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Abstract— This paper concerns the swing-up control problem
for a two-link underactuated robot moving in the vertical
plane with a single actuator at the base joint and a spring
between the two links (flexible elbow joint). First, we present
two new properties of such a flexible robot about the linear
controllability at the UEP (upright equilibrium point, where
two links are in the upright position) and the limitation of
the PD control on the angle of the base joint. Second, for the
robot which can be not locally stabilized about the UEP by the
PD control, we study how to extend the energy-based control
approach, which aims to control the total mechanical energy
and the angle and angular velocity of the base joint of the robot,
to design a swing-up controller. We provide a necessary and
sufficient condition for avoiding the singularity in the controller.
Third, we analyze the motion of the robot under the presented
controller by studying the convergence of the total mechanical
energy and clarifying the structure and stability of the closed-
loop equilibrium points. We validate the presented theoretical
results via numerical investigation. This paper not only unifies
some previous results for the Pendubot (a two-link robot with
a passive elbow joint), but also provides insight into the control
and analysis of the underactuated robots with flexible joints.

I. INTRODUCTION

Studies on underactuated mechanical systems (UMSs),

which possess fewer actuators than degrees of freedom, have

received considerable interest in recent years [1]–[3]. One

of the important control problems for UMSs is the set-point

control (regulation or stabilization) of a desired equilibrium

point [2], [4]. Many researchers studied a particular problem

of the set-point control called the swing-up and stabilizing

control for two-link planar robots with a passive joint, see

e.g., the Pendubot (with a passive elbow joint) in [5]–[7] and

the Acrobot (with a passive base joint) in [8], [9]. Indeed,

the swing-up control is to swing up the robot to a small

neighborhood of the upright equilibrium point (denoted as

UEP below), where two links are in the upright position,

so that a locally stabilizing controller can be switched to

stabilize the robot about the UEP. The swing-up control has

become a benchmark problem for verifying the effectiveness

of nonlinear design methods or techniques.

This paper concerns the swing-up control problem for a

two-link underactuated planar robot moving in the vertical

plane with a single actuator at the base joint and a spring

between the two links. This indicates that the robot has an

active base joint and a flexible elbow joint; and below we
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call it the AF robot, where “A” and “F” denote active and

flexible, respectively. The flexibility of the link is a result

of lightening a robot arm for example in space applications

[10]. Indeed, a flexible link is modelled by some virtual

rigid links connected by the joints consisting of springs and

dampers [11]; and the AF robot is its most simplified model.

Regarding the AF robot in the horizontal plane, [10] showed

that the PD control on the angle of the base joint can globally

stabilize the state of the robot at any desired value.

This paper presents two new properties of the AF robot

in the presence of gravity. One property is about its linear

controllability (the controllability of the linearized model of

a nonlinear system around an equilibrium point [12]). We

obtain a necessary and sufficient condition on the mechanical

parameters of the robot and the spring constant such that

the robot is linearly controllable at the UEP. We reveal that

the linear controllability at the UEP is destroyed when the

spring constant takes a value determined by the mechanical

parameters of the two-links. This is a surprising result since

the two extreme cases of the AF robot, the Pendubot and

a one-link rigid robot (with the spring constant being 0
and ∞, respectively), are always linearly controllable at the

UEP without any condition on their mechanical parameters.

Another property is about the limitation of the PD control.

We present a necessary and sufficient condition on the

mechanical parameters such that the robot can be locally

stabilized about the UEP by the PD control.

Next, for the AF robot which can not be locally stabilized

about the UEP by the PD control, we study how to extend the

energy-based control approach in [6], [7] for the Pendubot to

design a swing-up controller for the AF robot. We provide a

necessary and sufficient condition for avoiding the singularity

in the presented controller. Third, we analyze the motion

of the robot under the presented controller by studying the

convergence of the total mechanical energy and clarifying the

structure and stability of the closed-loop equilibrium points.

As shown in this paper, it is much more difficult to carry the

motion analysis of the AF robot than that of the Pendubot in

[6], [7]. Indeed, different from the Pendubot, it is difficult to

obtain analytically the equilibrium configuration of the AF

robot due to the spring at the elbow joint. We validate the

theoretical results via numerical investigation.

II. PRELIMINARY KNOWLEDGE

Consider the AF robot (a two-link planar robot with a

spring between two links) moving in the vertical plane shown

in Fig. 1. For the ith (i = 1, 2) link, mi is its mass, li is its
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length, lci is the distance from joint i to its center of mass

(COM), and Ji is the moment of inertia around its COM.
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Fig. 1. AF robot: two-link flexible robot with a spring between two-links.

Let q =
[

q1, q2

]T
be the vector of the angles of two

joints and τ1 be the control input on the first joint. The

motion equation of the robot is

M(q)q̈ + H(q, q̇) + G(q) + K(q) = Bτ1, (1)

where

M(q) =

[

α1 + α2 + 2α3 cos q2 α2 + α3 cos q2

α2 + α3 cos q2 α2

]

, (2)

H(q, q̇) =α3

[

−2q̇1q̇2 − q̇2

2

q̇2

1

]

sin q2, (3)

G(q) =

[

−β1 sin q1 − β2 sin(q1 + q2)
−β2 sin(q1 + q2)

]

, (4)

where










α1 = m1l
2

c1 + m2l
2

1
+ J1,

α2 = m2l
2

c2 + J2, α3 = m2l1lc2,

β1 = (m1lc1 + m2l1)g, β2 = m2lc2g,

(5)

and g is the acceleration of gravity; and

K(q) =

[

0
k2q2

]

, B =

[

1
0

]

, (6)

where k2 is the spring constant.

The energy of the robot is expressed as

E(q, q̇) =
1

2
q̇TM(q)q̇ + P (q), (7)

where P (q) is the potential energy and is defined as

P (q) = β1 cos q1 + β2 cos(q1 + q2) +
1

2
k2q

2

2
. (8)

Consider the open-loop equilibrium points of (1). Let qe =
[

qe
1
, qe

2

]T
be an equilibrium configuration and τe

1
be the

equilibrium input. Putting q̈ = 0, q̇ = 0, q = qe, and τ1 = τe
1

into (1) yields

−β1 sin qe
1
− β2 sin(qe

1
+ qe

2
) = τ e

1
, (9)

−β2 sin(qe
1

+ qe
2
) + k2q

e
2

= 0. (10)

Note that from (10) the equilibrium configuration of the

Pendubot (k2 = 0) is sin(qe
1

+ qe
2
) = 0, that is, its link

2 parallels to the vertical line (Y-axis). However, for the

AF robot, it is unclear whether one can obtain an analytic

solution of qe
2

in terms of qe
1

from (10). This makes the

motion analysis in Section V difficult.

III. NEW PROPERTIES OF THE AF ROBOT

A. Linear Controllability of the AF Robot at the UEP

We study the linear controllability of the AF robot at the

UEP. Let x =
[

q1, q2, q̇1, q̇2

]T
be the state-variable

vector. The UEP is x = 0. The linearized model of the AF

robot (1) around the UEP is

ẋ = Ax + Nτ1, (11)

where the formulae of A and N are omitted for brevity.

Computing the determinant of the controllability matrix

Uuu =
[

N, AN, A2N, A3N
]

yields

|Uuu| =
−(k2(α2 + α3) − α3β2)

2

(α2

3
− α1α2)4

. (12)

This gives the following result.

LEMMA 1: The linearized model of the AF robot (1)

around the UEP is controllable if and only if

k2 6=
α3β2

α2 + α3

. (13)

The following remark concerns Lemma 1.

Remark 1: From Lemma 1, the Pendubot [5], [6], which

is an extreme case of the AF robot (1) with k2 = 0, is always

linearly controllable at x = 0; and the AF robot (1) in the

absence of gravity, that is β2 = 0, is also always linearly

controllable at x = 0. Moreover, Lemma 1 indicates that

there exists a spring with its spring constant satisfying

k2 = kuc :=
α3β2

α2 + α3

(14)

destroys the linear controllability of the robot around the

UEP. Clearly, kuc < β2.

Below we assume that (13) holds. This guarantees that

the robot can be stabilized about the UEP by an appropriate

state-feedback controller.

B. Limitation of the PD Control

By using the following Lyapunov function

V (q, q̇) = E(q, q̇) +
kP

2
q2

1
, (15)

[10] showed that

τ1 = −kP q1 − kD q̇1 (16)

with kP > 0 and kD > 0 can globally stabilize the AF

robot moving in the horizontal plane (without gravity) about

x = 0. We will study whether the PD control is also effective

for balancing the AF robot about the UEP in the presence

of gravity. To this end, using the Routh-Hurwitz criterion,
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we check the stability of the UEP of the closed-loop system

constituting of (1) and (16). We present the following result.

LEMMA 2: The UEP of the AF robot in (1) can be locally

stabilized by the PD control (16) if and only if its mechanical

parameters satisfy

k2 > β2; (17)

and the control gains satisfy kD > 0 and

kP >
α2β1 + α1β2 − k2(α1 + α2 + 2α3)

α2
, (18)

kP >
−β1β2 + k2(β1 + β2)

k2 − β2

. (19)

The following remark concerns Lemma 2.

Remark 2: Condition (17) in Lemma 2 means that the

joint stiffness k2 overcomes the gradient of the gravitational

term β2. If

k2 ≤ β2, (20)

then the PD control (16) can not stabilize even locally the AF

robot about the UEP. In what follows, we consider the swing-

up control problem mainly for the robot satisfying (20).

IV. SWING-UP CONTROLLER FOR THE AF ROBOT

We study how to apply the energy-based control approach

in [6], [7] to design a swing-up controller for the AF

robot (1). The new result of this section is the presence

of a necessary and sufficient condition for nonexistence of

singularity in the presented controller.

For E(q, q̇), q̇1, and q1, we aim to design τ1 such that

lim
t→∞

E(q, q̇) = Er, lim
t→∞

q̇1 = 0, lim
t→∞

q1 = 0, (21)

where

Er = β1 + β2 (22)

is the potential energy of the robot at the UEP.

We use the following Lyapunov function candidate:

V =
1

2
(E − Er)

2 +
1

2
kD q̇2

1
+

1

2
kP q2

1
, (23)

where scalars kD > 0 and kP > 0 are control parameters.

Taking the time-derivative of V along the trajectories of

(1), and using Ė = q̇TBτ1 = q̇1τ1, we obtain

V̇ = q̇1 ((E − Er)τ1 + kD q̈1 + kP q1) .

If we can choose τ1 such that

(E − Er)τ1 + kD q̈1 + kP q1 = −kV q̇1 (24)

for some constant kV > 0, then we have

V̇ = −kV q̇2

1
≤ 0. (25)

We discuss under what condition (24) is solvable with

respect to τ1 for any (q, q̇). From (1), we obtain

q̈1 = BTq̈ = BTM−1(Bτ1 − H − G − K). (26)

Substituting (26) into (24) yields

Λ(q, q̇)τ1 = kDBTM−1(H + G + K) − kV q̇1 − kP q1, (27)

where

Λ(q, q̇) = E(q, q̇) − Er + kDBTM−1B. (28)

Therefore, when

Λ(q, q̇) 6= 0, for ∀q, ∀q̇, (29)

we obtain

τ1 = Λ−1
(

kDBTM−1(H + G + K) − kV q̇1 − kP q1

)

.
(30)

We present the following lemma.

LEMMA 3: Consider the closed-loop system consisting of

(1) and (30) with positive parameters kD, kP , and kV . Then

the controller (30) has no singularity for any (q, q̇) if and

only if

kD > max
|q2|≤2

q

β1+β2
k2

{

(Er + µ(q2))

(

α1 −
α2

3

α2

cos2 q2

)}

,

(31)

where Er is defined in (22), and

µ(q2) = −
1

2
k2q

2

2
+

√

β2

1
+ β2

2
+ 2β1β2 cos q2. (32)

In this case,

lim
t→∞

V = V ∗, lim
t→∞

E = E∗, lim
t→∞

q1 = q∗
1
, (33)

where V ∗, E∗, and q∗
1

are constants. Moreover, as t →
∞, every closed-loop solution, (q(t), q̇(t)), approaches the

invariant set

W =

{

(q, q̇)
∣

∣

∣
q1 ≡ q∗

1
, q̇2

2
=

2(E∗ − P (q))

α2

∣

∣

∣

q1=q∗

1

}

,

(34)

where “ ≡ ” denotes the equality holds for all time.

V. MOTION ANALYSIS OF THE AF ROBOT

A. On Convergent Value of Lyapunov Function V

We now characterize the invariant set W in (34) by ana-

lyzing the convergent value, V ∗, of the Lyapunov function

V in (23). Since limt→∞ V = 0 is equivalent to (21), we

separately analyze two cases: V ∗ = 0 and V ∗ 6= 0.

Define the set

Wr =

{

(q, q̇)

∣

∣

∣

∣

q1 ≡ 0, q̇2

2
=

2β2(1 − cos q2) − k2q
2

2

α2

}

.

(35)

Consider the equilibrium points of the closed-loop system

consisting of (1) and (30). In addition to (9) and (10), from

(24) (for which we derive the controller (30)), we can see

that the equilibrium configuration qe must also satisfy

(P (qe) − Er)τ
e
1

+ kP qe
1

= 0. (36)

Define the equilibrium set

Ω = {(qe, 0) | qe satisfies (9), (10), (36), and P (qe) 6= Er}.
(37)

We are ready to present the following theorem whose proof

is much more involved than that in the case of k2 = 0 in

[7], [13].
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Theorem 1: Consider the closed-loop system consisting

of (1) and (30) with positive parameters kD, kP , and kV .

Suppose that kD satisfies (31). Then, as t → ∞, the closed-

loop solution (q(t), q̇(t)) approaches

W = Wr ∪ Ω, with Wr ∩ Ω = ∅, (38)

where Wr, the set in (35), is for the case V ∗ = 0; and Ω,

the equilibrium set in (37), is for the case V ∗ 6= 0.

Proof: Consider the case V ∗ = 0. From (23), we have

E∗ = Er and q∗
1

= 0. Thus, putting these into the set W in

(34), we obtain the set Wr in (35).

Consider the case V ∗ 6= 0. We show that q2 is a constant

on the invariant set W . As shown below, the proof is much

more involved than that in the case of k2 = 0 in [7], [13].

To start with, putting E ≡ E∗ and q1 ≡ q∗
1

into (24)

shows by contradiction that E∗ 6= Er. This shows that τ1 is

a constant, τ∗
1

, satisfying

(E∗ − Er)τ
∗
1

+ kP q∗
1

= 0, E∗ 6= Er. (39)

Below we will eliminate the terms related to q̈2, q̇2

2
, and the

linear terms of q2 from (1) with q1 ≡ q∗
1

and τ1 ≡ τ∗
1

through

the differentiation with respect to (w.r.t.) time t if necessary.

To simplify the derivation and for the brevity of expression,

we denote S2 = sin q2, C2 = cos q2, S12 = sin(q∗
1

+ q2),
C12 = cos(q∗

1
+ q2), and

S122 = sin(q∗
1

+ 2q2), C122 = cos(q∗
1

+ 2q2).

Putting q1 ≡ q∗
1

and τ1 ≡ τ∗
1

into (1) yields

(α2 + α3C2)q̈2 − α3S2q̇
2

2
− β2S12 = τ∗

1
+ β1 sin q∗

1
, (40)

α2q̈2 + k2q2 = β2S12. (41)

From (41), we obtain

q̈2 = aS12 − bq2, (42)

where a = β2/α2 and b = k2/α2. Putting (42) into (40) and

using

C2S12 =
1

2
(S122 − sin q∗

1
), (43)

we obtain

−S2q̇
2

2
− bC2q2 +

aS122

2
− dq2 = λ1, (44)

where

d =
k2

α3

, λ1 =
τ∗
1

+ β1 sin q∗
1

α3

+
a sin q∗

1

2
.

Now, on the contrary, suppose that q2 is not a constant,

that is, q̇2 6≡ 0. By differentiating (44) w.r.t. time t and using

repeatedly (42) to delete the terms related to S2q̇
2

2
, C2q2,

and dq2, we can obtain

S122 = sin(q∗
1

+ 2q2) = 0 (45)

holds for all time, which contradicts that q2 is not a constant.

To this end, differentiating (44) w.r.t. time t, we have

q̇2(−C2q̇
2

2
− 2S2q̈2 + bS2q2 − bC2 + aC122 − d) = 0. (46)

Since q̇2 6≡ 0, we have

−C2q̇
2

2
− 2S2q̈2 + bS2q2 − bC2 + aC122 = d. (47)

Putting (42) into (47) and using S2S12 = (cos q∗
1
−C122)/2

give

−C2q̇
2

2
+ 3bS2q2 − bC2 + 2aC122 = d + a cos q∗

1
. (48)

Differentiating (48) w.r.t. time t yields

q̇2(S2q̇
2

2
− 2C2q̈2 + 3bC2q2 + 4bS2 − 4aS122) = 0. (49)

This with (42) and (43) shows

S2q̇
2

2
+ 5bC2q2 + 4bS2 − 5aS122 = −a sin q∗

1
. (50)

Summing (44) and (50) to delete S2q̇
2

2
, we have

4bC2q2 + 4bS2 −
9aS122

2
− dq2 = λ1 − a sin q∗

1
. (51)

To delete 4bC2q2 in (51), we use q̇2 6≡ 0 and differentiate

(51) w.r.t. time t once and twice to obtain

−4bS2q2 + 8bC2 − 9aC122 = d, (52)

and

−4bC2q2 − 12bS2 + 18aS122 = 0, (53)

respectively. Summing (51) and (53) gives

−8bS2 +
27aS122

2
− dq2 = λ1 − a sin q∗

1
. (54)

To obtain S122 in (45), using q̇2 6≡ 0 and differentiating (54)

twice w.r.t. time t and yield

8bS2 − 54aS122 = 0. (55)

Summing (54) and (55) gives

−
81aS122

2
− dq2 = λ1 − a sin q∗

1
. (56)

Differentiating (56) twice w.r.t. time t and using q̇2 6≡ 0 yield

162aS122 = 0, (57)

which shows (45). This contradicts the assumption that q2 is

not a constant. Thus, q2 is constant on W in (34).

In conclusion, for the case V ∗ 6= 0, as t → ∞, the closed-

loop solution (q(t), q̇(t)) approaches an equilibrium point of

the equilibrium set Ω defined in (37).

B. On the Close-Loop Equilibrium Points

Let us consider the equilibrium point belonging to Wr in

(35). Using qe
1

= 0, P (qe) = Er, (10), and (36), we obtain

−β2 sin qe
2

+ k2q
e
2

= 0, (58)

2β2(1 − cos qe
2
) − k2(q

e
2
)2 = 0. (59)

Denote γ = k2/β2 to rewrite (58) and (59) respectively as

sin qe
2

= γqe
2
, (60)

cos qe
2

= −
1

2
γ(qe

2
)2 + 1. (61)
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By summing the square of each of the above two equations

to delete sin qe
2

and cos qe
2
, we obtain

γ(qe
2
)2(γ(qe

2
)2 + 4(γ − 1)) = 0.

Clearly, if γ ≥ 1 (k2 ≥ β2), then qe
2

= 0 is the unique

solution to (58) and (59). If 0 < γ < 1 (0 < k2 < β2), then

in addition to qe
2

= 0, we can see that

qe
2

= ±2

√

1

γ
− 1 (62)

are also solutions of (58) and (59) if and only if γ satisfies

f1 := sin 2

√

1

γ
− 1 − 2

√

γ − γ2 = 0, (63)

f2 := cos 2

√

1

γ
− 1 − 2γ + 1 = 0, (64)

which are obtained by putting qe
2

in (62) into (60) and (61).

In summary, we have the following lemma.

LEMMA 4: If 0 < k2 < β2, (63) and (64) hold, then the

set Wr in (35) has three equilibrium points including the

UEP and two other equilibrium points of qe
1

= 0 and qe
2

in

(62). Otherwise, the set Wr has a unique equilibrium point

of the UEP.

We give the following remark about Lemma 4.

Remark 3: For the Pendubot (k2 = 0), the Wr in (35)

describes a homoclinic orbit with the UEP being its equi-

librium point. For the AF robot, the Wr in (35) is not a

homoclinic orbit, and it is different for the cases of k2 < β2

and k2 ≥ β2. Suppose that the UEP is the unique equilibrium

point in Wr. Then, (q(t), q̇(t)) will have the UEP as an

ω-limit point; that is, there exists a sequence of times tm
(m = 1, . . . ,∞) such that tm → ∞ as m → ∞ for which

limm→∞(q(tm), q̇(tm)) = (0, 0).
Now we consider the equilibrium set Ω in (37). If the

set Ω contains a stable equilibrium point in the sense of

Lyapunov, then the robot can not be swung up arbitrarily

close to the UEP from some neighborhoods close to the

stable equilibrium point. Since the set Ω does not contain

the UEP due to the constraint P (qe) 6= Er, it is interesting

to study how to find conditions about kP such that Ω is

an empty set or contains some isolated unstable equilibrium

points. This should be studied further as a future subject.

VI. SIMULATION RESULTS

We simulated the AF robot (1) with the parameters α1, α2,

α3, β1, and β2 the same as those of the Pendubot in [14]

(p. 15). Taking g = 9.81 yields α1 = 0.0799, α2 = 0.0244,

α3 = 0.0205, β1 = 4.1326, and β2 = 1.0428.

From (14), we obtain kuc = 0.4761. This shows that

the AF robot with the above mechanical parameters and the

spring constant k2 = 0.4761 is not linearly controllable at

the UEP. If k2 ≤ β2 = 1.0428, the AF robot can not be

stabilized around the UEP by the PD control (16).

For an initial condition

q1(0) = −
5π

6
, q2(0) = 0, q̇1(0) = 0, q̇2(0) = 0,

we validated the presented swing-up controller by investigat-

ing cases k2 ≤ β2 and k2 > β2, respectively.

A. Case k2 ≤ β2

We took k2 = 1.0 which does not satisfy (14). We verified

that γ = 0.9590 satisfies neither (63) nor (64). This shows

that the UEP is the unique equilibrium point belong to the

set Wr in (35).

According to (31), the swing-up controller (30) does not

contain any singularity if and only if kD > 0.7081. The

simulation results under the swing-up controller (30) with

kD = 0.76, kP = 8.63, and kV = 3.36 are depicted in

Figs. 2–4. Fig. 2 shows that V and E − Er converged to

0. From Fig. 3, we know that q1 converged to 0, while

several swings brought q2 quickly close to 0, and then there

existed many periods of time such that q2 remained close to

0. From Fig. 4, (q2(t), q̇2(t)) approached the orbit described

in the set Wr in (35), and τ1 was large at the beginning and

then became small. Since the AF robot was swung up and

remained very close to the UEP, it is very easy to balance

it about that point via a state-feedback stabilizing controller.

Due to page limitations, we omit the details of the stabilizing

controller, the switch condition from the swing-up controller

to the stabilizing controller, and the simulation results.
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Fig. 2. Time responses of V and E−Er of the swing-up control: k2 = 1.0.

B. Case k2 > β2

We took k2 = 1.5 which does not satisfy (14). Since k2 >
β2, the UEP is the unique equilibrium point belong to the set

Wr in (35). According to (31), the swing-up controller (30)

does not contain any singularity if and only if kD > 0.6899.

We took kD = 0.76, kP = 22.40, and kV = 4.60.

Due to page limitations, we only present the simulation

results of the time responses of q1 and q2 in Fig. 5 which

shows that q1 converged to 0, while several swings brought

q2 close to 0, and then q2 remained very close to 0 with

a very small oscillation (q2 was not stabilized to 0). Since

the AF robot was swung up and remained very close to the
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Fig. 3. Time responses of q1 and q2 of the swing-up control: k2 = 1.0.
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Fig. 4. Phase portrait of (q2, q̇2) in 2 ≤ t ≤ 20 and time response of τ1
of the swing-up control: k2 = 1.0.

UEP, it is very easy to balance it about that point via a state-

feedback stabilizing controller.

VII. CONCLUSION

This paper concerned the swing-up control for the AF

robot moving in the vertical plane. First, we presented two

new properties of the AF robot about the linear controllability

at the UEP and the limitation of the PD control on the

angle of the base joint. Second, for the AF robot which

can be not locally stabilized about the UEP via the PD

control, we showed how to extend the energy-based control

approach to design a swing-up controller. We provided the

necessary and sufficient condition for avoiding the singularity

in the controller. Third, we analyzed the convergence of the

total mechanical energy, and explored the structure of the

closed-loop equilibrium points and clarified the stability of

the UEP. We validated the theoretical results via numerical

investigation. This paper not only unified some previous
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Fig. 5. Time responses of q1 and q2 under the swing-up control: k2 = 1.5.

results for the Pendubot, but also provided insight the control

and analysis of the underactuated robots with flexible joints.

A future research subject is to investigate whether the

results obtained here can be generalized to multiple-degree-

of-freedom underactuated robots with flexible joints.
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