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Abstract— This paper proposes a complete motion sensing
solution for wheelchairs with the main objective of determin-
ing tips, falls and other hazardous situations. This kind of
motion-logging solution is necessary to study needs and habits
of wheelchair users. The system collects motion information
utilizing an inertial measurement unit (IMU) consisting of three
orthogonal accelerometers and two gyroscopes sensing pitch
and roll rate. The IMU is part of a portable device (the ”Motion
Logger”) which captures raw motion data in a Secure Digital
memory card. An algorithm running in the Motion Logger
helps reducing energy consumption and memory usage. Actual
determination of major events is carried out off-line and in
batch mode using a personal computer application, which has
two key components: an attitude estimation algorithm and the
event identification itself. This document describes the design
process, the hardware, and the main algorithms employed in
the motion sensing solution, as well as results obtained with it.

I. INTRODUCTION

This paper describes the implementation of a motion sens-
ing system for determining wheelchair-related falls as part of
a major research study carried out at the research center of
the James A. Haley VA Hospital (Tampa, Florida). The focus
of the study aims at achieving a thorough understanding of
the demographics, nature, consequences, and the creation of
prediction models of fall events among veteran wheelchair
users [1].

The main goal of the motion system is to successfully
estimate the motion variables relevant to the occurrence of
falls, tips and similar risky situations [2]. Off-line smooth-
ing techniques allow for optimal estimation of angles in
the longitudinal (roll) and lateral (pitch) directions of the
wheelchair. Pattern recognition techniques may be applied
for determining falls and tips while distinguishing them from
false positives, such as the case when the wheelchair tilts for
folding or when it is being transported.

The paper is organized as follows. In section II, some
projects with a similar nature to this one are described briefly.
Section III analyzes the required functionality and design
requirements. Section IV explains the proposed solution, in-
cluding the embedded system design and the signal analysis
process. Results analysis is addressed in section V. Finally,
conclusions and future work are included in section VI.

II. RELATED WORK

Significant research efforts are being carried out dealing
with attitude and position estimation of vehicles and other
similar mobile platforms. There was however no solution that
satisfied all requirements imposed to the platform described
in this paper. In [3], a system was attached to a wheelchair for
determining several usage statistics such as distance traveled,

localization information, seat position and time spent on the
wheelchair. Using wheel rotation measurements, velocity,
distance and number of stops were estimated. A GPS board
was used to collect navigation information. Seat tilt values
were measured using a potentiometer. In [4], an improvement
to the previously described system was performed incorpo-
rating tilt and pressure sensors for determining inclination
and seat occupancy, respectively.

In [5], a laser range finder, a three-axis gyroscope and
a pedometer were mounted on a cane to provide position
and attitude information to blind people. The laser and gy-
roscopes provided attitude information while the pedometer
measured the user’s walking speed. The estimation scheme
used a two-layered extended Kalman filter. The first one,
based on laser and gyroscopes measurements, estimated
the 3-D attitude of the cane. The second filter, integrated
corner features extracted from the laser data and linear
velocity measurements from the pedometer to estimate the
2-D position of the user.

The HOBO Pendant G Acceleration Data Logger [6] is
a commercially available motion-data-logging device that
stores measurements from a three-axis accelerometer in a 64
KB EEPROM memory. The information is downloaded to
a computer through a USB interface. Then, with the help
of software included with the equipment, tilt information
is computed and displayed graphically. Due to its limited
storage and battery capacity, the HOBO Pendant is only
applicable to experiments with short duration of time. Fur-
thermore, gyroscopes, not included in the HOBO pendant,
would be necessary to accurately estimate dynamic roll and
pitch.

III. PROBLEM DESCRIPTION, CHALLENGES AND
REQUIREMENTS

The development of the ”Motion Logger” is motivated by
the need of a device supporting the study of tips and falls of
wheelchair users, specifically war veterans. A logging and
estimation system must provide accurate information about
the motion and attitude of the wheelchair for the accurate
determination of hazardous situations, such that appropriate
conclusions can be drawn from the study.

According to researchers associated with the Veteran Af-
fairs research center, the system needed to possess several
features not found in any commercial solution. Following
requirements were proposed:

• Accurate detection of relevant events as required by the
study. No relevant events should be missed. At the same
time, ”false positives” should be avoided to the greatest
extent possible.
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Fig. 1. Embedded application block diagram.

• Unattended operation for relatively long periods of time
(˜1 month).

• Adaptability to a variety of wheelchair types and users
with minimal intrusiveness to the regular wheelchair
operation.

• Robustness and ruggedness.
• Simple use and minimal user interaction.
• Low price.

IV. PROPOSED SOLUTION

A major design principle followed for devising a solution
that fulfilled all requirements, particularly targeting the cost
constraints, was to shift as much complexity as possible
from the data collection aspect to the data analysis. Per-
sonal computers are inexpensive and there are numerous
data analysis tools readily available to researchers, such as
MATLAB. Hence, the system consisted of two major stages
to the proposed solution:

• Data collection, where the main focus is in capturing
raw information with high fidelity, while saving power,
memory and cost. Here, cost is a key design constraint
to be considered, since hundreds of data collection
devices (Motion Loggers) would be distributed to many
study participants. Another aspect to be careful about
is observability, which needs to be guaranteed for the
proper estimation of the main magnitudes.

• Data processing. All the intelligence required to suc-
cessfully indentify relevant events should be placed on
this aspect of the technological solution. Having access
to raw data also allows for employing different attitude
estimation or pattern recognition techniques, and for
comparison of different approaches. Thus, there is the
possibility for this aspect to evolve. In this specific
study, the data analysis stage may be decomposed
into two major aspects: Optimal estimation of motion
variables from raw measurements, and determination of
fall/tip events.

As mentioned before, this system architecture leverages on
the computational power of the PC and its large storage

Fig. 2. Embedded device.

capacity. It also allows for minimizing the complexity of
the data-logging device, thus reducing its cost.

A. Data Logging Device

A preliminary functional decomposition of the data log-
ging device yields the block diagram shown in Fig. 1. After
a careful evaluation and comparison of several alternatives,
a data logging device originally intended for storage of GPS
information was chosen for the practical implementation of
the initial prototype of the Motion Logger (Sparkfun’s Logo-
matic V1.0 [7]). The Logomatic contains the microcontroller
Philips LPC2138, and a Secure Digital card (SD) socket. The
SD memory was satisfactory from the point of view of the
project requirements due to handling ease for users who do
not possess computers. Motion-Logger users would just place
the SD card in an envelope and send it to the research center.
Shortly before, they receive a fresh SD card for replacement
to ensure uninterrupted execution of the study.

The motion sensing function in the data logging device is
realized by an Inertial Measurement Unit (IMU) containing
3-axis accelerometers [8] and 2 gyroscopes [9] obtained from
the same vendor. In addition, temperature and battery voltage
are measured for device characterization and for monitoring
power supply behavior with the help of a custom circuit.
The device is attached rigidly to the wheelchair in order to
capture the motion variables with high fidelity. A picture of
the actual embedded system is shown in Fig. 2.

1) Embedded Application: Three-axial acceleration and
roll/pitch rate information is processed by an embedded
application such that measurements are stored only when the
wheelchair moves. This functionality is essential for saving
storage space and energy. Code for the custom embedded
application was written using some functions of the Logo-
matic’s firmware, whose source code was also provided by
the vendor.

The customized embedded application incorporates fol-
lowing features:

• Real time multichannel signal processing for selective
data storage.

• Time-stamping.
• Reading input elements for user interaction.
• Battery and temperature monitoring.
The signal processing algorithm is based on a high-pass

digital filter applied to each sensor output. The output of the
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digital filter determines when a relevant change has occurred
then triggering the memory writing process. Digital filter
design is straightforward. It was determined experimentally
that relevant frequency components for most wheelchair
users are below 10 Hz. Based on that, the sampling rate
was set to 20 samples/sec. To eliminate the DC component
(offset) and slow changes in sensor bias, the corner frequency
of the high pass filter was set to 2Hz. It should be emphasized
at this point that the sensor information is processed only for
determining when to trigger the writing process on the SD
card; nevertheless data from all sensors is stored in raw form.

Repeated experiments verified that the system was sensi-
tive enough to detect vibrations and any kind of motion, but
avoided storing data when the wheelchair was static. This
simple solution allowed for balancing two conflicting re-
quirements, namely sensitivity vs. storage/energy efficiency.
The basic algorithm is presented graphically in simplified
form in Fig. 3. To make sure that the system does not discard
relevant data, a circular buffer is maintained so that any time
change is detected in any of the sensors, the system stores
data half of a second before the occurrence of the event.
Data continues to be stored while motion is detected and it
stops 5 seconds after any activity period. The real time clock
module of the processor is used to generate a time-stamp
whenever a new event is detected. A sample of one of the
frames generated by the embedded application is shown in
Fig. 4. The first line of the frame contains, from left to right,
the digitally converted values of temperature, measured by an
LM35 temperature sensor, a fraction of the source voltage,
a reference voltage from a precision voltage reference IC
(LM4041) with a constant output of 1.225 Volts, and the
time when motion was detected. All converted values are in
the range 0-1023 since the ADC module uses 10 bits for
the conversion process of the analog signals. After the first
line, which is included every time a new event is detected,
the digitized sensor outputs are stored in the SD in the
following order: roll rate, pitch rate, vertical acceleration,
lateral acceleration, longitudinal acceleration.

The final action taken towards the goal of reducing energy
consumption was to reduce the clock frequency. A change
from 60 MHz to 30 MHz produces a reduction of average
current draw from 70mA to 30mA. This current component
is only due to the microcontroller operation and process-
ing algorithms, but does not include the memory writing
process. The SD memory writing procedure generates an
additional current burst between 12 and 18 mA, as verified
through oscilloscope measurements. A commercial-off-the-
shelf (COTS) rechargeable battery system is used as the
source of energy for the embedded application. It comprises
a Polymer Lithium Ion battery [10] and a charging circuit
[11] for this particular battery chemistry, which is fed by an
AC wall adapter. Users are encouraged to charge the Motion
Logger every evening or whenever they are not using the
wheelchair for a prolonged period of time. As estimated from
the battery capacity (2 AHr), as well as experimentally, users
can use the Motion Logger for up to 2 days without the need
to recharge.

Fig. 3. Real-time signal processing algorithm for selective data storage.

B. Estimation of Motion Variables

1) Calibration Procedure: The calibration procedure in-
volves determining offsets and scaling factors for each
sensor. To achieve this, the Motion Logger is subjected to
test in six positions, such that the gravity vector is aligned
with each accelerometer axis in the positive and negative
directions. Using the known gravity acceleration value, scale
values for the IMU can be accurately determined. After
the calibration process, the estimation algorithm takes into
account variability of the sensors, such that accuracy can be
improved.

2) Estimation Procedure: As pointed out before, raw
sensor data is stored in the SD memory for approximately
one month. The first approach for estimating roll and pitch
angles is based only on accelerometer information. Hence,
it is assumed that the wheelchair is static. Since gravity
is always sensed by the accelerometers, it is possible to
calculate trigonometrically the two angles under study. Fig.
5 and equations 1 and 2 illustrate the geometric and mathe-
matical relationships that allow for determining these angles.
With this simple implementation, which does not incorporate
gyroscopic measurements, the results obtained are very in-
accurate, since they consider acceleration measurements as
the sole effect of tilt, disregarding the acceleration of the
platform itself.

φ = arctan

(
ãy
ãz

)
(1)

θ = arctan

(
ãx
ãz

)
(2)

φ is roll, θ is pitch, ãx, ãy , ãz are the measured accelerations
in the longitudinal, lateral, and vertical travel directions,
respectively. Due to the fact that the device cannot be placed
at the perfect center of gravity of the wheelchair, every
time the user rotates around the vertical axis, an increment
in the Y axis acceleration appears. This is erroneously
interpreted as a rotation around the travel direction axis
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Fig. 4. Sample logged frame.

(roll). Additionally, every time the wheelchair starts moving,
a false inclination value is obtained due to the large change
produced in the accelerometer output. An improved analysis
approach implies using the gyroscope measurements. For
actual sensor fusion, a linear optimal smoother [12], [13] is
employed to estimate roll and pitch angles. Due to the large
quantity of raw data to be analyzed (approximately 0.5 GB
of data per user for 1 month) important considerations with
regard to computational complexity needed to be taken into
account. Hence, a simple and efficient variant of the smoother
was implemented. The equations shown below describe the
system model and measurement model for the smoother:

xk+1 = Φxk +R (3)

zk = Cxk +Q (4)

• xk+1: Next state value calculated from the model.
• xk: Last estimated value for the state.
• Φ: State transition model matrix.
• C: Measurement model matrix.
• zk: Measurements.
• R: Model error covariance matrix.
• Q: Measurement error covariance matrix.

The state of the system, x, is shown below:

x =


φ
θ
p
q

 (5)

• φ: Roll angle.
• θ: Pitch angle.
• p: Angular rate in the longitudinal direction.
• q: Angular rate in the lateral direction.

It is assumed that pitch and roll angles are measured,
even though they are being calculated from acceleration
measurements. The state transition model matrix and the
measurement model matrix are shown below:

Φ =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

 (6)

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (7)

where Ts is the sampling time (50 msec). The smoother
itself, known as Rauch-Tung-Striebel algorithm, is basically
a filtering algorithm run in two directions: forward and

Fig. 5. Gravity components when wheelchair is tilted.

backward [13]. The forward filtering follows the Kalman
filter equations, which are well known and straightforward
to implement [12]. During the Kalman filtering process, all a
priori x̂k+1/k and a posteriori x̂k/k computed state estimates
need to be saved along with their covariance matrices, that is
Pk+1/k and Pk/k, respectively. The smoothing gain is given
by

Ak = Pk/kΦTP−1
k+1/k (8)

Ak is used to obtain the smoothed estimates from following
relationship:

x̂k/N = x̂k/k +Ak

(
x̂k+1/N − x̂k+1/k

)
(9)

Here, x̂k/N represents the smoothed estimate, and x̂k+1/N

is the previously computed smoothed estimate during the
backward filtering process. The covariance matrix of the
smoothed estimates may be obtained from the expression
below. However, this value is not used in the backward
filtering procedure.

Pk/N = Pk/k +Ak

(
Pk+1/N − Pk+1/k

)
AT

k (10)

C. Fall and Tip Detection

Based on the estimated longitudinal roll and lateral pitch
angles, a fall and tip detection algorithm is used to further
process the filtered data. The algorithm steps are:

• The algorithm checks that the battery was properly
charged at the time the tip or fall was detected, which
indicated sensor measurements were reliable.

• At the beginning of each frame, whose length depends
on the activity intensity of the user after the start of
motion, the software checks that the first estimated
angles do not contain high values. This assists in the
avoidance of false positives associated with events when
the wheelchair is stationary and tilted without the user
sitting on it.

• If any of the angles are higher than a threshold, during a
certain amount of samples, an event is labeled as a likely
fall or tip. The thresholds were set to 50 for tips and 150
for falls. The algorithm also checks that the angles do
not keep changing polarity for longer than 10 seconds
since such pattern is likely to represent the case when
the wheelchair is being transported in a vehicle. Regular
wheelchair usage is not likely to generate continuous
fast tilt changes. A short-time average zero-crossing
rate (per sample) is used to estimate the frequency
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Fig. 6. Device attached to wheelchair.

component of the signal for the given analysis time,
and can be measured as follows [14]:

Zn =
1

2L

n∑
m=n−L+1

|sgn(φ[m])− sgn(φ[m− 1])|

(11)
– L: Analysis window length.

The equivalent sinusoidal frequency corresponding to a
given zero-crossing rate per sample is [14]:

Fe = 0.5FsZ
(1) (12)

– Z(1): Zero-crossing rate per sample.
– Fs: Sampling rate.

• Since a tip or fall event is not likely to contain periodic
variations, but rather sudden fluctuations, frames with
periodic behavior should not trigger an event detection.
The autocorrelation function of a periodic signal is also
periodic with the same period [14], and may be used to
measure angles periodicity during a short-time window
as given below [14]:

Rn[k] =

L−1∑
m=0

φ[n+m]φ[n+m+ k] (13)

– k: Lag index.

V. RESULTS

A. Laboratory Validation

Initially, the system was tested on 6 wheelchairs for a pe-
riod of three weeks. Feedback from actual users participating
in the pilot study was important, since it provided essential
information for validation purposes and for rating system
usability. The picture presented in Fig. 6 shows a wheelchair
with the attached Motion Logger.

Preliminary tests were carried out in a laboratory en-
vironment with wheelchairs provided by the VA hospital
to the Motion-Logger design team. Numerous experiments
were carried out using other measurement instruments which

Fig. 7. Pitch and Roll variations during tip detection for Subject #4.

provided ground-truth information, among them, video-taped
experiments. Based on these controlled experiments, it was
determined that an accuracy of ±3 degrees in dynamic roll
and pitch estimation was achieved.

B. Prototype Deployment

For the final deployment, 50 Motion Loggers were assem-
bled, tested and delivered for installation. The functionality
of each device was properly verified by executing an exper-
iment in which roll and pitch angles were forced to known
positive and negative values. Thus, connections and sensors
orientation were checked. This preliminary experiment was
also used to estimate sensors’ gains and dynamic ranges
specific to each device. The purpose of this final stage of the
study was to determine tips and falls by wheelchairs users
based on the estimated angles. The devices were installed
and the SD cards were replaced monthly. Once the memory
with the logged data arrived it was processed using the
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Fig. 8. Angles’ variations during fall detection for Subject #4 and #17.

algorithm for estimating pitch and roll. The processed data
was used to determine when tips or falls may have occurred.
Statistically relevant results based on the utilization of the
motion determination solution will be presented in future
publications. Fig. 7 shows the results obtained after running
the estimation algorithm on data collected from users who
logged information for several weeks. It corresponds to the
variation of angles during a frame when a tip was detected
for subject #4. Fig. 8 shows frames where a fall was detected
for subjects #4 and #17.

VI. CONCLUSIONS

A Motion-Logger was successfully developed to support
the study of tips and falls of wheelchair users. A logging
and estimation system provided accurate information about
the motion and attitude of the wheelchair for successfully
determining risky situations. The system was designed to
collect data for long periods of time, which could be several

months. The data, from sensors containing relevant informa-
tion about the motion of the wheelchair, was stored in an SD
memory card. Data was also obtained and stored for battery
condition and temperature. The date and time at which the
data was recorded was included for further analysis.

When the wheelchair data is combined with demographic
records the solution provides important information regard-
ing the nature of risks encountered by wheelchair users. In
addition, the solution provides for the investigation of the
nature, causes, consequences and costs of wheelchair users
falls.

Current work is focused on improving the Kalman filter
algorithm and on evaluating the possibility of implement-
ing the angles estimation algorithm and the tips and falls
detection software in the embedded device instead of in an
external computer.
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