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A survey of a number of papers devoted to

continuous-time modeling of discrete-time stochastic

systems is given. It is concluded that, although differ-

ent approaches to averaged (approximate) models jus-

tifying are in use, the procedures of building the av-

eraged (approximate) models are similar in different

papers. In addition to the deterministic (ODE) model

some stochastic continuous-time models described by

SDE are introduced. A new result concerning evalua-

tion of the ODE model accuracy over the infinite time

interval under partial stability condition is presented.

Applications in adaptation, optimization and control are

discussed. 1

1. Introduction

The employment of continuous-time models for

analysis and synthesis of discrete-time stochastic sys-

tems has started in the 1970s. Hundreds of papers and

a number of monographs [7, 20, 43, 44, 51, 11], con-

cerning both application of the machinery and its justi-

fication have been published since then. However few

authors attempt to compare and unify different lines of

research. An additional problem is in that quite a num-

ber of the results were published in Russian, i.e. they are

not well known in the West. An outstanding impact in

the area was made by the celebrated paper by L.Ljung

[48] that was later listed among 25 seminal papers of

the 20th century in control [17]. Currently the paper

[48] has got more than 650 citations. What is most im-

pressive its citing rate is about 20 citations per year and

it is not going to decrease till now.

In the present paper we survey several avenues of

research in continuous-time modeling of discrete-time

stochastic systems. Among them the method proposed

in [18] and further developed in a few papers and in a

monograph [20] has some peculiarities allowing to an-
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alyze algorithms with the gain sequence not tending to

zero.

2. Continuous-time model building

The method of averaging has a wide applicability in

modern control system theory, dynamical systems the-

ory, nonlinear mechanics, etc. [2, ?]. The essence of the

method is in separation of slow and fast components of

system motion, followed by averaging out the fast mo-

tion effects. The formal analysis of the technique for

continuous-time systems one can find e.g. in [?, 55]

(for deterministic case) and in [55, 63] (for stochastic

case).

A specific form of averaging for discrete-time

stochastic systems was developed in [18, 20] and, in-

dependently in [48] and then applied to various prob-

lems in identification and adaptive control. Below the

scheme of [18, 20, 48] is described.

Consider a discrete-time stochastic system

xk+1 = xk + γkF(xk, fk), k = 0,1,2, . . . , (1)

where xk ∈ Rn — state vector, fk ∈ Rm — random dis-

turbance vector, γk — gain parameter. Create the aver-

aged continuous system (continuous model)

dx
dt

= A(x), (2)

where A(x) = lim
k→∞

EF(x, fk) (the existence of the limit

is assumed). Typical relationships between the discrete-

time system and its continuous model are as follows.

1. If the gains γk are sufficiently small (γk ≤ γ) then

the trajectories {xk} of (1) are close to the trajectories

of (2) {x(tk)}, where tk = γ0 + · · ·+ γk−1.

2. If the gains γk tend to zero as k → ∞ then some

asymptotic properties of the solutions of (1) (e.g. stabil-

ity, ultimate boundedness, etc.) may be similar to those

of the solutions of the continuous model (2).

In the case of similarity between (1) and (2) in the

above sense one can use simplified model (2) instead

of (1) for the purposes of system analysis and design.
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Such an approach was called the method of continu-
ous models [18, 20], the ODE approach [48] or the
Derevitskii-Fradkov-Ljung (DFL) scheme [31]. Below

the term ’method of continuous models’ will be used

since it takes into account two aspects:

— averaging is not the only way of the model gener-

ating (in some cases there is a similarity between

(1) and (2) even for nonstochastic disturbances fk
investigated in [20]);

— one can use different types of models (e.g.,

stochastic differential equations).

3. Continuous-time model justifying

A number of rigorous results are known justifying

applicability of continuous models for sufficiently small

gains γk. Small value of the gains is prerequisite of sep-

aration of motions in system. It implies that the distur-

bance fk changes faster than the system state xk. The

standard condition of averaging is weak dependence of

fk and fs for large |k− s| (e.g. independence of fk and

fs when k �= s).

Probably the first results on justifying the averaging

for discrete stochastic systems in control theory belong

to Meerkov [52], who used discrete averaged model

zk+1 = zk + γkA(zk) (3)

(replacing (3) by (2) creates no extra mathematical

problems). The proofs in [52] are based on Krylov–

Bogoliubov averaging method [55]. Similarly to the 1st

and 2nd Bogoliubov theorems the convergence in prob-

ability of solutions of (1) and (3) on finite time inter-

val and, under assumption of asymptotic stability of the

model (2), the closeness of the trajectories on infinite

interval were established for independent fk.

Significant progress of the method was made by

Ljung [47]–[51] who also used Krylov–Bogoliubov ap-

proach. In [48] the dependent fk were treated generated

by controlled Markov chain. Moreover, the case γk → 0

was examined. It was demonstrated that in this case

model (2) is responsible for the stability or instability

of system (1).

Further development was made by Kul’chitsky

[40]–[41] who studied the averaging for some func-

tional of of the state vector rather then for the state

vector as a whole. It allowed to weaken the restrictive

boundedness condition of [48].

if the gain parameter goes to zero at a suitable rate

similar in spirit results were obtained [4, 5] without re-

quirements on the dynamics of the model employing a

certain set-valued deterministic model.

Another series of results [18]–[22] is based on the

machinery developed by S.N. Bernstein who introduced

the concept of stochastic differential equation (SDE) as

early as in 1934 [9] and established the conditions of

the convergence in distribution (weak convergence) of

trajectories of (1) either to ODE (2) or to some SDE

[10]. In [18] the mean square bounds of the model [2]

accuracy were obtained both for finite and for infinite

time interval. E.g. it was shown (in [18] for independent

fk and in [?] for fk satisfying strong mixing conditions)

that under Lipschitz and growth conditions

||A(z)−A(z′)|| ≤ L1||z− z′||,b(z)≤ L2(1+ ||z||2), (4)

where b(z) = E||F(z, fk)− A(z)||2 the following in-

equality holds:

E max
0≤tk≤T

‖xk − x(tk)‖2 ≤C1eC2T γ, (5)

where γ = max
1≤k≤N

γk, tN ≤ T , C1 > 0, C2 > 0.

In the case when the continuous model (2) is ex-

ponentially stable it was additionally shown in [18, 20]

that the accuracy of approximation over infinite time in-

terval is of order γα for some 0 < α < 1. Namely, there

exist γ̄ > 0, such that for ≤ γk ≤ γ < γ̄ the following

inequalities hold

E||zk − z(tk)||2 ≤C3γα ,k = 1,2, ..., (6)

where numbers C3 > 0, α > 0 do not depend on γ .

Though the averaging scheme of [18]–[22] is sim-

ilar to that of Ljung [48], the analytical results are dif-

ferent in that they allow to analyze dynamics of the sys-

tems over finite or infinite time intervals rather than con-

vergence as t → ∞. Moreover the results of [18]–[22]

are applicable to the cases when the gain γk does not

tend to zero which is important in many applications.

Finally an elegant approach was developed by

Kushner [42]–[44] who used weak convergence theory

for random functions. This framework however is con-

venient for the studying of asymptotics when γ → 0

(γk ≡ γ) rather than for evaluating mean distance be-

tween the trajectories for finite values of γ .

4. Stochastic continuous model

The inequality (5) shows that the distance between

trajectories of (1) and (2) is of order (γk)
1/2. This error

arises in part due to random fluctuations. Therefore the

model taking in account stochasticity potentially may

have higher accuracy. Employing the framework of av-

eraging for SDE [29, 63] yields the stochastic continu-

ous model [6, 7, 37]

dy = A(x(t))dt +(γ(t)B(x(t))1/2dw, (7)
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where γ(t) ≡ γk for tk ≤ t ≤ tk+1, B(x) =
lim
k→∞

Mh(x, fk)h(x, fk)
T, h(x, fk) = F(x, fk) − A(x),

w(t) — standard Wiener stochastic process, x(t)
— solution of deterministic model (2). In [18] the

following stochastic model

dy = A(y(t))dt +(γ(t)B(y(t)))1/2dw (8)

was suggested. Model (8) does not use the solutions of

deterministic model (2). It was shown that the condi-

tional incremental covariances of solutions of both (7)

and (8) coincide with corresponding characteristics of

(1) with the accuracy of order γ2
k . In [?, 20] the family

of stochastic models having higher accuracy was intro-

duced. E.g. the accuracy of model

dy =
[

In − 1

2
γ(t)

∂A(y)
∂y

]
A(y)dt+

(γ(t)B(y(t)))1/2 dw (9)

in terms of the conditional incremental covariances is

of order γ3
k . Note that the model (9) is nothing but the

Stratonovich version of the SDE (8).

5. Further results

A number of further results were aimed at exten-

sion of the approximation theorems and relaxing their

conditions. The approximation bounds were extended

to the systems under relaxed Lipschitz and growth con-

ditions [19, 20], to the right hand sides depending on

γk [19], to the hybrid (discrete-continuous) systems

[3]. In the case when the model (2) possesses ulti-

mate boundedness instead of asymptotic stability the ul-

timate boundedness of initial system (1) was established

[19, 20].

New problems such as synchronization and control

of networks have become popular during last decade.

They demand for new approximation results. One of

new demands is to study accuracy of continuous modes

over infinite time interval under partial stability assump-

tion for (2) instead of asymptotic stability. For such

cases the following theorem can be useful.

Definition 1 Let Ω,Ω0, Ω ⊆ Ω0 be closed subsets of
Rn and Ω consists of equilibria of (2). The set Ω is
called Ω0−pointwise stable if it is Lyapunov stable and
any solution starting from Ω0 tends to a point from Ω
when t → ∞.

Theorem 1 Let Lipschitz and growth conditions (4)
hold. Let there exist a smooth mapping h : Rn →R l and
a bounded set Ω0 ⊆ Rn such that rank∂y/partialz = l
for z ∈ Ω = {z ∈ Ω0 : h(z) = 0} and the set Ω is

Ω0−pointwise stable. Let there exist a twice continu-
ously differentiable function V (z) and positive numbers
κ1,κ2,κ3 such that

V̇ (z)≤−κ1V (z), (10)

| ∂ 2V (z)
∂ z(i)∂ z( j)

| ≤ κ3,V (z)≥ κ2||h(z)||2. (11)

Then there exist numbers γ̄ > 0, K2 > 0, 0 < α < 1 such
that for 0 ≤ γk ≤ γ < γ̄ the following inequalities hold

E||yk − y(tk)||2 ≤ K2γα ,k = 1,2, ..., (12)

where yk = h(zk), y(tk) = h(z(tk)).

Proof. Let z̄(t) be the solution of the ODE (2) with

the initial condition z̄(0) = z0 ∈ Ω0. Pointwise stabil-

ity implies existence of z̄∗ = limt→∞ z̄(t) ∈ Ω. It follows

from (10) that A(z∗) = 0. Let ε > 0 be chosen such that

rank ∂y/∂ z(z) = l for z ∈ Ωε , where Ωε = {z ∈ |Ω0 :

dist(z,Ω) < ε} and t(ε) is such that ||z̄(t)− z∗|| < ε
for t > t(ε). Then that ||A(z)|| ≤ (We use notation

K = const, if K depends only on L1,L2,κi,ε,z0,n, i.e.

does not depend on γk, tk, where tk = ∑k−1
i=0 γi).

Proof relies on the following lemmas.

Lemma 1 If the numbers μk ≥ 0 satisfy inequalities
μk ≤ (1+r1γk)μk−1+r2γk, k = 1,2, ..., where r1,r2 > 0,
then μk ≤ (μ0+ r2/r1)exp(r1tk). If r1 < 0 and 0 ≤ γk ≤
γ <−1/r1, then μk ≤−3r2/r1 +μ0 exp(r1tk).

Proof of Lemma 1 is standard and therefore omit-

ted.

Lemma 2 Let the conditions of the theorem hold and
the vectors dk ∈ Rn are defined as follows:

dk+1 = dk + γkA(dk), k = 0,1,2, . . . , (13)

Then for 0 ≤ γk ≤ γ < ρ1 the following inequalities
hold:

V (z+ γkA(z))≤ (1−ρ2γk)V (z), (14)

κ2||h(dk)||2 ≤V (z0)exp(−ρ2tk), (15)

κ2E||zk||2 ≤V (z0)exp(−ρ2tk)+K1γ, (16)

where ρ = κ1κ2/(n2
κ3(L2

1 +L2)), ρ2 = κ1/2.

Proof 1 The relations (14) follow from the Taylor ex-
pansion and the inequalities (11):

V (z+ γkA(z))≤
V (z)+ γk∇V (z)T A(z)+ γ2

k n2
κ2||A(z)||2/2 ≤

(1−κ1γk)V (z)+ γkγn2
κ2L2

1||z||2/2 ≤
[1− γk(κ1 − γn2

κ3L2
1/(2κ2))]V (z), (17)
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i.e.(14) is fulfilled for γ < 2κ1κ2/(n2
κ3L2

1) and so more
for γ < ρ1. Apparently (15) follows from (14). To prove
(16) estimate the value of V (zk+1), recursively applying
Taylor expansion and the relation (14).

V (zk+1) =

V (zk +A(zk))+ [V (zk)−V (zk +A(zk))]≤
(1−ρ2γk)V (zk)+ γk∇V (zk +A(zk))

T hk+

γ2
k n2

κ3h2
k/2. (18)

Averaging for fixed zk yields

E{V (zk+1)|zk} ≤
(1−ρ2γk)V (zk)+ γkγn2

κ3L2(1+ ||zk||2)/2 ≤
[1− γk(κ1 −ρ1n2

κ3(L2
1 +L2)/(2κ2))]V (zk)+

γkγn2
κ3L2/2. (19)

Taking full averaging and applying Lemma 1 for r1 =
−ρ2 = −κ/2, μk = EV (zk) we get (16). Lemma is
proven.

Lemma 3 Under conditions of Lemma 2 the following
is true E||zk −dk||2 ≤ γkK2 exp(ρ3tk), where ρ3 = 2L1+
ρ1L2

1.

Proof 2 Comparing (2) and (13) yields E{||zk+1 −
dk||2|zk} ≤ (1+ γkρ3)||zk −dk||2 + γ2

k L2(1+ ||z||2). Av-
eraging and application of the lemmas 1 and 2 finalize
the proof of the Lemma 3.

Continue the proof of the theorem.

Proof 3 Let γk ≤ γ < ρ1. Choose α from the condition
1−αρ3/ρ2 = α , or α = ρ2/ρ3 +ρ2 > 0, and put tγ =
ρ−1

2 ln(V (z0)/γα). It follows from (10) that V (z(t)) ≤
γα for t ≥ tγ . Lemma 2 implies that EV (zk)≤ γα +K1γ
for tk ≥ tγ . Therefore for tk ≥ tγ the following inequality
holds

E||zk − z(tk)||2 ≤
2EV (zk)/κ2 +2V (z(tk))/κ2 ≤ K3γα , (20)

where K3 = const. In the case tk ≤ tγ it follows from
Lemma 3 that

E||zk − z(tk)||2 ≤
2E||zk −dk||2 +2||dk − z(tk)||2 ≤
2γK2 exp(ρ3tγ)+2γ2K4exp(2α1tγ)K5γ exp(ρ3tγ)≤
K6γ1−α ρ3/ρ2 = K6γα , (21)

where K4,K5,K6 = const.
Therefore, E||zk−z(tk)||2 ≤Kγα ,k = 1,2, ..., where

K = max{K3,K6}. �

The theorem provides an upper mean square bound

for the distance between the current state and the limit

manifold Ω = {z ∈ Ω0 : h(z) = 0}. An open problem is

relaxation of the pointwise stability condition. Another

problem is extending the results to discontinuous mod-

els important for economic games, and pattern recogni-

tion (some special cases are considered in [33, 46]).

6. Applications of Continuous Models

There are three stages of continuous model using:

a) model building; b) model justifying; c) model an-

alyzing ( either analytic or numerical). The stage b)

including checking the conditions of appropriate theo-

rems sometimes happens to be rather involved. In many

cases the theorems serve as ”moral support” [48] of the

designer’s intuition.

Continuous models were used for the analyzing of

algorithms of identification [6, 7, 8, 18, 20, 24, 42, 43,

44, 49, 51, 60], optimization [13, 20, 22, 26, 37, 44, 16],

filtering [6, 7, 41, ?, 54] and adaptive control [3, 19, ?,

20, 21, 23, 27, 40, 50, 56, 62]; stochastic eigenvalue

seeking [58, 65]; games solving [52, 61]; pattern recog-

nition [18, 46, 49]; learning of neural networks [39]. A

number of recent works open new networks related ap-

plication areas: analyzing convergence of learning al-

gorithms for coverage control of mobile sensing agents

[14], distributed learning and cooperative control for

multi-agent systems [15, 34], distributed topology con-

trol of wireless networks [12], etc.

7. Conclusion

Using the continuous models one can simplify the

stability and performance analysis of adaptive systems

and facilitate discrete-time system design by means of

continuous-time design methods. Continuous models

provide more detailed information about system be-

havior than, e.g., Lyapunov function. The main ap-

proaches to justifying averaging method for discrete-

time stochastic systems are Krylov–Bogoliubov’s ap-

proach [48, 52], Bernstein’s approach [18]–[21] and

weak convergence approach [42]. However the pro-

cedures of building the averaged (approximate) models

are essentially the same. Basic conditions for applica-

bility of averaging are stability of the system and mixing

properties of disturbances.

A number of researches are devoted to analysis of

the systems with constant or not tending to zero gain

(learning rate). Perhaps, the first result of such kind was

published in [18]. Unlike many other papers, in [18] ap-

proximation bounds were established for nonconstant

not tending to zero gain. In this paper it was shown that
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the stability restriction of [18] can be relaxed to partial

stability. Further relaxation is an avenue of further re-

search.
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