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Abstract— An output-feedback sliding mode controller is
proposed for multivariable nonlinear systems with time-varying
state delays and unmatched uncertainties. The control strategy
is based on unit vector control and a novel norm observer
for the unmeasured state of time-delay systems. This approach
guarantees global stability of the closed-loop system, exponen-
tial convergence of the output error and exact tracking of the
reference signal. In addition, less restrictive conditions on the
high frequency gain matrix are obtained.

Index Terms— Sliding mode control, Output-feedback, Time-
delay systems, Uncertain systems, Nonlinear systems, Global
stability.

I. INTRODUCTION

The presence of time delay in dynamical systems is often

the cause of instability and poor performance [1]. In addition,

plant parameters may be unknown or imprecisely defined.

Hence, time delay and uncertain plant parameters are serious

obstacles to the stability and good performance of control

systems. Thus, there is a crescent interest in the study of

uncertain systems with time delay [2], [3], [4].

Sliding mode control (SMC) is an attractive methodology

to uncertain systems [5], [6], [7]. The main advantages

of SMC are robustness to parameter uncertainties and dis-

turbances, fast response and good transient performance.

However, time delay deteriorates the control performance

since it is a cause of chattering and may destabilize the

system.

The exponential stability of uncertain systems with state

delay has been studied through the Lyapunov method and

linear matrix inequalities (LMIs) in [8], assuming that the

time delay is known and constant. In [9], exponential stability

conditions are based on linear operator inequalities (LOIs)

and applied to systems with unknown time-varying delay. In

these works [8], [9] the system has no input or control signal.

Several approaches to control time-delay systems found in

the literature are based on full-state measurement, e.g., [6],

[7], [10], [1]. An alternative for output-feedback is the use

of state observers as in [11], [12], which may be difficult

to design for the class of uncertain time-varying nonlinear

systems considered in the present paper. In [11], only nonlin-

ear state-delayed systems with matched nonlinear terms are

considered. On the other hand, the SMC in [12] is designed

for nonlinear systems with known time-varying state delay
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and unmatched uncertainties, via the Lyapunov-Razumikhin

approach. However, only local stability can be guaranteed.

Reference [12, Remark 7] recognizes that the observer-based

control scheme is dependent on the knowledge of the delay,

which may limit its application.

Here we propose an output-feedback SMC for multi-

variable uncertain time-varying state delayed systems with

unmatched nonlinear disturbances, which depend not only on

the plant output but also on its unmeasurable state variables.

Moreover, matched state dependent nonlinear disturbances

are allowed to be, for instance, of polynomial type. This

control scheme utilizes a norm observer [13], [14] for the

unmeasured state vector. This is an advantage over previous

output-feedback schemes, since norm observers are usually

more robust to strong uncertainties than state observers.

The resulting output-feedback controller guarantees global

stability, exponential convergence of the output error and

exact tracking. In addition, the use of unit vector control

and part of the analysis method developed in [15] result in

less restrictions imposed on the high frequency gain matrix

of the system. To the best of our knowledge, such results are

new in the context of SMC of nonlinear time-delay systems.

A. Notation and Terminology

The following notation and basic concepts are employed:

(1) ISS means Input-to-State-Stable and classes K, K∞

functions are defined as in [16]. (2) The Euclidean norm of

a vector x and the corresponding induced norm of a matrix

A are denoted by ‖x‖ and ‖A‖, respectively. (3) As usual

in SMC, Filippov’s definition for solution of discontinuous

differential equations is adopted [17].

II. PROBLEM FORMULATION

This paper considers the model-reference control of multi-

input-multi-output (MIMO) nonlinear uncertain systems with

time-varying delay, described by the state equations:

η̇ = φ0(η, ηd, y, yd, t) , (1)

ẏ = φ1(η, ηd, y, yd, t) +Kpu , (2)

where φ0 and φ1 are uncertain nonlinear functions, u ∈ IRl is

the control input, y ∈ IRl is the measured output signal, and

the state η ∈ IRn−l of the subsystem (1) is unmeasurable.

To denote the time-delayed state vectors, the subscript d is

introduced [12]: ηd(t) := η(t − d(t)) and yd(t) := y(t −
d(t)). As is usual in the time-delay systems framework [18,

Sec. 1.2], the initial conditions are given by

η(t) = η0(t) , y(t) = y0(t) , t ∈ [−d̄, 0] , (3)
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where η0(t) and y0(t) are vector functions continuous in

t ∈ [−d̄, 0], and d̄ is defined below in (A2).

The following assumptions regarding the system hold:

(A1) For the high frequency gain (HFG) matrix Kp it

is assumed that a matrix Sp is known such that

−KpSp is Hurwitz and ‖K−1
p ‖ ≤ c, with c > 0

being a known constant.

(A2) The time delay d(t) is an uncertain piecewise-

continuous function, and satisfies 0 < d ≤ d(t) ≤
d̄ < +∞, where d and d̄ are known bounds.

(A3) The uncertain nonlinear functions φ0 and φ1 are

piecewise continuous in t and locally Lipschitz in

the other arguments.

(A4) The norm of the state η of the subsystem (1) can be

bounded by an exponentially stable norm observer.

(A5) There exist known locally Lipschitz class K∞ func-

tions α1(·), α2(·), α3(·) and a known non-negative

function ϕ1(y, t) continuous in y, and piecewise

continuous in t such that

‖φ1‖ ≤ α1(‖η‖)+α2(ηsup)+α3(ysup)+ϕ1(y, t) ,

where ηsup(t) := supτ∈[d,d̄] ‖η(t − τ)‖ and

ysup(t) := supτ∈[d,d̄] ‖y(t− τ)‖.

The Hurwitz condition in (A1) is necessary and sufficient

for the attractiveness of the sliding surface for unit vector

SMC [15]. This assumption is less restrictive than usual

conditions found in the literature of multivariable SMC, e.g.,

knowledge of the HFG as in [11], [12].

Here and in [9], the time delay d(t) is allowed to be

uncertain. From this point of view, assumption (A2) is less

restrictive than the knowledge of the time delay assumed in

[11], [12], [8].

Assumption (A3) guarantees the local existence and

uniqueness of the solution of (1)–(2) for u ≡ 0. For each

solution of (1)–(2) there exists a maximal time interval of

definition given by [0, tM ), where tM may be finite or

infinite. Thus, finite-time escape is not precluded a priori.

According to (A4), our output-feedback control scheme

utilizes a norm observer [13], [14], instead of state observers,

for the unmeasured state vector η, as will be explained

in Section III. Even if state observers can be applied in

output-feedback controllers, e.g., [11], [12], their design

seems to be difficult for the class of uncertain time-varying

nonlinear systems considered here. Norm observers are more

advantageous than state observers since: (1) their structure is

simpler than state observers; (2) norm observers give “worst

case” upper bounds for the state norm and thus are more

robust to uncertainties; (3) the design procedure of norm

observers is independent of the order of the system, which

is allowed to be uncertain [19] and; (4) norm observers have

already been applied in sliding mode control schemes with

global stability properties, e.g., [20], [14].

A first order exponentially stable norm observer for the

subsystem (1) is a scalar dynamic system of the form (y is

the plant output):

˙̄η = −λ0η̄ + c0ϕ0(‖y‖, ysup, t) , (4)

with input ϕ0(y, t) and output η̄, such that: (i) λ0, c0 > 0
are constants; (ii) ϕ0(‖y‖, ysup, t) is a non-negative function

continuous in ‖y‖ and ysup, piecewise continuous and upper

bounded in t; and (iii) for each initial states η0 and η̄(0)

‖η(t)‖ ≤ η̄(t) + k0 (η∗0 + |η̄(0)|) e−λ0t , (5)

∀t ∈ [0, tM ), with some constant k0 > 0 and η∗0 :=
supt∈[−d̄,0] ‖η0(t)‖.

In order to obtain a norm bound for φ1 in (2), we addition-

ally assume (A5). Note that (A5) is not too restrictive since

φ1 is assumed to be locally Lipschitz continuous in η, ηd, y
and yd. Furthermore, the bounding functions α1, α2, α3 and

ϕ1 do not impose particular growth conditions with respect to

the nonlinear vector field φ1. Thus, polynomial nonlinearities

in η, ηd, y and yd are not precluded.

A. Global Tracking Problem

The problem consists in designing an output-feedback

control law u to drive the output tracking error

e(t) = y(t) − ym(t) (6)

asymptotically to zero (exact tracking), starting from any

plant/controller initial conditions and maintaining uniform

closed-loop signal boundedness. The desired trajectory

ym(t) is assumed to be generated by the reference model:

ẏm = Amym + rm , Am = −diag {a1, . . . , al} , (7)

where ai > 0,∀i ∈ {1, . . . , l}, and rm, ym ∈ IRl. The

reference signal rm(t) is assumed piecewise continuous and

uniformly bounded.

B. Error Equation

Subtracting (7) from (2), the error dynamics can be written

as

ė = Ame+Kp(u− u∗) , (8)

where the ideal control u∗ := K−1
p (−φ1 +Amy + rm) can

be considered as a matched input disturbance in (8). From

assumptions (A1)–(A5), the ideal control signal can be norm

bounded by available signals, e.g.,

‖u∗‖ ≤ c [α1(2|η̄|) + α2(2η̄sup) + α3(ysup) +

+ ϕ1(y, t) + ‖Amy + rm‖] + π1 , (9)

where c is given in (A1) and

η̄sup(t) := sup
τ∈[d,d̄]

|η̄(t− τ)| . (10)

The term π1 := k1 (η∗0 + |η̄(0)|) e−λ0t (k1 > 0 is an

appropriate constant) bounds exponentially decaying signals

due to initial conditions as in (5). To develop (9), we have

considered the fact that α1 and α2 are locally Lipschitz and

ψ(a + b) ≤ ψ(2a) + ψ(2b), ∀a, b ≥ 0 and ∀ψ ∈ K∞ [21,

p. 94].

Then, the global tracking problem can be reformulated as

the regulation problem described as follows. Find an output-

feedback sliding mode control law u in such a way that, for

all initial conditions (y0, η0, e(0), η̄(0)): (i) the solutions of

(1)–(2), (4) and (8) are bounded and (ii) e(t) tends at least

asymptotically to zero as t→ +∞.
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III. NORM OBSERVERS FOR TIME-DELAY SYSTEMS

In this paper, we have assumed that one can obtain a norm

observer of the form (4) for the state η of the subsystem (1).

In this section, we characterize a class of MIMO nonlinear

plants where a linear growth condition is required only w.r.t.

the unmeasured state η and for which such exponentially

stable norm observers can be implemented.

A. An Illustrative Class of Nonlinear Time-Delay Systems

We consider the class of nonlinear MIMO systems (1)–(2)

with the function φ0 given by

φ0(η, ηd, y, yd, t) = A0η+f0(η, t)+f1(ηd, t)+ φ̄0(y, yd, t) ,
(11)

where the matrix A0 and nonlinear functions f0, f1, φ̄0 can

be uncertain.

In particular, the approach to design an exponentially

stable norm observer developed here considers that A0 is

Hurwitz with stability margin [19] given by

γ0 := −max
i

{Re(γi)} , (12)

where {γi} are the eigenvalues of A0. Moreover, the non-

linear functions f0(η, t) and f1(ηd, t) are bounded by linear

growth functions, such as

‖f0(η, t)‖ ≤ µ0‖η‖ , ‖f1(ηd, t)‖ ≤ µ1‖ηd‖ , (13)

where µ0 and µ1 are positive known constants. We

also assume that the output dependent nonlinear function

φ̄0(y, yd, t) is norm bounded by ϕ0(‖y‖, ysup, t) as in (4),

i.e.,

‖φ̄0(y, yd, t)‖ ≤ ϕ0(‖y‖, ysup, t) . (14)

B. Norm Observer Design

In what follows, we show that the nonlinear subsystem (1)

with φ0 of the form (11) may admit an exponentially stable

norm observer of the form (4).

Applying Lemma 1 (see Appendix A) and the upper

bounds (13)–(14) to the system (1) and (11) one has:

‖η(t)‖ ≤ c1e
−γ0t ∗

∥

∥f0(η, t) + f1(ηd, t) + φ̄0(y, yd, t)
∥

∥

+ c2η
∗

0e
−γ0t

≤ c1e
−γ0t ∗ [µ0‖η‖ + µ1‖ηd‖ + ϕ0(‖y‖, ysup, t)]

+ c2η
∗

0e
−γ0t ≤ r(t) , ∀t ∈ [0, tM ) , (15)

where

r(t) = c1e
−γ0t ∗ [µ0‖η‖ + µ1ηsup + ϕ0(‖y‖, ysup, t)]

+ c2η
∗

0e
−γ0t , (16)

for some constants c1, c2 > 0, γ0 defined in (12) and

reminding that η∗0 := supt∈[−d̄,0] ‖η0(t)‖ and ηsup(t) :=
supτ∈[d,d̄] ‖η(t− τ)‖. For design purposes, the constants c1
and γ0 can be computed for the uncertain matrix A0 using

the method proposed in [19]. The scalar signal r(t) is the

solution of the differential equation

ṙ = −γ0r + c1 [µ0‖η‖ + µ1ηsup + ϕ0(‖y‖, ysup, t)] ,

r(0) = c2η
∗

0 . (17)

Since r(t)≥‖η(t)‖, ∀t∈ [0, tM ), then

ηsup(t) ≤ sup
τ∈[d,d̄]

r(t− τ) . (18)

In addition, ṙ ≥ −γ0r and by using the Comparison Theorem

[17, Theorem 7], one has from (18) that

ηsup(t) ≤ sup
τ∈[d,d̄]

e−γ0[(t−τ)−t]r(t)

≤ eγ0d̄r(t) , ∀t∈ [0, tM ) . (19)

Upon substituting ‖η‖ by r and ηsup by eγ0d̄r in (17) we

get the differential equation

˙̄r = (c1µ0 + c1µ1e
γ0d̄ − γ0)r̄ + c1ϕ0(‖y‖, ysup, t) ,

r̄(0) = r(0) = c2η
∗

0 , (20)

which satisfies r̄(t) ≥ r(t) ≥ ‖η(t)‖, ∀t ∈ [0, tM ). We

conclude that if

λ0 = γ0 − c1µ0 − c1µ1e
γ0d̄ > 0 , (21)

then (20) and, consequently, (4) is ISS w.r.t. the known

nonlinear function ϕ0(‖y‖, ysup, t). Hence, from (20), we

equivalently obtain (4) by setting

c0 ≥ c1 , (22)

and, finally, we can write (5).

Notice that the positive condition of λ0, implies in a

transcendental inequality

γ0 > c1µ0 + c1µ1e
γ0d̄ . (23)

Such inequality is useful to determine the maximum delay

allowed by the stability margin γ0 of A0. Rewriting (23) as

eγ0d̄≤(γ0−c1µ0)/c1µ1 and then applying ln(·) in both sides

yields

d̄ ≤ 1

γ0
ln
γ0 − c1µ0

c1µ1
. (24)

As in [8], we can realize that the maximum time-delay can be

increased by tuning the stability margin γ0 of A0, but there

is a natural physical limitation imposed by the argument of

ln (·) function which must be positive, i.e., γ0 > c1µ0.

The design of the norm observer for time-delay systems

proposed here may be conservative for some systems. There-

fore, less conservative procedures could explore favorable

characteristics of the system of interest and optimization

techniques, for instance, following the ideas in [19], [8].

In the next section, we discuss the design of the proposed

output-feedback controller based on exponentially stable

norm observers.

IV. OUTPUT-FEEDBACK SLIDING MODE CONTROLLER

From assumption (A1), there exists a known pre-

compensator matrix Sp which assures that −KpSp is Hur-

witz. Thus, the Lyapunov equation (KpSp)
TP+P (KpSp) =

I has a solution P = PT > 0.
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η̇ =

[

−2 0

0 −1

]

η +

[

−0.5η1 sin η2 + 0.2η
1

3

1dη
2

3

2d − 1y2
1

0.5η2 cos η1 − 0.2η1d + 0.2η2d + 1.5y2
2

]

(25)

ẏ =

[

−1 0

0 1

]

η +

[

−0.2η5
2 + 0.7y3

1

−1.1η4
1d + 0.8y2

2

]

+

[

−1 2

−2 1.5

]

u (26)

In this case, one can apply the unit vector control1 (UVC)

law [15]

u = −Sp̺
e

‖e‖ , e 6= 0 , (27)

to (8) and verify that, if the modulation function ̺ satisfies

̺ ≥ cd‖u∗‖ + ce‖e‖ + δ , δ ≥ 0 , (28)

modulo the exponentially decaying term cdπ1 (π1 from (9)),

then the time Dini derivative of V =
√
eTPe along the

solutions of (8) satisfies:

V̇ ≤ −λmV +
cdπ1

2
√

λmin(P )
, ∀t ∈ [0, tM ) , (29)

where 0<λm<mini{ai}, i=1, . . . , l in (7),

cd ≥ 2‖PKp‖ , ce ≥ ‖AT
mP + PAm‖+λm . (30)

Moreover, if ai = λm (∀i), then one can choose ce = 0 [15,

Corollary 1].

Hence, by using the Comparison Theorem [17, Theo-

rem 7], one has:

‖e(t)‖ ≤ ‖e(0)‖e−λmt+π2 , ∀t ∈ [0, tM ) , (31)

where π2 :=Ψ2(|η̄(0)|+η∗0)e−λct, 0<λc<min{λ0, λm} and

Ψ2∈K (for details, see [15, Lemma 1]). Thus, the tracking

control objective can be attained.

Using inequality (9), one alternative modulation function

which satisfies inequality (28) is

̺ = cdc [α1(2|η̄|) + α2(2η̄sup) + α3(ysup) +

+ ϕ1(y, t) + ‖Amy + rm‖] + ce‖e‖ + δ , (32)

where the scalar signals η̄ and η̄sup are generated by a norm

observer in (4) and (10).

The stability results are summarized in the next section.

V. STABILITY RESULTS

In the following stability analysis, the inverse dynamics

state η and the norm observer state η̄ are treated as exogenous

signals in the error system (8). The main result is now stated.

Theorem 1: (Main Result) Consider nonlinear time-delay

systems transformable into the form (1)–(2) with UVC law

(27) and modulation function (32) constructed by using

the norm observer (4). Assume that (A1)–(A5) hold. Then,

the error system (8) is globally asymptotically stable and

1Since e = 0 corresponds to a set of zero Lebesgue measure then,
according to Filippov’s theory, the control value at this point is irrelevant.
However, for the sake of mathematical consistency, we assume that u = 0
if e = 0.

ultimately exponentially convergent to zero. Moreover, all

signals in the closed-loop system remain uniformly bounded.

Proof: See Appendix B.

Finite frequency chattering is avoided and an ideal sliding

mode is produced according to the following corollary.

Corollary 1: (Ideal Sliding Mode) Additionally to the

results of Theorem 1, if δ>0 in (28), then the sliding mode

on the manifold e=0 starts in finite-time.

Proof: See Appendix C.

VI. NUMERICAL EXAMPLE

Consider the uncertain nonlinear time-varying delayed

system described in (25)–(26), where η = [η1, η2]
T ∈ IR2,

ηd = [η1d, η2d]
T ∈ IR2, y = [y1, y2]

T ∈ IR2 and u ∈ IR2.

The selected reference model and the reference signal used

in the simulations are given by

ẏm =

[

−5 0
0 −5

]

ym +

[

sin(10t)
cos(10t)

]

. (33)

The knowledge of the time-varying delay

d(t) = 0.3 sin(t) + 0.5 (34)

(in seconds) is not needed in the control system design.

However, the upper bound d̄ = 0.8 s is required to design

the norm observer (see eq. (21)).

The matrix Sp = I was chosen such that −KpSp is

Hurwitz and (A1) is verified. From this assumption, we also

have the constant c = 1.4 ≥ ‖K−1
p ‖ used in the modulation

function (32).

The nonlinear terms in η and in ηd present in (25) satisfy

(13) with µ0 = 0.5 and µ1 = 0.2.

To satisfy (23) and (24), γ0 = 1, c1 = 1, and λ0 =
0.0549 rad/s. The coefficient c0 = 1.1 is chosen to satisfy

(22).

Due to (30), cd = 35 and ce = 6. The constant δ = 2
was arbitrarily chosen to guarantee finite-time convergence

of the error signal to zero.

Figures 1 and 2 display the simulation results for this

control system. Note that y reaches ym in finite-time and,

therefore, the output tracking error becomes null as expected.

To illustrate the effect of time-varying delay, Fig 3 shows

the actual state variable η1 of the subsystem (25) and the

corresponding delayed state variable (η1d). The delayed

signal is distorted due to the time-varying nature of the delay

given by (34). It is remarkable that the controller stability and

performance are robust to this unknown delay.
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Fig. 1. System output y1(t) and reference model output ym1(t).
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Fig. 2. System output y2(t) and reference model output ym2(t).
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Fig. 3. Actual state variable η1(t) of the subsystem (25) and the corresponding delayed state variable η1d(t) = η1(t − d(t)).

VII. CONCLUSION

An output-feedback controller was developed for un-

certain multivariable systems with time-varying delay and

unmatched state dependent nonlinearities. The usual assump-

tion of uniform norm boundedness with respect to unmea-

sured states is not required. Based on unit vector sliding

mode control and estimation of the norm of the unmeasurable

state, the controller leads to global stability and finite-time

convergence of the output tracking error to zero. To the best

of our knowledge, such results are new in the sliding mode

control literature concerning time-delay systems.

APPENDIX

A. Auxiliary Lemmas

Lemma 1: Consider the system

η̇(t) = A0η(t) + f(t) , (35)

where η, f ∈ IRn−l. Let γ0 := mini {−Re(γi)} be the

stability margin of A0, where {γi} are the eigenvalues of

A0 and γ := γ0 − δ with δ > 0 being an arbitrary constant.

Let f̄(t) be an instantaneous upper bound of f(t), i.e.,

‖f(t)‖ ≤ f̄(t), ∀t ≥ 0. Then, ∃c1, c2 > 0 such that
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the matrix exponential satisfies ‖eA0t‖ ≤ c1e
−γt and the

following inequalities hold ∀t ≥ 0

‖eA0t ∗ f(t)‖ ≤ c1e
−γt ∗ f̄(t) , (36)

‖η(t)‖ ≤ c1e
−γt ∗ f̄(t) + c2e

−γt‖η(0)‖ . (37)

Proof: See proof of [20, Lemma 2].

Lemma 2: Let r(t) be an absolutely continuous scalar

function. Suppose r(t) is non-negative and while r > 0 it

satisfies ṙ ≤ −δ − γr + Re−λt , where δ, γ, λ,R are non-

negative constants. Then, one can conclude that: (a) r(t) is

bounded by r(t)≤ [r(0) + cR] e−λ1t ,∀t≥0 , where c>0 is

an appropriate constant and λ1<min(λ, γ); (b) if δ>0 then

∃t1<+∞ such that r(t)=0 , ∀t≥ t1.

Proof: The proof presented in [22, Lemma 3] is based

on the Comparison Theorem [17, Theorem 7].

B. Proof of Theorem 1

In order to fully account for all initial conditions in the

closed-loop system, let z(t) := [z0T (t), eT (t)]T , where the

vector signal z0(t) represents the transient terms of the states

η(t) and η̄(t), which can be bounded by ‖z0(t)‖≤ cz(η∗0 +
|η̄(0)|)e−λzt, with η∗0 := supt∈[−d̄,0] ‖η0(t)‖ and cz, λz > 0
being appropriate constants.

The proof is carried out in two parts as follows.

1) Global Stability: Once it is assumed that the modu-

lation function ̺ in (27) is implemented in order to satisfy

(28), the exponential convergence of the tracking error e(t) to

zero can be proved as shown in (31), using the Razumikhin

Theorem [18, pp. 13–15]. In this case, it is clear that ‖z(t)‖≤
Ψ1(‖z(0)‖), ∀t ∈ [0, tM ), where Ψ1 ∈ K. Thus, given any

R > 0, for ‖z(0)‖ < R0 with R0 ≤ Ψ−1
1 (R), one has that

‖z(t)‖ is bounded away from R as t → tM . This implies

that z(t) is uniformly bounded and cannot escape in finite-

time, i.e., tM →+∞. Hence, stability with respect to any ball

of radius R is guaranteed for z(0) in the R0-ball. Since R
and thus R0 can be chosen arbitrarily large, global stability

is concluded.

2) Closed-loop signal boundedness and exponential con-

vergence: Since e(t) converges to zero exponentially, then,

one concludes that z(t) will converge to zero at least expo-

nentially. Reminding that y = e + ym and ym is uniformly

bounded, then, from (A4) and from the ISS property of the η̄-

dynamics in (4) w.r.t. the output dependent nonlinear function

ϕ0, we can conclude that η̄, η, and, consequently, u are also

uniformly bounded. Thus, one concludes that all closed-loop

system signals are uniformly bounded.

C. Proof of Corollary 1

In what follows, ki > 0 are appropriate constants not

depending on the initial conditions.

Analogously to what was shown in Section IV, if the

modulation function ̺ in the control law (27) satisfies (28)

with δ > 0, then, the time Dini derivative of V =
√
eTPe

along the solutions of (8) is such that:

V̇ ≤ −k1δ − k2V + k3π ,

where π is an exponentially decaying term. Therefore, from

Lemma 2 (see Appendix A), one can further conclude that

∃t1 < +∞ such that V (t) = 0, ∀t ≥ t1, hence, the sliding

mode at e=0 starts in some finite time ts, 0≤ ts≤ t1.
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