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Abstract— The event-triggered H∞ control design is in-
vestigated for networked control systems with uncertainties
and transmission delays. A novel event-triggering scheme is
proposed, which has some advantages over traditional ones
with a continuous detector. Considering the effect of the
transmission delay, a delay system model for the analysis is
firstly constructed. Then, based on the model and Lyapunov
functional method, criteria for the stability with an H∞ norm
bound and criteria for the co-design of both the feedback gain
and the trigger parameters are derived. In order to solve the
feedback gain and the trigger parameters, the linear matrix

inequality technique is employed. From the simulation example,
it can be concluded that the proposed event-triggering scheme
is superior to some other event-triggering schemes in some
existing literature.

I. INTRODUCTION

Networked control systems (NCS) have a relatively new

structure where sensors, controllers and plants are often con-

nected over a common network medium [4], [17]. Because of

the insertion of the network, the tasks in traditional systems,

such as the control problem and signal estimation problem,

should be re-considered. In the past decade, the control

design problems for NCS have experienced an increased

attention in the literature [16], [18]. In these works, most

of the researchers considering NCSs use periodic triggered

control method (also called time-triggered control) for sys-

tem modeling and analysis due to easy implementation and

analysis. In this triggering method, the fixed sampling inter-

val should be selected to guarantee a desired performance

under the worst conditions on, such as external disturbances,

uncertainties, time-delays and so on. However, in practical

systems, the worst cases are seldom encountered. Therefore,

this kind of triggering method will lead to the sending of

many “unnecessary” sampling signals through the network,

which will cause a high utilization of the communication
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bandwidth. This kind of over-occupation may have a slight

impact on the point-to-point connected system, while it

will affect networked control systems greatly because the

bandwidth of an NCS is often limited.

In [9], how to reduce communication requirements on net-

worked control systems was addressed, where the maximum

time allowed to elapse was obtained to guarantee the stability

of the system. However, their approach leads to an inherently

periodic transmission. Recently, event-triggered techniques

for control design, advocating the use of actuation only

when some function of the system state exceeds a threshold,

have been paid an increased attention in the literature [11],

[10]. Event-triggering provides a useful way of determining

when the sampling action is carried out, which guarantees

that only really “necessary” state signal will be sent out to

the controller. Thus, the amount of the sent state signals is

relatively little. Compared with periodic sampling method,

the event-triggering method has the following advantages: 1)

closer in nature to the way a human behaves as a controller

[2], which only samples when necessary; 2) reduction in the

release times of the sensor and then the burden of the network

communication; 3) reduction in the computation cost of the

controller and the occupation of the sensor and the actuator.

In [6], the event-triggered control with constraint

‖x(t) − x(tk)‖ ≤ ē was proposed for linear systems with

external disturbances, where the threshold ē of the event

generator is a constant. The criteria to guarantee the uniform

boundedness of the system were derived. The methods

for designs or implementations of controllers in the event-

triggered form based on dissipation inequalities were pro-

posed for both linear and nonlinear systems [11]. From [11],

it can be seen that, the constructed event-triggers rely on

continuous supervision of the system state in order to detect

whether the current state exceeds the triggering threshold. To

implement such kind of event trigger, some form of hardware

event detector is needed to generate hardware interrupt to

release the control task. In some applications, therefore,

it may be unreasonable or impractical since the use of

such kind of event detector will retrofit the existing system.

In these cases, self-triggered scheme, in which the release

times are determined by a software approach, was recently

suggested [14], [5], [8], [7], [15]. Compared with the event-

triggered scheme in [11], [6], [10], [12], [13], [14], the self-

triggered scheme can provide additional energy savings for

the sensor and also a less complexity in the implementation.

However, as shown in [14], [8], [15], [1], the average

release period based on self-triggered scheme is often smaller

than that based on event-triggered scheme. Moreover, more
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constraints on the system structure are needed for designs or

implementations of controllers in the self-triggered form.

In this paper, we focus on the design of event-triggered

H∞ control for networked systems considering the effect

of network transmission delay. The event generator is posi-

tioned between the sensor and the controller, which is used

to determine whether the newly sampled state should be sent

out to the controller. Our event generator is also implemented

based on dissipation inequalities as in [11], [6], [10], [12],

[13], [14], however, unlike the case in [11], [6], [10], [12],

[13], [14], the implementation of our event generator only

needs a supervision of the system state in discrete instants.

Moreover, there is no need extra hardware to implement

our event generator. Under the event-triggering scheme, a

novel model is firstly proposed for the use of system analysis

and control design. In the model, the effects of the network

transmission delay and the properties of the event-triggering

scheme are involved. Based on the model, criteria for the

stability with an H∞ norm bound and controller design are

derived, which are expressed in the form of linear matrix

inequality. The criteria also establish the relationship between

the parameters of the event-trigger, the transmission delay

and the feedback gain, therefore, co-design for both the

controller and the parameters of triggers can be carried out by

using our method. It should be noted that, the existing refer-

ences [14], [15], [6], [7] can only provide an implementation

of event-triggering scheme or self-triggering scheme under

a given feedback gain. No method was provided in [14],

[15], [6], [7] for the co-design of both the controller and the

parameters of triggers. Moreover, to the best of the authors’

knowledge, the event-triggered H∞ control for networked

system considering the effect of network transmission delay

has not been investigated. In order to demonstrate the ef-

fectiveness of our proposed method, a simulation example

is finally given. In the example, some comparisons between

the existing method and our method are also provided.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider the following system with parameter uncertain-

ties and external disturbance

ẋ(t) = Ax(t) + Bu(t) + Bww(t) (1)

z(t) = Cx(t) + Du(t) (2)

where x(t) ∈ R
n,u(t) ∈ R

m, w(t) ∈ R
p are the system

state vector, control input and disturbance input, respectively.

A, B, Bw, C and D are the parameter matrices with only

uncertainties in A and B satisfying the following assumption

A = A0 + ∆A0, B = B0 + ∆B0

[∆A0 ∆B0] = HF (t) [E1 E2] (3)

where A0, B0, H, E1 and E2 are known matrices and

FT (t)F (t) ≤ I. w(t) ∈ L2 [0,∞) denotes the external

perturbation. Throughout this paper, we assume that system

(1)-(2) is controlled through a network.

The purpose of this paper is to design a linear controller

u(t) = Kx(t), where K is a matrix to be determined

later, such that the resulting closed-loop system satisfies the

required performance. In this paper, the required performance

is selected as the H∞ performance. Different from traditional

control systems, the controller considered in this paper is

connected to the system (1)-(2) through a common digital

communication network medium. In this case, the usual

assumption in a traditional control system, that the sensor-

controller-actuator communication is error-free, delay-free

and without any limitation on the network bandwidth, no

longer apply. Under a periodic sampling mechanism, the

H∞ control design problem was investigated for (1)-(2) in

[18] considering the effect of the network transmission delay.

However, how to save the network resources such as network

bandwidth was not concerned in [18]. As is well known, in

practical systems, periodic sampling mechanism may often

lead to the sending of many “unnecessary” signals through

the network, which will turn to increase the load of network

transmission and waste the network bandwidth, though this

method has been widely used in many control systems.

Therefore, it is significant to introduce a mechanism to

determine which sampled signal should be sent out or not.

In this section, a mechanism, called event generator is

constructed between the sensor and the controller which is

used to determine whether the newly sampled state will be

sent out to the controller by using the following judgement

algorithm, that is,

[x ((k + j)h) − x(kh)]T Ω [x ((k + j)h) − x(kh)]

≤ σxT ((k + j)h)Ωx ((k + j)h) (4)

where Ω is a positive matrix, j = 1, 2, ..., σ ∈ [0, 1).

Remark 1: Under (4), the sampled state x((k + j)h)
satisfying the inequality (4) will not be transmitted. Only

the one that exceeds the threshold in (4) will be sent to

the controller. This means that, in the sensor side, only

some of the sampled states that violate (4) will be sent

out to the controller side. Obviously, compared with the

existing method in [18], [20], the burden of the network

communication is reduced and the communication bandwidth

in the network is saved. In the wireless network, this method

will also save the transmission energy, and then increase the

lifespan of the battery of the nodes. Specially, when σ = 0,
the inequality (4) is not satisfied for almost all the sampled

state x ((k + j)h), and the event-triggered scheme reduces

to a periodic release scheme.

Remark 2: Different from the continuous event generator

(CEG), that is, the event generator with a continuous su-

pervision of the state [11], [6], [10], [12], [13], [14], the

event generator with the algorithm (4) only supervises the

difference between the states sampled in discrete instants

having no interest in what happens in between updates.

Moreover, unlike CEG, no extra hardware interrupt to release

the control tasks is needed in our event generator.

Under the algorithm (4), assume the release times are

t0h, t1h, t2h, · · · , where t0 = 0 is the initial time. sih =
ti+1h − tih denotes the release period which corresponds

to the sampling period given by the event generator in
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(4). For network uncertainties, we only consider the effect

of the transmission delay on the system. Suppose that the

time-varying delay in the network communication is τk and

τk ∈ (0, τ̄) , where τ̄ is a positive real number. Therefore,

the states x(t0h), x(t1h), x(t2h), · · · will arrive at the con-

troller side at the instants t0h + τ0, t1h + τ1, t2h + τ2, · · · ,
respectively.

Remark 3: The set of the release instants, i.e.,

{t0, t1, t2, · · · } , is a subset of {0, 1, 2, · · · } . The amount

of {t0, t1, t2, · · · } depends on not only the value of σ,
but also the variation of the system state. When σ = 0,

{t0, t1, t2, · · · } = {0, 1, 2, · · · } , it reduces to the case with

periodic release times.

Based on above analysis, for t ∈
[tkh + τk, tk+1h + τk+1), the system model under the

event generator with (4) and considering the effect of the

transmission delay can be described as

ẋ(t) = Ax(t) + Bu(tkh) + Bww(t), (5)

z(t) = Cx(t) + Du(tkh), (6)

Under the control u(t) = Kx(t), for t ∈
[tkh + τk, tk+1h + τk+1) , (5)-(6) can be rewritten as

ẋ(t) = Ax(t) + BKx(tkh) + Bww(t) (7)

z(t) = Cx(t) + DKx(tkh) (8)

Case a): if tkh+h+τ̄ ≥ tk+1h+τk+1, where τ̄ = max{τk},
define a function τ(t) as

τ(t) = t − tkh, for t ∈ [tkh + τk, tk+1h + τk+1) (9)

Obviously

τk ≤ τ(t) ≤ (tk+1 − tk)h + τk+1 ≤ h + τ̄ (10)

Case b): if tkh+h+τ̄ < tk+1h+τk+1, consider the following

intervals

[tkh + τk, tkh + h + τ̄) , [tkh + ih + τ̄ , tkh + ih + h + τ̄)

Since τk ≤ τ̄ , it can be easily shown that dM exists such

that

tkh + dMh + τ̄ < tk+1h + τk+1 ≤ tkh + dMh + h + τ̄

and x(tkh) and x(tkh + ih) with i = 1, 2, · · · , dM satisfy

(4). It can also be seen that

[tkh + τk, tk+1h + τk+1) = I1 ∪ I2 ∪ I3 (11)

where I1 = [tkh + τk, tkh + h + τ̄ ) , I2 = ∪dM−1

i=1

{

Ii
2

}

=

∪dM−1

i=1 [tkh + ih + τ̄ , tkh + ih + h + τ̄ ) , I3 =
[tkh + dMh + τ̄ , tk+1h + τk+1) . Define

τ(t) =







t − tkh, for t ∈ I1

t − tkh − ih, for t ∈ Ii
2

t − tkh − dMh, for t ∈ I3

(12)

We can easily show that






τk ≤ τ(t) ≤ h + τ̄ , t ∈ I1

τk ≤ τ̄ ≤ τ(t) ≤ h + τ̄ , t ∈ Ii
2

τk ≤ τ̄ ≤ τ(t) ≤ h + τ̄ , t ∈ I3

(13)

where the third row in (13) holds because tk+1h +
τk+1 ≤ tkh + (dM + 1)h + τ̄ . Therefore, for t ∈
[tkh + τk, tk+1h + τk+1) , 0 ≤ τk ≤ h + τ̄ , τM , that is,

τ(t) ∈ [0, τM ] .
In Case a), for t ∈ [tkh + τk, tk+1h + τk+1), define

ek(t) = 0. In Case b), define

ek(t) =







0, for t ∈ I1

x(tkh) − x(tkh + ih), for t ∈ Ii
2

x(tkh) − x(tkh + dMh), for t ∈ I3

(14)

Remark 4: From the definition of ek(t) and the triggering

algorithm (4), it can be seen that, for

t ∈ [tkh + τk, tk+1h + τk+1) ,

eT
k (t)Ωek(t) ≤ σxT (t − τ(t))Ωx(t − τ(t)) (15)

Combining the definitions of τ(t) and ek(t) in (12) and

(14), for t ∈ [tkh + τk, tk+1h + τk+1) , (7)-(8) can be

rewritten as

ẋ(t) = Ax(t)+BKx(t− τ(t))+BKek(t)+Bww(t) (16)

z(t) = Cx(t) + DKx(t − τ(t)) + DKek(t), (17)

x(t) = φ(t), t ∈ [−τM , 0] (18)

where φ(t) is the initial function of x(t).
Before giving the main results, we need some definition

and lemma.

Definition 1: The closed-loop system (16)-(18) is said to

be robustly exponentially stable if, in case of w(t) ≡ 0, for

any initial condition, there exist constant ǫ > 0 and λ > 0
such that

‖x(t)‖ ≤ ǫ sup
−τM≤s≤0

‖φ(s)‖e−λt

Lemma 1: For matrices R > 0 and XT = X, we have

−XR−1X ≤ ρ2R − 2ρX (19)

where ρ is any chosen constant.

III. MAIN RESULTS

Our aim in this paper is to develop techniques to deal

with the robust H∞ event-triggered control problem for net-

worked systems with parameter uncertainties and transmis-

sion delay. More specifically, given a disturbance attenuation

level γ, we design a state feedback controller such that the

system (16)-(18) under the event generator with (4) satisfies

the following two requirements:

(1) The closed-loop system (16)-(18) with w(t) ≡ 0 is

robustly exponentially stable in the sense of Definition 1.
(2) under zero initial condition, the controlled output

z(t) satisfies ‖z(t)‖2 ≤ γ‖w(t)‖2 for any nonzero w(t) ∈
L2 [0,∞).

Based on the Lyapunov functional method, we first con-

clude the following result.

Theorem 1: For given parameters γ, σ and matrix K, the

system (16)-(18) is exponentially stable with an H∞ norm

bound γ if there exist matrices P > 0, Q > 0, R > 0, Ω >
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0 and N, M with appropriate dimensions such that for l =
1, 2













W ∗ ∗ ∗ ∗
Φ21(l) −R ∗ ∗ ∗
Φ31 0 −γ2I ∗ ∗
Φ41 0

√
τMRBω −R ∗

Φ51 0 0 0 −I













< 0, (20)

where

W = Φ11 + Γ + ΓT

Φ11 =









PA + AT P + Q ∗ ∗ ∗
KT BT P σΩ ∗ ∗

0 0 −Q ∗
KT BT P 0 0 −Ω









Γ =
[

−N N − M M 0
]

Φ21(1) =
√

τMNT , Φ21(2) =
√

τMMT ,

Φ41 =
[ √

τMRA
√

τMRBK 0
√

τMRBK
]

,

Φ31 =
[

BT
ω P 0 0 0

]

,

Φ51 =
[

C DK 0 DK
]

Proof: Construct the following Lyapunov functional as

V (t) = xT (t)Px(t) +

∫ t

t−τM

xT (s)Qx(s)ds

+

∫ t

t−τM

∫ t

s

ẋT (v)Rẋ(v)dvds (21)

where P, Q, and R are positive matrix with appropriate

dimensions. Similar to the proof in [19] and recalling (15)

and Lemma 1, the proof can be completed.

The obtained result can be easily extended to the system

with uncertain parameters. Considering the parameter uncer-

tainties defined in (3), the following theorem can be obtained.

Theorem 2: For given parameters σ, γ and matrix K, the

system (16)-(18) is robustly exponentially stable with an H∞

norm bound γ if there exist matrices P > 0, Q > 0, R >
0, Ω > 0, N, M and scalar ε > 0 such that for l = 1, 2

















W ′ ∗ ∗ ∗ ∗ ∗
Φ21(l) −R ∗ ∗ ∗ ∗
Φ31 0 −γ2I ∗ ∗ ∗
Φ′

41 0
√

τMRBω −R ∗ ∗
Φ51 0 0 0 −I ∗
Φ61 0 0 Φ64 0 Φ66

















< 0

(22)

where W ′ = Φ′
11 + Γ + ΓT , Φ′

11 and Φ′
41 are obtained

from Φ11 and Φ41 by replacing A and B with A0 and

B0,respectively, and

Φ61 =

[

HT P 0 0 0
εE1 εE2K 0 εE2K

]

,

Φ64 =

[ √
τMHT R

0

]

, Φ66 = diag{−εI,−εI}
In the following, a criterion is proposed to design the feed-

back gain in case of network-induced delay and parameter

uncertainties and under the trigger (4).

Theorem 3: For given parameters σ, γ and ρ, the system

(16)-(18) under the trigger condition (4) and feedback gain

K = Y X−1 is robustly exponentially stable with an H∞

norm bound γ, if there exist matrices X > 0, Q̃ > 0, R̃ >
0, Ω̃ > 0, Ñ , M̃ ,Y of appropriate dimensions and a scalar

µ > 0 such that for l = 1, 2
















Ŵ ∗ ∗ ∗ ∗ ∗
Σ21(l) −R̃ ∗ ∗ ∗ ∗
Σ31 0 −γ2I ∗ ∗ ∗
Σ41 0

√
τMBω Ŵ44 ∗ ∗

Σ51 0 0 0 −I ∗
Σ61 0 0 Σ64 0 Σ66

















< 0 (23)

Ŵ = Σ11 + Γ̃ + Γ̃T , Ŵ44 = ρ2R̃ − 2ρX

Σ11 =









A0X + XAT
0 + Q̃ ∗ ∗ ∗

Y T BT
0 σΩ̃ ∗ ∗

0 0 −Q̃ ∗
Y T BT

0 0 0 −Ω̃









Γ̃ =
[

−Ñ Ñ − M̃ M̃ 0
]

Σ21(1) =
√

τM ÑT , Φ21(2) =
√

τMM̃T ,

Σ41 =
[ √

τMA0X
√

τMB0Y 0
√

τMB0Y
]

,

Σ51 =
[

CX DY 0 DY
]

,

Σ31 =
[

BT
ω 0 0 0

]

Σ61 =

[

µHT 0 0 0
E1X E2Y 0 E2Y

]

,

Σ64 =

[ √
τMµHT

0

]

, Σ66 =

[

−µI 0
0 −µI

]

Proof: Defining X = P−1, pre and post mul-

tiplying (22) with diag{X, X, X, X, X, I, R−1, I, I, I},

defining new matrix variables Q̃ = XQX, R̃ =
XRX, Ω̃ = XΩX, Ñ = diag(X, X, X, X)NX, M̃ =
diag(X, X, X, X)MX , Y = KX, µ = ε−1 and using

Lemma 1 with the inequality

−XR̃−1X ≤ ρ2R̃ − 2ρX (24)

(23) can be obtained from (22).

Remark 5: In [8], the authors investigated self-triggered

control for linear systems, the proposed technique can guar-

antee exponential input-to-state (ISS) stability of the system.

However, the considered system is free of delay and the

method can not be applied into networked control systems.

Furthermore, the method in [8] can not be used for the co-

design of both feedback gain and the trigger parameters.

Remark 6: Theorem 3 provides a useful way of co-design

for both the feedback gain and the trigger parameters σ
and Ω by solving a set of LMIs in (23). Moreover, the

information of the transmission delay is also involved in

the condition (23). Therefore, our method can be used to

deal with the case with network transmission delay. For

given condition on the transmission delay, by solving (23),

the corresponding feedback gain and trigger parameters can

be obtained, which can be used to guarantee the required

performance even though the transmission delay exists in

the network communication.

Remark 7: When σ, ρ and γ are fixed, the upper bound for

τM can be solved in terms of (23). Appropriately selecting
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the value of ρ will lead to a relatively larger value of the

maximum τM . However, how to find an optimal value of ρ
is still open. On the other hand, from the simulation example

in the following section, it can be seen that larger σ will lead

to smaller upper bound of τM . It can also be found from the

simulation example that, larger σ produces a larger average

release period, which turns to reduce the load of network

communication and thus decrease the transmission delay.

Remark 8: Note that τM = h + τ̄ . When τM is solved,

selecting a sampling period h < τM , the allowable maximum

transmission delay is τ̄ = τM − h. If τk ≡ 0, that is, no

transmission delay exists or the effect of the transmission

delay can be omitted, the solved τM denotes the maximum

sampling period.

IV. SIMULATION EXAMPLE

Consider the system (1)-(2) with the parameter matrices

satisfying the following two cases:

Case 1 :

A0 =









0 1 0 0
0 0 −mg

M
0

0 0 0 1
0 0 g/l 0









, B0 =









0
1/M

0
−1/Ml









(25)

C =
[

0 0 0 0
]

, D = 0, BT
w =

[

0 0 0 0
]

where M = 10 is the cart mass and m = 1 is the mass of

the pendulum bob, l = 3 is the length of the pendulum arm

and g = 10 is gravitational acceleration. The eigenvalues

of A are {0, 0, 1.8257,−1.8257}, the system is unstable

without a controller. The state
[

x1 x2 x3 x4

]

=
[

y ẏ θ θ̇
]

, where xi(i = 1, 2, 3, 4) are the cart’s

position, the cart’s velocity, the pendulum bob’s angle and

the pendulum bob’s angular velocity respectively. The initial

state is x0 =
[

0.98 0 0.2 0
]

.

Case 2 : A0 and B0 are the same as in (25), the other

parameter matrices are given as follows:

C =
[

1 1 1 1
]

, D = 0.1, BT
w = C, (26)

E1 =









0 0.1 0 0
0 0 −0.1 0
0 0 0 0.1
0 0 0.1 0.01









, (27)

H = diag{1, 1, 1, 1}, (28)

ω(t) =

{

sgn(sin t), if t ∈ [0, 10]
0, otherwise

(29)

In the following, under Case 1 or Case 2, we will demon-

strate the design process of the feedback gain and the

proposed event-triggering scheme and also provide some

comparison results showing the advantages of our own

method over the existing ones.

Under Case 1. To compare with the existing methods in

the design of event-triggering scheme, we use the following

feedback gain

K =
[

2 12 378 210
]

(30)

TABLE I

AVERAGE SAMPLING PERIOD BY DIFFERENT TRIGGERING SCHEMES

Event-triggering Schemes Average Periods

Theorem 1 with h = 0.11 0.7729

Event-triggering scheme in [13] 0.4816

Event-triggering scheme in [14] 0.3375

The bound on the MATI in [3] 0.0168

Event-triggering scheme in [12] < 10−5
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(a) The release instants and re-
lease interval with feedback gain
(30) and trigger matrix (31)
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(b) The state responses of system
with feedback gain (30) and trig-
ger matrix (31)
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(c) The state responses of system
with feedback gain and Ω in (35)
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(d) The release instants and re-
lease interval with feedback gain
K and trigger matrix Ω in (35)

which is the same as in [14]. Applying Theorem 1 with

ρ = 0.53 and σ = 0.3, we can solve the maximum value of

τM as 0.11 and the corresponding Ω as

Ω =









0.0047 0.0190 0.6555 0.3391
0.0190 0.1325 3.7101 2.1602
0.6555 3.7101 119.0910 65.0458
0.3391 2.1602 65.0458 37.2885









(31)

Suppose τk ≡ 0 as in [13]. Since τM = h + τ̄ , it can be

known that the maximum sampling period is 0.11. Taking

h = 0.11 and using the algorithm (4), the simulation results

for t ∈ [0, 30] show that, only 37 sampled signals need

to be sent out to the controller, which takes 13.6% of the

sampled signals. Moreover, it can be computed that our event

generator leads to a maximum release interval of 3.41. The

comparison results on the average interval under our scheme

and other schemes in [13], [14], [12], [3] are shown in

Table I. It can be found that our event-triggering scheme can

provide a larger average release interval than those obtained

by the existing ones in [13], [14], [12], [3]. The release

instants and release intervals are shown in Fig. a.

The state responses of system (16)-(18) with feedback gain

(30) and trigger matrix (31) are shown in Fig. b.

For the given feedback gain (30), applying Theorem 1

with σ = 0, the upper bound of τM is solved as 0.1989.
Suppose τk ≡ 0, letting τ̄ = 0 and from τM = h + τ̄ ,
the maximum allowed sampling period can be obtained as

1672



0.1989. From Remark 1, when σ = 0, the event-triggered

scheme reduces to the periodic release scheme. Compared

0.1989 with the result 0.7729 obtained above, the proposed

event-triggered scheme can reduce much signal transmission

and thus reduce the network burden than the periodic release

scheme.

Using Theorem 3 with ρ = 0.53 and σ = 0.3, the upper

bound for τM is computed as 0.14 and the corresponding

feedback gain and the trigger matrix are

K =
[

0.0051 0.4089 247.1533 135.4933
]

(32)

Ω =









1.1376 −1.8096 −3.3038 6.0318
−1.8096 3.3143 6.0510 −11.0477
−3.3038 6.0510 11.0477 −20.1702
6.0318 −11.0477 −20.1702 36.8255









(33)

If h is selected as 0.01, under the controller with feedback

gain (32) and the trigger (4) with Ω in (33), the closed-loop

system can tolerate the transmission delay bounded by 0.13.
Under Case 2. Suppose τk ≡ 0 and ∆A0 = 0 and ∆B0 =

0 as in [14]. Using the feedback gain (30), applying Theorem

1 with ρ = 0.53, γ = 200 and σ = 0.1, the upper bound of

τM is solved as 0.144 and the event-triggering matrix Ω as

Ω = 106 ×









0.0001 0.0004 0.0113 0.0062
0.0004 0.0023 0.0664 0.0378
0.0113 0.0664 2.1190 1.1628
0.0062 0.0378 1.1628 0.6520









(34)

Setting h = 0.144 and under the controller with the feedback

gain (30) and the algorithm (4) with Ω in (34), the average

release period is shown to be 0.4608, which is larger than

0.2830 obtained in [14] using the same feedback gain (30).

For the case with parameter uncertainties, applying The-

orem 3 with ρ = 0.53, γ = 200 and σ = 0.1, the upper

bound of τM = 0.06, the corresponding K and Ω are

K = 103 ×
[

0.0134 0.0919 1.0023 0.5687
]

Ω =









0.0449 0.2177 −0.0028 −0.0644
0.2177 1.3902 −0.0273 −0.3900
−0.0028 −0.0273 0.0411 −0.0630
−0.0644 −0.3900 −0.0630 0.2325









(35)

Select the sampling period h = 0.01. Since τM = h + τ̄ ,
the allowable maximum transmission delay can be 0.05.
Considering the effect of the transmission delay, the average

release period is obtained as 0.2278, the state response of

the system (1)-(2) with K and Ω in (35) are shown in Fig

c. Fig d plots the release instants and release interval.

V. CONCLUSION

To reduce the communication load in the network, a

novel event-triggering scheme has been proposed, which

can be used to determine when the sampled signals by

sensors will be transmitted. Under the event trigger, an event-

triggered H∞ control design method has been proposed for

networked control systems with uncertainties and network-

induced delay. A delay system model has been used to

describe the prosperities of the event trigger and effects of

the transmission delay on the system. Based on Lyapunov

functional method, criteria for stability with an H∞ norm

bound and H∞ control design have been obtained, which

are expressed in the form of linear matrix inequalities. A

simulation example has shown that, our event-triggering

scheme can lead to a larger average release period than

those by some existing methods. As the special case of the

proposed event-triggering scheme, a periodic release scheme

can be obtained by solving (20), (22) or (23) with σ = 0.
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