

(1)

0

0

U+

U+

U

K x
0

Fig. 1. The control action u.

of the current estimate x̂ of the state vector x which is not
always available;.

- the structure of the observer generating x̂ is selected
as a linear of a Luenberger-type form with a free gain-

matrix L to be designed.
The principle contributions of this paper are as follows:

- the matrix form of the strong law of large numbers

(SLLN) is designed here to analyze the

convergence to an "averaged" attractive ellipsoid with

probability one;

- a specific form of BMI (after by a special transformation

converted into an LMI) is obtained which provides

this a.s.-convergence and, as a result, guaranteeing the
robustness property of the designed controller for a class

of "quasi-linear" exogenous models;

- the numerical matrix optimization procedure, based on

the "Interior Point Method", which uses these LMI

constraints, is suggested. It provides the optimal numer-

ical values of the pair (K,L) guarantying the minimal
attractive ellipsoid where almost all (a.s.) the demand

trajectories arrive for any nonlinear controlled system

from the considered class.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

In this section we specify the basic model in discrete-time.

A. Discrete-time model

Following to [25], [21] and [17], consider the discrete-time

stochastic process given by

yn+1 = [yn + τun − τ z̄n]+ = [yn + τun − τ z̄n] + ∆yn
∆yn = [yn + τun − τ z̄n]+ − [yn + τun − τ z̄n]

z̄n+1 = z̄n + τΦn + τσwn+1, τ , σ - const, n = 0, 1, 2
(2)

where yn is the inventory product level kept in the buffer of
the capacity y+, un ∈ [0, u+] is a production rate, τ is the
discretization (sample-data) interval which is usually very

small (0 < τ ≪ 1), Φn is a given deterministic sequence
meaning the expected demand rate at the given environment

conditions, wn+1 is a standard independent Gaussian random
variable, σ is a positive constant number (which may be a
priory unknown), z̄n is ‘the market demand process’.

The control processes un should be non-anticipative, i.e.,
it should be dependent on the current and past available

information only. All random variables in (2) are assumed to

be {Fn}n=0,1,2...-adapted. To meet the demand the factory,
serving this market, should adjust its production rate {un}
to accommodate any possible changes in the current market

situation.

Defining x1,n := yn, x2,n := z̄n and xn :=[
x1,n x2,n

]⊺
, the system (2) can be represented in the

vector form as

xn+1 = Axn +Bun +R1Φn +Rwn+1 +∆ỹn

A =

[
1 −τ
0 1

]
, B =

[
τ
0

]

R1 :=

[
0
τ

]
, R :=

[
0
τσ

]
, ∆ỹn :=

[
∆yn
0

] (3)

Assuming that only the inventory production level yn is
measurable, one may define the "output of the system" ȳn
as

ȳn = Cxn, C :=
[
1 0

]
(4)

The initial value x0 is supposed to random having a of

bounded second moment, i.e., E
{
‖x0‖2

}
<∞.
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B. Problem formulation

So, the formal formulation problem looks now as fol-

lows: based on measurable (available) data (y0, y1, ..., yn)
design an admissible output-feedback control un =
un (y0, y1, ..., yn) ∈ Rmwhich provides "a good" (in some
probabilistic sense) behavior of the given uncertain model

(2) with a minimum possible inventory production level.

Below we restrict the class of all possible control actions

un = π (Kx̂n) containing the term x̂n, referred to as the
estimate of the state xn at time n and generated by the
recursive filter

x̂n = Ax̂n−1 +Bun + L (yn − Cx̂n−1)
x̂n ∈ R2, L ∈ R2×1, x̂0 is fixed (5)

The projection operator π (·) is defined in (1).
Define the state estimation error is given by en := x̂n−xn,

the extended state vector zn ∈ R4 as zn =
(
x⊺n e⊺n

)⊺
as

well as the quadratic function

Vn = z
T
nPzn, P = P

⊺ > 0 (6)

Definition 1: We say that {xn}n≥0 belongs asymptoti-
cally "on average" to the Robust Attractive Ellipsoid

E(0, Px) :=
{
x ∈ Rn : xTPxx ≤ 1

}
(7)

(with the center in the point x = 0 and the corresponding
ellipsoidal matrix Px = P

⊺
x > 0) if for any initial conditions

of the model (3) and an admissible control strategy {un}n≥0,
generated by (1), (5) and satisfying (6), the following prop-

erty holds:

lim sup
n→∞

E
{
xTnPxxn

}
≤ 1 (8)

Theorem 1 (on the attractive ellipsoid): If for the model

(3)-(4), controlled by the feedback (1) using the state esti-

mates generated by the observer (5), the following matrix

inequalities hold

0 < βI4×4 ≤ P =
[
P11 0
0 P22

]
≤ αI4×4

R⊺P11R ≤ αRI, αR > 0

W̃α,λ (K,L, P ) =






w̃11 w̃12 w̃13 w̃14
w̃21 w̃22 w̃23 w̃24
w̃31 w̃32 w̃33 w̃34
w̃41 w̃42 w̃43 w̃44






(9)

with the sub-blocks

w̃11=

[
w̄11 w̄12
w̄21 w̄22

]
+ 2G⊺K⊺KG+

(
1 + τ2

)
G̃⊺G̃

w̄11 = [A+BK]
⊺
P11 [A+BK]−λ11P11

w̄12 = [A+BK]
⊺
P11 [BK] ; w̄12 = w̄12

w̄22 = [BK]
⊺
P11 [BK] + [A− LC]⊺ P22 [A− LC]

−λ22P22

w̃21 =

[
[A+BK]

⊺
P11 02×2

[BK]
⊺
P11 [A− LC]⊺ P22

]
;

w̃12 = w̃
⊺

21, w̃31 = Ã
TPB̃;

w̃13 = w̃
⊺

31, w̃33 = B̃
⊺PB̃ − ε2I4×4

w̃22 =

[
P11 − ε1I2×2 02×2

02×2 P22 − ε1I2×2

]
,

w̃32 = PB̃; w̃32 = w̃
⊺

32

w̃41 = Ã
TPC̃; w̃14 = w̃

⊺

41, w̃42 = PC̃, w̃24 = w̃
⊺

42

w̃43 = B̃C̃, w̃43 = w̃
⊺

43, w̃44 = C̃
⊺PC̃ − ε3I4×4

0 < Λ = diag [λ11, λ22] , ‖Λ‖ := λ11 + λ22 < 1
G =

[
I2×2 I2×2

]
, G̃ =

[
I2×2 02×2
02×2 02×2

]
,

B̃ =

[
B2×1 02×3
02×1 02×3

]
, C̃ =

[
I2×2 02×2
02×2 02×2

]

Ã =

(
A+BK BK

0 A− LC

)
, ε1, ε2, ε2 > 0

then {xn}n≥0 belongs asymptotically "on average" to the
Robust Attractive Ellipsoid E(0, Px) with

Px = κ
−1 (λ, α)P11

κ (λ, α) :=
1

1− λ
(
Qc + lim

n→∞
sup ε1 ‖Fn‖2 + Ũ

)

Qc = (α+ αR)

Ũ = (τε3 + 2ε2) [1 + u
+]
2

(10)

or, in other words,

lim sup
n→∞

E

{
xTn

[
P11

κ (λ, α)

]
xn

}
≤ 1 (11)

The scheme of the proof. Using the properties of the

random variables discussed above, we may conclude that

fulfilling (9) implies

E {Vn+1/Fn}
a.s
≤ Qc + ‖Λ‖Vn + z̃⊺nW̃α,λ (K,L, P ) z̃n+

(τε3 + 2ε2)
[
1 + max(u+1 , u

+
2 )
]2
+ ε1 ‖Fn‖2

E {Vn+1/Fn}
a.s
≤ Qc + ‖Λ‖Vn+

(τε3 + 2ε2) [1 + u
+]
2
+ ε1 ‖Fn‖2

as well as lim sup
n→∞

E {Vn} ≤ κ (λ, α), and, finally, (11) that
completes the proof.

III. THE AVERAGED ELLIPSOID

Introduce the following averaged quadratic form or the

"averaged ellipsoid" Ṽn given by Ṽn := n−1
n∑

t=1

Vt which

can be also expressed as

Ṽn:= n
−1

n∑

t=1

zTt Pzt=tr {E {Zn}P}+tr {ΘnP}

Zn:= n
−1

n∑

t=1

ztz
T
t , ∆t:= ztz

T
t −E

{
ztz

T
t

}

Θn= n
−1

n∑

t=1

ztz
T
t −E {Zn}= n−1

n∑

t=1

∆t

(12)
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and {zn}n≥1 is generated by the recursion

zn+1= Ã (K,L) zn+Fn+

B̃ [π (Kx̂n)−Kx̂n] +C̃∆ỹn+w̃n+1
(13)

Here Ã are, in fact, the functions of K and L, namely, Ã
= Ã (K,L). Let us then show that under some conditions
Θn

a.s.→
n→∞

0, or, in other words, demonstrate that the Strong

Law of Large Numbers (SLLN) in its matrix form holds.

A. Matrix version of SLLN

The sufficient condition for the matrix form of the SLLN

are given in the following theorem.

Theorem 2 (Matrix version of SLLN): Let the matrix ∆n
be defined as in (12) so that the following series converges:

∞∑

n=1

(
σn
n

√
Rn−1 +

1

n2
σ2n

)
<∞, R0 := 0 (14)

where
σn := tr {E {∆n∆⊺n}}

Rn := n
−2

n∑

t=1

n∑

s=1

tr {E {∆t∆⊺s}}
(15)

Then

Θn
a.s.→
n→∞

0 and E

{
‖Θn‖2

}
a.s.→
n→∞

0 (16)

The proof of this theorem can be found in [1] as the

extension of Theorem 8.10 from [17].

B. Analysis of the double-averaged covariation Rn

The following intermediate results hold.

Theorem 3: If under the conditions of Theorem 1 addi-

tionally the 4-th conditional moments are bounded, i.e.,

E

{
‖wn‖4

}
≤ m4,w <∞ (17)

there exist constants ι1, ι2and λ ∈ [0, 1) satisfying

0 < τ 1 < λ
−2 1− τ 2
1 + τ−12

, τ 2 ∈ (0, 1)

such that the following inequality holds

lim sup
n→∞

E
{
V 2n
}
≤ c

1− λ̃
λ̃ :=

1 + τ−12
1− τ 2

τ 1λ
2, c =

(
1 + τ−12

)
τ
−1
1 β̄

2
n

(18)

Using the obtained estimate (18) we are ready to formulate

the main result of this subsection.

Theorem 4: Under the conditions of Theorem 3 the fol-

lowing upper estimate is valid:

Rn ≤ 4 ‖R‖4 (m4,w)n
−1 = O

(
n−1

)
(19)

So, based on this upper estimate one can conclude that

SLLN holds for the considered class of random processes.

Proposition: Under the conditions of Theorem 3 the prop-

erty (16) holds.

Indeed, by the upper estimate (19) and taking into account

that

lim sup
n→∞

σ2n ≤ lim sup
n→∞

E
{
V 2n
}
≤ c

1− λ̃
<∞

it follows
∞∑

n=1

(σn
n

√
Rn−1 +

1
n2σ

2
n

)
≤

Const
∞∑

n=1

(
1
n

√
O (n−1) + 1

n2

)
<∞

This means that the conditions of Theorem 2 are fulfilled,

and hence, the SLLN holds for the considered processes.

C. Analytical representation of the "averaged" attractive

ellipsoid

Taking an upper limit of (6) and using the representation

(12) as well as the property (16) we get

lim sup
n→∞

Ṽn = lim sup
n→∞

n−1
n∑

t=1

Vt

a.s.
= lim sup

n→∞

tr {E {Zn}P} =
lim sup
n→∞

tr
{
P 1/2E {Zn}P 1/2

}
=

tr
{
P 1/2KP 1/2

}
= tr {KP} = tr

{
K1/2PK1/2

}

where K := lim sup
n→∞

E {Zn} is the "upper limit -covariance"
matrix of the extended error-vector zn.
Theorem 5 (The main result): Under the conditions of

Theorem 3 one can guarantee (with probability one) that

lim sup
n→∞

Ṽn
a.s.
= lim sup

n→∞

E

{
Ṽn

}
=

tr
{
K1/2PK1/2

}
≤ ϑ

1− λ := κ (λ, α)
(20)

where λ is defined in (18) and ϑ := lim sup
n→∞

β̄n.

D. Averaged attractive ellipsoid

From the relations (20) it follows that the "averaged"

attractive ellipsoid E(0, Pδ) is defined by the matrix Pδ =
P11

κ(λ,α) . In other words, the following inequality holds:

lim sup
n→∞

n−1
n∑

k=1

xTk

[
P11

κ (λ, α)

]
xk ≤ 1

IV. LMI REPRESENTATION OF THE CONSTRAINT

OPTIMIZATION PROBLEM

If one wishes to "minimize" the inventory production level

xn it make since to "maximize"
P11

κ (λ, α)
by K and L

and other scalar parameters in some "matrix" sense. Usually

(see, for example, [5], [12], the matrix gains K and L
are suggested to be found as the solution of the following

optimization problem

trP11
κ (λ, α)

→ sup
P1>0,K,L;λ∈[0,1)

(21)

Our aim here is to find the control gain matrix K and

the observer gain matrix L, providing a "good enough"
stabilization as well as state estimation of the system for

a wide class of nonlinear systems (3). Obviously, the matrix

inequality W̃ < 0 is nonlinear with respect to the matrix
arguments P1,K, L even for fixed scalar parameters λ, α.
Notice that all diagonal blocks contain the quadratic matrix
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terms which significantly complicates the numerical proce-

dure resolving this inequality. Estimation from above each

this block permits to simplify it up to a linear one. To do that

the following consideration is applied. Now for the matrix

(9), define the new matrix W̆ := −W̃ where now W̆ > 0,
and using the Schur’s complement for the symmetric block-

matrix S =

[
S11 S12
S⊺12 S22

]
to conclude that S > 0 providing

S11 > 0, S22 > S⊺12S
−1
11 S12 which (among others matrix

inequalities) leads to:

w̄22= − [(BK)⊺ P11 (BK)− (A− LC)⊺ P22 (A− LC)]
+λ22P22 > 0

(22)

Suppose that for some nonnegative matrix Q1 ∈ Rn×n we
have (BK)

⊺
P11 (BK) < Q1, or, equivalently (again by the

Schur’s complement implementation):

[
Q1 BK

(BK)
⊺

P−111

]
≥ 0⇐⇒

[
In×n 0
0 P11

]

[
Q1 BK

(BK)
⊺

P−111

] [
In×n 0
0 P11

]
≥ 0

Y1=KP1⇔
[

Q1 BY1
Y1B

⊺ P11

]
≥ 0

Also, by the same reasoning, fulfilling

(A− LC)⊺ P22 (A− LC) < Q2 ∈ R2n×2n

is equivalent to

[
Q2 A− LC

(A− LC)⊺ P−122

]
≥ 0 Y2=P2L⇔

[
Q2 AP22 − Y2C

(AP22 − Y2C)⊺ P22

]
≥ 0

So, (22) becomes

w̄22 > −2Q1 − 2Q2 + λ22P22 > 0

By the same reasoning for w̄11 if

(A+BK)
⊺
P11 (A+BK) < Q3

for some Q3 > 0 , then
[

Q1 A+BK
(A+BK)

⊺
P−111

]
≥ 0⇔

[
Q1 AP11 +BY1

(AP11 +BY1)
⊺

P11

]
≥ 0

which leads to

w̄11 > −2Q3 + λ11P11 > 0

and for 2G⊺K⊺KG for some Q4 > 0 we have
[

Q4 KG
G⊺K⊺ I2×2

]
≥ 0

Notice that these matrix inequalities for the fixed scalar

parameters α, λ, β, ε1, ε2 and ε3 become to be LMIs. They
can be solved using the MATLAB toolboxes LMItoolbox,

SeDuMi and Yalmip. Our main optimization problem can

be also solved using the following two-steps procedure:

first- we fix the scalar parameters α, λ, β, ε1, ε2and ε3 and
solve the our problem with respect to the matrix variables

which satisfy LMI- constraints.

second - for the found matrix variables Y1, P11 and
Y2, P22 we solve our optimization problem only with respect
to scalar parameters α, λ, β, ε1, ε2and ε3 (usually using a
simple multidimensional grid search method).Iterating this

process we finally find the solution α∗, λ∗, ε∗1, ε
∗
2, ε

∗
3and

Y ∗1 = KP ∗11, P
∗
11 andY

∗
2 = P ∗22L,P

∗
22 from which the

optimal game matrices K∗ and L∗ can be found as

K∗ = Y ∗1 (P
∗
11)

−1
, L∗ = (P ∗22)

−1
Y ∗2

V. NUMERICAL EXAMPLES

Take in (3) the sampling rate τ = 0.05 and

A =

[
1 −0.05
0 1

]
, B =

[
0.05
0

]
, C =

[
1 0

]

R1=

[
0
0.05

]
, R =

[
0

0.025

]
, σ = 0.5

√
10= 1.5811

The optimization procedure described above leads to

α∗ = 0.1599, β∗ = 1.17, λ∗1 = 0.01, λ
∗
2 = 0.23

α∗R = 0.021, ε
∗
2 = 0.41, ε

∗
2 = 2.76, ε

∗
3 = 3.22

so that the positive function κ is equal to

κ (λ, α) :=
1

1− λ∗
(
Qc + lim

n→∞
sup ε∗1 ‖Fn‖

2
+ Ũ

)

= 2.2066, Qc = (α
∗ + α∗R) = 0.181

The matrix parameters P,K and L (obtained by the appli-
cation of the suggested approach) realizing the robust output

linear controller are as follows:

P ∗=






0.1004 0.0083 0 0
0.0083 0.0522 0 0
0 0 0.0246 0.0062
0 0 0.0062 0.0454






K∗=
[
−0.3230 −4.2294

]
, L∗=

[
1.7980
0.0109

]

The fig 3 show the inventory production level x1. and
the similar behavior takes place for the state x2 . It can be
seen from these figures that the closed loop system has a

good performance maintaining the control dynamics close

to the state. The fig 4 shows that the trajectory of errors

asymptotically converges to the corresponding ellipsoid. and

shows that the trajectory of the inventory product level

asymptotically converges to the corresponding ellipsoid.

Introduce the cost function h0 (y) defined by

h0 (y) =
ℓ1
2

[
y − y+

]2
+
+
ℓ2
2
[−y]2+ (23)

where the term [y − y+]2+ corresponds to the losses, related
to an extra production storage, the term [−y]2+ reflects the
losses due to a deficit and ℓ1 , ℓ2 are two nonnegative
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Fig. 3. State estimate errors and inventory product trajectories

weighting parameters. To compare the quality of the obtained

controller with K∗ and L∗, consider 2 additional cases with
K and L closed to K∗, L∗ (referred below to as Case 3):

Case 1 : K1=
[
−0.6574 −8.6098

]
, L1=

[
4.6583
0.2821

]

Case 2 : K2=
[
−0.9458 −12.3861

]
, L2=

[
6.7014
0.0405

]

Fig.4 shows the cost function h0 (y) (23)with ℓ1 = ℓ2 = 4.
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Fig. 4. The cost function h0 (y).

One can see that selection K = K∗, L = L∗ leads to a
better quality of the inventory production level.
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