
Distributed Robust Control of Spatially Interconnected Systems with
Parameter Uncertainty

Huang Huang and Qinghe Wu

Abstract— This paper addresses the problem of robust
control of spatially interconnected systems (SISs) subject to
both exogenous disturbances and time-varying norm-bounded
parameter uncertainties. A sufficient condition to the well-
posedness, stability and attractiveness of an SIS with respect
to all admissible uncertainties is presented in terms of a set
of matrix inequalities. For the synthesis of distributed dynamic
output feedback controllers, the nominal system is expanded
in its output space so as to eliminate the uncertainties in the
system matrices. In reference to the standard distributed scaled
H∞ control, the synthesis of distributed robust H∞ controllers
is proposed based on the system model in the expanded space.
Numerical examples validate the effectiveness of the method.

I. INTRODUCTION

In recent years, large scale spatially interconnected sys-
tems (SISs) have received extensive research due to the
wide range of applications in power systems, multi-agent
cooperative systems, web-transport systems, and automated
highway systems. To deal with this kind of large-scale
systems, up till now, most literatures have been focused on
decentralized control strategies[2], [5], and only in recent
years, some scholars have begun to explore distributed con-
trol architecture from various perspectives [4], [7], [1].

Among other remarkable literatures to date, D’Andrea,
Langbort and Bamieh, together with their colleagues, have
played the leading role in the discussion over distributed
control of SISs. Bamieh et al. focused mainly on distributed
parameter systems that were modeled as linear infinite-
dimensional systems[1]. Fourier transforms were introduced
to diagonalize the relevant operators such that the trans-
formed system was turned to a coupled family of standard
finite-dimensional linear time-invariant systems. Later on,
reference [12] considered a wider range of SISs that were
spatially variant, and introduced spatially decaying operators
in the cost function due to which the receding horizon
controllers appeared to inherit spatial locality. D’Andrea et
al.[4][8] modeled the SIS as a multidimensional system in
both continuous time domain and spatial domain by the
introduction of a spatial shift operator. The synthesis of the
controllers is based on a set of convex linear matrix inequal-
ities (LMIs) that are computational tractable and could be
implemented in the LMI-Toolbox. Moreover, a more generic
situation with subsystems that were heterogenous and were
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interconnected over an arbitrary network topology was dis-
cussed in [7] based on the dissipative theory. Most recently,
an interesting work was reported in [13]. Based on the
sequentially semi separable system model, the computational
complexity for controllers synthesis was minimized.

Inspired by [7] and [3], this paper aims to introduce
another type of robustness into the SIS with subsystems
interconnected over an arbitrary network topology. we focus
on the synthesis of distributed dynamic output feedback
controllers such that the overall system is well-posed, ex-
ponentially stable and H∞ contractive to both exogenous
disturbances and time-varying norm-bounded parameter un-
certainties. In parallel to [15], we refer to this problem as the
distributed robust H∞ control. Although a great efforts afore-
mentioned have been made on the synthesis of distributed H∞
controllers, to our best knowledge, this problem has not yet
been addressed in any of the related literatures. The results
in this paper can be viewed as an extension of [7] and an
analogy of the result in [15].

The rest of the paper is organized as follows: Section II
presents some supporting results on SISs reported in the work
[7] and several other fundamental inequalities. In Section
III, sufficient conditions for well-posedness, stability and H∞
performance of the closed loop system over both directed and
undirected interaction topologies are proposed in terms of
LMIs. The synthesis of distributed controllers is discussed
in Section IV. Section V presents numerical examples to
illustrate the validity of the proposed method, and finally
Section VI gives the conclusions.

II. PRELIMINARY

Let R and R+ denote the set of real numbers and the
set of positive real numbers respectively. The set of m× n
real matrices is Rm×n and the set of real vectors is Rm. The
concatenation of vectors xi ∈ Rmi×1 is denoted by cat

i∈N
(xi).

Similarly, diag
i∈N

(ai) where ai ∈ R denotes a N ×N diagonal

matrix with ai being the ith diagonal entry. A set of real
symmetric matrices is Rn×n

S , or abbreviated as Rn
S. The

set of positive(negative) definite real symmetric matrices is
Rn×n

S+ (Rn×n
S− ), and the set of n× n skew-symmetric matrices

is Rn×n
K . Let En ∈ Rn×n be the identity matrix. When its

dimension is clear from context, the superscript is omitted.
Moreover, the ith column of E is denoted by E(i). For
a matrix A ∈ Rm×n, its transpose is AT and we have the
Hermitian operator acts on A: He(A) = A+AT .

The state-space model of the the ith subsystem takes the
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form  ẋ(t)
w(t)
z(t)

 =

AT T AT S BT d
AST ASS BSd
CT CS D

x(t)
v(t)
d(t)

 (1)

where subscript i is omitted and vector xi(t) ∈ Rmi . Vectors
vi(t) and wi(t) ∈ Rli are interconnected signals adjacent to
subsystem i and are further divided into vi = cat

j∈V (i)
(vi j)

and wi = cat
j∈V (i)

(wi j) where V (i) is the set of neighbors of

subsystem i, vi j ∈Rli j and wi j ∈Rli j with li =∑ j∈V (i) li j being
the input and output signals that flow between subsystems i
and j. An SIS that interconnected over an undirected graph
G satisfies vi j = w ji Otherwise the SIS is a directed system.

All through this paper, discussions are carried out on each
individual subsystem i. For the sake of simplicity, in most
of cases, subscript i is omitted.

In an SIS, well-posedness, stability and contractiveness are
the three crucial indexes we use to evaluate the system per-
formance. Langbort et al. in [7] have concluded a sufficient
condition for those three indexes.

Lemma 2.1: The SIS (1) is well-posed, stable and con-
tractive if, for each individual subsystem, inequality

E 0 0
AT T AT S BT d
AST ASS BSd

0 E 0


∗

0 XT 0 0
⋆ 0 0 0
⋆ ⋆ S11 S12
⋆ ⋆ ⋆ S22




E 0 0
AT T AT S BT d
AST ASS BSd

0 E 0


+

[
CT CS D
0 0 E

]∗ [E 0
⋆ −E

][
CT CS D
0 0 E

]
< 0 (2)

is satisfied where ⋆ follows the symmetry of the matrix and
the scalar matrices are

Si
11 =− diag

j∈V (i)
(X i j

11), X i j
11 ∈

{
Rli j×li j

S , G ∈ Ḡ
Rli j×li j

S− , G ∈ G⃗

Si
12 =

− diag
j∈[1,i]∩V (i)

X i j
12 0

0 diag
j∈[i,N]∩V (i)

(X ji
12)

∗


Si

22 = diag
j∈V

X ji
11, XT ∈ Rmi×mi

S+ ,∀i, j ∈V (i)

X i j
12 ∈


Rli j×li j , ∀i ≥ j ∈V (i) and G ∈ Ḡ
Rli j×li j

K , ∀i = j and G ∈ Ḡ
0, G ∈ G⃗

(3)

It is highly recommended that readers referred to [7] for a
detailed discussion of the three indexes we consider and the
proof of Lemma 2.1.

The following two inequalities are well-known in the
research of parameter uncertainties.

Lemma 2.2 ([6]): Let D ∈ Rm×n, M ∈ Rm×n and F ∈
Rm×n. Then for an arbitrary ε > 0, inequality

He(DFM)≤ ε−1DD∗+ εM∗M (4)

is satisfied if F is of appropriate dimensions and satisfies
F∗F ≤ E.

Lemma 2.3 ([6]): Let K ∈ Rm×n and Z ∈ Rn
S+ then there

exists F ∈Rm×n of appropriate dimension such that F∗F ≤E
and

K +M∗F∗D∗ZDFM ≤ 0 (5)

if and only if there exists a scalar ε > 0 such that[
K + ε−1M∗M 0

0 −Z−1 + εDD∗

]
≤ 0 (6)

III. ANALYSIS

In real-time applications, parameter uncertainties exist in
the state-space model of an SIS, and have appeared in
abundant of literatures in various forms. In one of the popular
forms, the uncertainty is linear convex bounded[14]. In other
words, the uncertainty is characterized by a polytopic model.
A more general case is characterized by the norm-bounded
uncertainties as seen in a lot of literatures [10], [11]. In
this section, we focus on uncertainties under norm-bounded
constraints.

To focus on the discussion of parameter uncertainties,
in this paper we only consider parameter perturbations on
matrices A• and B•. We will discuss the more complete case
in our later work.

With perturbations acting on matrices A• and B•, the
system model is then ẋ(t)

w(t)
z(t)

=

AT T +∆AT T AT S +∆AT S BT d +∆BT d
AST +∆AST ASS +∆ASS BSd +∆BSd

CT CS D

x(t)
v(t)
d(t)


(7)

where the uncertainties are structured by[
∆AT T ∆AT S ∆BT d
∆AST ∆ASS ∆BSd

]
=

[
HT
HS

]
F(t)

[
PT PS Pd

]
(8)

with F(t) being the matrix-valued uncertainty satisfying

F(t)∗F(t)≤ E,∀t ∈ {0,R+} (9)

The matrices H•,P• are known real matrices with appropriate
dimensions characterizing how uncertainty F(t) affects the
nominal system. Uncertainties in (8) are convex in F(t).

We have the following theorem that are inherited from the
scaled H∞ control for nominal systems to evaluate an SIS.

Theorem 3.1: An SIS with interconnected subsystem (7)
under norm-bounded perturbations (8) and (9) is well-posed,
stable and contractive if, for each individual subsystem i,
there exist symmetric matrices XT ,S11,S12 satisfying (3) and
scalars γ ,ε1,ε2 ∈R+ such that the following LMI is satisfied:

M0 +N0 P∗ R1 R2 0
⋆ −α−1I 0 0 0
⋆ ⋆ −ε−1

1 I 0 0
⋆ ⋆ ⋆ −ε−1

2 I 0
⋆ ⋆ ⋆ ⋆ −(S11)

−1 + γHSH∗
S

≤ 0

(10)
with

R1 =

XT HT
0
0

 ,R2 =

 A∗
ST S11

A∗
SSS11 +S21

B∗
SS11

HS,
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P =
[
PT PS Pd

]
and α = ε−1

1 + ε−1
2 + γ−1. Matrices M0

and N0 designate the first and second term in the left-hand
side of inequality (2), respectively.

Proof: When system matrices of a nominal SIS is
perturbed by (8) and (9), the criterion matrix in (2) then
contains the disturbance items in addition to the nominal
ones as shown in (11) at the top of the next page.

According to Lemma 2.2, (11) is negative semi-definite if

M0 +N0 +(ε−1
1 + ε−1

2 )P∗P+

P∗F∗(t)H∗
S S11HSF(t)P+ ε1R1R∗

1 + ε2R2R∗
2 ≤ 0

(12)

where ε1,ε2 are arbitrary positive scalars. Under the assump-
tion that S11 ∈Rn

S+ and Lemma 2.3, condition (12) is satisfied
if and only if there exist α,γ > 0 such thatM0 +N0 + ε1R1R∗

1

+ε2R2R∗
2 +αP∗P

0

0 −(S11)
−1 + γHSH∗

S

≤ 0 (13)

Now the condition (10) can be obtained based on the Schur
complement equivalence.

Thus condition (10) is sufficient to the wellposedness,
stability and contractiveness of both the nominal system and
the uncertain system.

The criterion (10) is convex in the scaling matrices.
With (2) embedded, inequality (10) provides us an effective
way to determine the stability and H∞ performance of an
SIS subject to norm-bounded perturbations. Note that (13)
is more restrictive than the condition given in [7]. The
extra restrictions are caused by the parameter perturbations
represented in the form R1,R2,P and HS.

In Lemma 2.1, when considering directed graph Ḡ, the
scaling matrix S11 is defined to be an arbitrary symmetric
one. However for a parameter perturbed SIS, matrix S11 is
confined by S11 > 0 so as to admit to Lemma 2.3. This
restriction may add to conservatism as can be clearly showed
by setting HT = 0 and HS = 0 in (10). One the other hand,
when subsystems in an SIS are communicated over a directed
graph, this conservativeness appears simultaneously both in
criterions for the nominal system and the perturbed system.

IV. SYNTHESIS

In a closed-loop interconnected system, control signal u(t)
is added to each subsystem (1), and the nominal subsystem
i is cast into

ẋ(t)
w(t)[
z(t)
y(t)

]
=

A Bd Bu
Cz Dzd Dzu
Cy Dyd Dyu




x(t)
v(t)[
d(t)
u(t)

]
 (14)

In addition to perturbations (8) and (9), we have[
∆BTu
∆BSu

]
=

[
HT
HS

]
F(t)Pu (15)

The controllers are assumed to maintain exactly the same
dynamic structures as their corresponding plants while share

the unique network topology. By canceling the intercon-
nected signals y and u, The ith uncertain closed-loop system
is captured by

 ẋG(t)
ẋK(t)
wC(t)


z(t)

=

[
ĀC B̄C

C̄C D̄C

]
xG(t)

xK(t)
vC(t)


d(t)

 (16)

with [
ĀC B̄C

C̄C D̄C

]
=U

A+∆A 0 Bd +∆Bd
0 0 0

Cz 0 Dzd

U∗

+U

Bu +∆Bu 0
0 E

Dzu 0

V ΣV ∗
[
Cy 0 0
0 E Dyd

]
U∗

Σ =

AK
T T AK

T S BK
T

AK
ST AK

SS BK
S

CK
T CK

S DK

 ,V =
[

E(2) E(1)
]

U =
[

E(1) E(3) E(2) E(4) E(5)
]

and lCi = li + lK
i ,m

C
i = mi +mK

i .
Let

H̄T =

[
HT
0

]
, P̄T =

[
PT 0

]
, P̄u =

[
0 0 Pu

]
P̄S =

[
PS 0

]
, P̄d = Pd , H̄S =

[
HS
0

]
(17)

Proposition 4.1: A closed-loop system with subsystems
(16) is well-posed, stable and contractive if, for each indi-
vidual subsystems, there exist symmetric matrices XC

T ∈Rn
S+

, SC
11 ∈ Rm

S+, SC
12 ∈ Rm and scalars λ ,ε1,ε2 ∈ R+. such that

the following matrix inequality is satisfied.MC
0 +NC

0 + ε1RC
1 (R

C
1 )

∗+ ε2RC
2 (R

C
2 )

∗

+(ε−1
1 + ε−1

2 +λ−1)(PC)∗PC 0

0 −(SC
11)

−1 +λ H̄SH̄∗
S

≤ 0

(18)
where

RC
1 =

XC
T H̄T
0
0

 ,RC
2 =

 (AC
ST )

∗SC
11

(AC
SS)

∗SC
11 +(SC

12)
∗

(BC
S )

∗SC
11

 H̄S (19)

and the scaling matrices in the closed-loop criterion matrix
MC

0 +NC
0 is

SC = P


SP

11 SP
12 SPK

11 SPK
12

⋆ SP
22 (SPK

12 )∗ SPK
22

⋆ ⋆ SK
11 SK

12
∗ ∗ ∗ SK

22

P∗ (20)

P =
[
E(1) E(3) E(2) E(4)

]
(21)

with S•11,S
•
12 and S•22 admitting the same structures as the

open loop ones shown in (3).
Eq. (18) is non-convex in the controller matrices and the
scaling matrices. In [7] the sufficient and necessary condition
for the existence of distributed controllers of the nominal
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M0 +N0 +
[
0 (HT F(t)P)∗

][ 0 XT
XT 0

][
0

HT F(t)P

]
+

I A∗
T T

0 A∗
T S

0 B∗
T

[
0 XT

XT 0

][
0

HT F(t)P

]

+
[
0 (HT F(t)P)∗

][ 0 XT
XT 0

][
I 0 0

AT T AT S BT

]
+
[
(HSF(t)P)∗ 0

][S11 S12
⋆ S22

][
AST ASS BS

0 I 0

]

+

A∗
ST 0

A∗
SS I

B∗
S 0

[
S11 S12
⋆ S22

][
HSF(t)P

0

]
+
[
(HSF(t)P)∗ 0

][S11 S12
⋆ S22

][
HSF(t)P

0

]

= M0 +N0 +He

XT 0 0
0 0 0
0 0 0

HT
0
0

F(t)P

+P∗F∗(t)H∗
S S11HSF(t)P+He

A∗
SSS11HSF(t)P+

 0
S21HSF(t)P

0

(11)

closed-loop system is concluded based on the elimination
lemma. In the following context, we will extend results
therein to interconnected system subject to norm-bounded
perturbations.

Theorem 4.1: A closed-loop SIS with subsystems (16) un-
der norm-bounded parameter perturbations (15), (8) and (9)
is well-posed, stable and contractive if, for each individual
subsystems, there exist XC

T ∈Rn
S+ , SC

11 ∈Rm
S+, SC

12 ∈Rm and
γ,ε1,ε2 ∈ R+ such that the following two properties holds:

i 
E 0 0

AC
T T AC

T S BC
T d

AC
ST AC

SS BC
Sd

0 E 0


∗

X̄T XC
T 0 0

XT 0 0 0
0 0 S̄C

11 S̄C
12

0 0 ⋆ S̄C
22




E 0 0
AC

T T AC
T S BC

T d

AC
ST AC

SS BC
Sd

0 E 0


+

CC
T CC

S DC

KT KS Kd
0 0 E

∗E 0 0
0 αE 0
0 0 −E

CC
T CC

S DC

KT KS Kd
0 0 E

< 0

(22)

ii
−(SC

11)
−1 + γH̄∗

S H̄S ≤ 0 (23)

where X̄T = ε1XC
T H̄T H̄∗

T XC
T ,[

KT KS Kd
]
=[

P̄T P̄S P̄d
]
+ P̄uΣV ∗

[
Cy 0 0
0 E Dyd

]
U∗ (24)

and the scaling matrices[
S̄C

11 S̄C
12

⋆ S̄C
22

]
=

[
SC

11 SC
12

⋆ SC
22

]
+ε2

[
SC

11
(SC

12)
∗

]
H̄S(H̄S)

∗
[

SC
11

(SC
12)

∗

]∗
(25)

with SC given in (20), and α = γ−1 + ε−1
1 + ε−1

2 .
Proof:

(RC
2 )(R

C
2 )

∗ =

 (AC
ST )

∗SC
11

(AC
SS)

∗SC
11 +(SC

12)
∗

B∗
SSC

11

 H̄SH̄∗
S

 (AC
ST )

∗SC
11

(AC
SS)

∗SC
11 +(SC

12)
∗

B∗
SSC

11

∗

=

[
AC

ST AC
SS BC

S
0 E 0

]∗ [ SC
11

(SC
12)

∗

]
H̄SH̄∗

S

[
SC

11
(SC

12)
∗

]∗ [AC
ST AC

SS BC
S

0 E 0

]
(26)

RC
1 (R

C
1 )

∗ =

XC
T H̄T H̄∗XC

T 0 0
0 0 0
0 0 0


=

[
E 0 0

AC
T T AC

T S BC
T d

]∗ [XC
T H̄T H̄∗XC

T 0
0 0

][
E 0 0

AC
T T AC

T S BC
T d

]
(27)

Recall the closed-loop system matrices we have[
ĀC

T T ĀC
T S B̄C

B
]
=
[
AC

T T AC
T S BC

T
]

+ H̄T F̄(
[
P̄T P̄S P̄d

]
+ P̄uΣV ∗

[
Cy 0 0
0 E Dyd

]
U∗) (28)

Thus the closed form of the perturbation matrix E in (13) is
recast into

PC =
[
P̄T P̄S P̄d

]
+ P̄uΣV ∗

[
Cy 0 0
0 E Dyd

]
U∗ (29)

In accordance to (26), (27) and (29), block (1,1) in (18) can
then rewritten into the form of (22) with the substitution of
the scaling matrices in (25), which finishes the proof.

The matrix inequality (22) in both the controller matrices
and the scaling matrices is a non-convex one and is NP-
hard. An effective way to solve this problem is introduced
in [7] known as the Elimination Lemma. However when
uncertainty (15), (8) and (9) enter the SIS, the criterion
inequality (22) is no longer the standard form of the quadratic
matrix inequality considered in [7]. Moreover, condition (22)
is non-convex in XC

T , SC
11 and SC

12 even when Σ is known. In
the following context, we will make adjustments upon (22)
and propose an algorithm to solve this problem.

We define an expanded closed-loop matrix

Σ̄cl =


AC

T T AC
T S BC

T
AC

ST AC
SS BC

S
CC

T CC
S DC

KT KS Kd

= Ū


A 0 Bd
0 0 0

Cz 0 Dzd[
PT PS

]
0 Pd

Ū∗

+Ū


Bu 0
0 E

Dzu 0
u 0

V ΣV ∗
[
Cy 0 0
0 E Dyd

]
U∗ (30)
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with Ū =
[
U E(6)

]
being the expanded matrix of U . If we

set

Ĉz =

[
CT z CSz
PT PS

]
, D̂zd =

[
Dzd
Pd

]
, D̂zu =

[
Dzu
Pu

]
(31)

we get a compact version of the system matrix Σ̄cl that is
an affine function of Σ. This allows us to bridge the gap
between the robust H∞ control and scaled H∞ control by
means of expansion in the output space.

Algorithm 4.1 (Controller Construction): Based on (22)
and (23), the controllers construction for each subsystem i
proceeds as follows:

1) Get the expanded output matrices Ĉz, D̂zd and D̂zu in
(31).

2) Let S̄C
11 ∈Rn×n

S+ , solve the standard controller synthesis
problem:

max
α>0

α

s.t.

E 0 0
AC

T T AC
T S BC

T d

AC
ST AC

SS BC
Sd

0 E 0
ĈC

T ĈC
S D̂C

0 0 E



∗

0 XC
T 0 0 0 0

XT 0 0 0 0 0
0 0 SC

11 SC
12 0 0

0 0 ⋆ SC
22 0 0

0 0 0 0 Ē 0
0 0 0 0 0 −E


·



E 0 0
AC

T T AC
T S BC

T d

AC
ST AC

SS BC
Sd

0 E 0
ĈC

T ĈC
S D̂C

0 0 E


< 0

(32)

where

Ē =

[
E lCi 0
0 αEmC

i

]
over the expanded closed-loop subsystems (30). The
standard synthesis process was demonstrated in [7].

3) Let X̃ = SC
11, G̃ = ε2H̄SH̄∗

S and H̃ = S̄C
11, find the max-

imal ε2 such that when G̃ ∈ Rn×n
S+ and H̃ ∈ Rn×n

S+ , the
algebraic Riccati equation (ARE)

X̃ + X̃G̃X̃ − H̃ = 0 (33)

has solution X̃ ∈ Rn×n
S+ . Note that matrix “A” in the

standard ARE is chosen to be a stable one A =− 1
2 E,

which ensures the existence of X̃ .
4) Find maximal γ > 0 such that condition (23) is satis-

fied. Condition SC
11 > 0 ensures the existence of γ .

5) Find a maximal scalar ε1 > 0 such that

(32)+

ε1XC
T H̄T H̄∗

T XC
T 0 0

0 0 0
0 0 0

< 0 (34)

6) If α > γ−1 + ε−1
1 + ε−1

2 , set

α = γ−1 + ε−1
1 + ε−1

2 (35)

and condition (22) is still satisfied.
Remark 4.1: The scaling matrices we derived from step

2) is not the one for the nominal system. Thus we have to
solve equation (25) so as to generate the scaling matrix SC

11,
and further applied it to condition (23). As we neglected the
element X̄T in step 2), we should validate the controllers we
picked, which is carried out in step 5). When the optimal
value of α in step 2) yields (35), the distributed controller
derived during step 2) satisfies both the inequality (22) and
(23).

Remark 4.2: This synthesis procedure may fail at step
6) if the inequality is not satisfied. In order to avoid this
situation, when determining the parameters α , γ , ε1 and
ε2, we introduced the optimization operations. Although this
dose not guarantee the success of the procedure, according to
numerous examples we worked on, failure of the procedure
is effectively avoided by the set of appropriate parameters
α , γ , ε1 and ε2.

Note that the controllers for the expanded system has the
same dimension as that of the nominal system. Algorithm
1 guarantees well-posedness, stability and contractiveness of
the nominal SIS as well.

The crucial steps in the algorithm are the expandation
(Step 1)) and the synthesis (Step 2)). The synthesis tech-
niques of robust controllers for expanded system is borrowed
from [7] with minor differences in maximization of γ .
Thanks to [7], the computational tractable method therein
was transplantable.

Recall Theorem 3.1, for an SIS with subsystems intercon-
nected over directed networks, Algorithm 1 differs in step
2) and step 5) by setting SC

12 = 0 and lK
i = li, compared to

lK
i = 3li for undirected case. The other steps are retained.

This fact indicates that the proposed synthesis process of
uncertainty SIS accommodate to the scaled H∞ synthesis[7]
in an effective manner.

V. ILLUSTRATIVE EXAMPLE

In this section, we validate the effectiveness of Algorithm
1 for subsystems interconnected over an undirected network.

Consider an undirected SIS consists of three intercon-
nected subsystems over network topology of

M =

1 1 1
1 0 0
1 0 2

 (36)

such that vi j = mi jw ji.
The exogenous disturbance satisfy d2 = d3 = 0 and d1 is

the unit-pulse signal with a width of 0.2sec.
Following the controllers construction process in Section

IV, the scalars were set to be ε1
1 = 57.76, ε2

1 = 44.82,
ε3

1 = 55.42, ε i
2 = 1, i = 1,2,3 and γ = 0.6, i = 1,2,3. We

carried out 20 times experiments with randomly generalized
uncertainty matrix F i(k) : ∥F i(k)∥2 ≤ 1,∀k ∈ [1,20], i ∈ [1,3]
on each subsystem in addition to exogenous unit-pulse signal
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TABLE I: Perturbations and the corresponding H∞ gain

k 2 5 8 11 14 17 · · ·
∥F∥2 0.4462 0.3392 0.2263 0.3493 0.1714 0.5016 · · ·
∥T̄zd∥∞ 0.8005 0.7914 0.7907 0.7958 0.7861 0.8116 · · ·
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Fig. 1: System performance of the closed-loop uncertain
system over undirected networks

on subsystem 1. Under the invariant distributed controllers,
the resulting H∞ gain of the closed-loop SIS with respect
to the mean perturbations ∥F(k)∥2 = ∑i∈[1,3] 1/3∥F i(k)∥2 is
shown in Table I and Fig. 1(a). In Fig. 1(a), the solid line
with y ≡ 0.7913 denotes the mean value of ∥T̄zd∥∞ while the
dashed line with y≡ 0.7526 represents the value of ∥Tzd∥∞ of
the nominal system . The distributed controllers we designed
restricted the H∞ gain under parameter uncertainties within
a scale of 7.8% of the nominal one.

The system response of both the nominal and the uncertain
closed-loop SIS is shown in Fig. 1(b), where the dashed
lines represent the nominal system response while the solid
lines denote the system response against norm-bounded un-
certainty. With the distributed robust controllers, the outputs
of the system with or without uncertainty almost coincide
with each other, indicating that the effects of parameter
uncertainty are diminished into an satisfactory scale under
the distributed controllers we developed.

VI. CONCLUSION

In this paper, based on results from [7], sufficient con-
ditions have been developed for the stability, wellposedness
and contractiveness of SISs with norm-bounded parameter
uncertainty in addition to exogenous disturbance. For the
synthesis of distributed controllers, using techniques from
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Fig. 2: System performance of the closed-loop uncertain
system over directed networks

linear matrix inequalities, we bridged the gap between
distributed robust H∞ control and scaled H∞ control by
expanding the output space of the state-space equation of
the nominal system into higher dimensions that helps to
eliminate the uncertainty matrices. Based on the expanded
state-space model, the synthesis process was divided into
several sequential steps including standard controllers syn-
thesis process and the regain of the nominal scaling matrices.
We showed that the robust H∞ control problem accommodate
to scaled H∞ control in an effective manner. Numerical
examples illustrated the efficiency of the proposed algorithm.
Extension of this method to SISs consists of discrete-time
subsystems will be considered in the future research.
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