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Abstract— The problem of control law design for a small
scale quadrotor helicopter is considered. The control problem
is decomposed in an outer (position) loop and an inner (attitude)
one. An approach based on the flatness property of the
quadrotor position dynamics is proposed, while attitude control
is dealt with by means of an (almost) globally stabilising control
law.

I. INTRODUCTION AND MOTIVATION

Control of rotorcraft UAVs is a rapidly expanding research

area, see, e.g., the recent books [2], [15]. The control

problems associated with such systems are particularly chal-

lenging for a number of reasons. First of all, rigid body

dynamics is characterised by strong nonlinearities, which

lead among other things to tight inter-axis coupling effects.

In addition, most rotorcraft configurations (including both

the conventional main/tail rotor one and the quadrotor one

studied in this paper) are underactuated with respect to

the six rigid body degrees of freedom. Finally, parametric

uncertainty has to be taken into account because of, e.g.,

varying payload characteristics. The state-of-the-art in linear

control for small scale helicopters is given by approaches

such as, e.g., [12], in which modern robust control design

is coupled to identification of linear rotorcraft models. More

general approaches available in the literature, on the other

hand, consider nonlinear trajectory planning and tracking

techniques, which can be adapted to all the main operation

modes of a rotorcraft UAV. Many methods have been pro-

posed, covering, e.g., control on nonlinear manifolds [13],

adaptive control [2], dynamic inversion [4]. Of particular

interest are methods for planning and tracking based on the

flatness property of helicopter dynamics (see, e.g., [18]) as

well as procedures based on smoothing of a given trajectory

(e.g., expressed as a sequence of way-points) by using a tran-

scribed version of the dynamics expressed in terms of motion

primitives (see for example [1] and references therein). In

both cases the resulting trajectories are compatible by design

with the vehicle model, embedded either in the algebraic

flat model or in the motion primitives, and are trackable

accurately by reflexive controllers.

Flatness of rigid body motion has been studied extensively

in the literature and has been exploited in a number of

contributions. More precisely, with specific reference to the

rotorcraft literature, the attention has focused mainly on
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the trajectory planning and optimisation problem, see for

example [3] and the references therein. Some contributions

exist, however, in which control design has been considered,

such as [11], where the problem of controlling a conventional

main/tail rotor configuration using flatness-based techniques

has been analysed. With respect to the cited work, in this

paper feedforward-linearization control of position dynamics

is studied, a novel yaw compensation via a rotation matrix

is implemented and discussed (leading to a simpler design

procedure and a simpler control law) and finally an almost

global attitude control law is employed, based on a reparam-

eterisation of the quadrotor attitude in terms of the Modified

Rodrigues Parameters (MRPs).

The paper is organised as follows. Section II presents the

equations of motion for the quadrotor helicopter studied in

this paper, while Section III provides the relevant background

on flatness and flatness-based control. The proposed control

architecture is described in detail in Section IV, while some

simulation results are presented and discussed in Section V.

II. QUADROTOR DESCRIPTION AND MODELING

The equations of motion for the quadrotor will be derived

by relying on two reference frames: the Earth inertial ref-

erence frame (E-frame) and the Body-fixed reference frame

(B-frame). The angular position (or attitude) of the quadrotor

is defined by the orientation of the B-frame with respect to

the E-frame, whereas position is defined on the E-frame.

Furthermore, we will rely on the following assumptions:

1) the origin of the B-frame is located at the center of

mass of the vehicle;

2) the body is rigid;

3) the axes of the B-frame coincide with the body prin-

cipal axes of inertia (the inertia matrix is diagonal);

4) rotor thrust is proportional to the square of the rotor’s

angular rate (see, e.g., [9]).

Even though every assumption is somehow restrictive, in

this case the above hypotheses can be verified on a large

number of present and past quadrotor models. In particular,

the rigid body assumption allows to neglect all aeroelastic

phenomena, that are not significant on such a small vehicle.

Define the six degrees of freedom of the rigid body as

q = [x, y, z, φ, θ, ψ]T , where the triple (x, y, z) represents

the position of the center of mass (in the E-frame) and

the ”roll-pitch-yaw” (φ, θ, ψ) set of Euler angles is the

representation of the orientation of the quadrotor in the same

reference frame. The dynamical model can be derived by
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following the Lagrangian approach:

ẍ = U1
(cosψ cosφ sin θ + sinψ sinφ)

m

ÿ = U1
(sinψ cosφ sin θ − sinφ cosψ)

m
(1)

z̈ = U1
(cos θ cosφ)

m
− g

ṗ =
(Iy − Iz)

Ix
qr +

1

Ix
U2 −

Jm

Ix
q ΩR

q̇ =
(Iz − Ix)

Iy
pr +

1

Iy
U3 +

Jm

Iy
p ΩR (2)

ṙ =
(Ix − Iy)

Iz
pq +

d

Iz
U4

φ̇ = p+ sin(φ) tan(θ)q + cos(φ) tan(θ)r

θ̇ = cos(φ)q − sin(φ)r (3)

ψ̇ =
sin(φ)

cos(θ)
q +

cos(φ)

cos(θ)
r

where p, q and r are the attitude velocities in the B-frame,

m is the vehicle mass, Ix, Iy and Iz are the body principal

moments of inertia, Jm is the motor inertia and ΩR reads

ΩR = −Ω1−Ω3+Ω2+Ω4. The input vector (U1, U2, U3, U4)
has been defined so that the state rates are linear in the

control variables. The Uis are defined in terms of the motor

angular rates Ωi, i = 1, . . . , 4 as

U1 = b

4
∑

i=1

Ω2
i ,

U2 = bl(Ω2
4 − Ω2

2),

U3 = bl(Ω2
3 − Ω2

1),

U4 = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4),

where b and d are, respectively, the thrust and drag factors of

the vehicle. Note that the motor angular rates are not directly

controllable in practice, however it can be assumed that each

of the Ωis is equal to its reference value in case the motor

control bandwidth is sufficiently large with respect to the

dynamics of the quadrotor.

III. BACKGROUND

The theory of flat systems is a large and complex research

area, for which overviews are presented in, e.g., [6], [14]

in both differential algebraic and differential geometric con-

texts. Formally, the following definition can be given.

Definition 1: A nonlinear system ẋ(t) = f(x(t), u(t)),
with time t ∈ R, state x(t) ∈ R

n and input u(t) ∈ R
m,

is said to be (differentially) flat if there exists a set of

m differentially independent variables w = [w1, . . . , wm]T ,

called flat outputs, such that:

w = G(x, u, u̇, . . . ,u(δ))

x = fx(w, ẇ, . . . ,w(ρ))

u = fu(w, ẇ, . . . ,w(ρ+1))

where G, fx and fu are smooth functions of their arguments,

at least in an open subset of their domain, and δ, ρ are the

maximum orders of derivatives of u and w needed to describe

the system.

This property can be very important, e.g., if a system is

flat, a nominal input signal u◦ can be algebraically computed

from the flat output reference value or from the actual

measurements of the outputs. The potential of flatness in

motion control problems is then evident.

A possible way to exploit differential flatness for control

of nonlinear systems is the exact feedforward linearization

approach introduced in [7]. Such approach can be considered

to design control laws which are not forced to exactly feed-

back linearize the nonlinear system. This strategy provides

some good properties to the control system design. As a

matter of fact, it is proved in [7] that a differentially flat

system, to which a nominal feedforward u◦ deduced from its

flatness is applied, is equivalent, by change of coordinates,

to a linear multivariable Brunovsky form without closing

the loop, if the initial condition is consistent with the one

considered in the design of the nominal trajectory. Moreover,

if the initial condition which is taken into consideration for

designing the nominal feedforward is sufficiently close to

the true one, then a unique solution exists for the non-linear

flat system in the vicinity of the desired solution of the

aforementioned Brunovsky form. This also relates flatness

to the existence of solutions of non-autonomous systems of

differential equations.

Stability of this control scheme is demonstrated when

using extended PID controls for the feedback part. By

considering the stability result in [10], it can be shown

that the absolute values of the control coefficients have to

be traded off with the velocity of the desired trajectory.

Thus, given reasonable bounded initial errors, non-linear flat

systems can be stabilized around given desired trajectories by

applying exact feedforward linearization and extended PID

control. More recently, [8] have shown that such a control

scheme is also robust with respect to time-varying parameters

and exogenous perturbations.

IV. FLATNESS-BASED QUADROTOR CONTROL

It is apparent from (2) that inputs U2, U3 and U4 act

individually on φ, θ and ψ, respectively. Moreover, such

inputs do not have a direct effect on the quadrotor position,

since they act on (x, y, z) through the attitude coordinates

only. It follows that (as already noticed in, e.g., [11]) the

control task can be decoupled in two subproblems concerning

attitude control, handled via U2, U3 and U4, and position

control, that can be handled with U1 and the reference values

φ◦, θ◦ and ψ◦. The architecture of the quadrotor control

system proposed in this paper is depicted in Figure 1. In

detail, the overall scheme is composed by the following

blocks.

• A trajectory generation block, that provides the quadro-

tor desired path in terms of the controlled degrees

of freedom. Indeed, since the input vector has four
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Fig. 1. Block diagram of the quadrotor guidance and control scheme based on differential flatness theory.

dimensions, only four degrees of freedom can be in-

dependently selected; in the present case, the quadruple

(x, y, z, ψ) is given by this block, and the reason of

this choice will become clear in the following Section.

Note however that flatness-based design of the trajectory

generation block has been dealt with in the classical

paper [18] and is therefore not treated herein.

• A position control block, based on flatness of the

position dynamics and exact feedforward linearization

theory (see [7]), that computes the nominal input tra-

jectories and compensates the position tracking errors.

Note that, unlike the scheme proposed in [11] where

flatness is applied to the quadruple (x, y, z, ψ), in this

work the yaw angle is dealt separately in a simpler way,

as illustrated in Section IV-B.

• Three passivity-based attitude controllers, which will be

described in Section IV-C.

The position controller, the yaw compensator and the attitude

controllers will be presented in the following subsections.

A. Flatness and feedforward linearization of the position

dynamics

In view of the control architecture described in the pre-

vious Section, the position controller can be designed by

considering the reduced-order model given by (1), where

the state-vector is x = [x, ẋ, y, ẏ, z, ż], the input vector is

u = [U1, φ, θ] and m, g and ψ are system parameters. The

following result holds.

Proposition 1: The system (1) is differentially flat.

Proof: Consider w = [w1, w2, w3]
T = [x, y, z]T as the

flat output vector. The properties of the flat output can be

verified as follows. First of all, w is a function of the state,

specifically the linear selection

w = G(x) = Gx , G =





1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0



 .

Obviously, first derivatives of x are linearly connected to

the first derivative of w and x = fx(w, ẇ), with fx = I6×6.

Moreover, concerning the input vector, it can be shown, after

some computations, that

sin(φ) =
mẍ

U1
sinψ −

mÿ

U1
cosψ,

sin(θ) cos(φ) =
mẍ

U1
cosψ +

mÿ

U1
sinψ.

Since it holds that

U1 = m

√

ẍ2 + ÿ2 + (z̈ + g)2 = m

√

ẅ1
2 + ẅ2

2 + (ẅ3 + g)2,

it follows that φ and θ are expressed as in (4). Therefore,

w = G(x) = Gx is such that x and u can be written as

functions of w and its derivatives, hence w is a flat output

with ρ = 1.

Assume now that the yaw angle ψ is zero, and recall that,

according to [5], every flat system can be represented using

the Brunovsky state ξ. Let ξ be defined as

ξ = [ξ1,1, ξ1,2, ξ2,1, ξ2,2, ξ3,1, ξ3,2]
T =

= [x, ẋ, y, ẏ, z, ż]T .
(5)

The simplified model of the system (1) with ψ = 0 can now

be rewritten in Brunovsky form as

ξ̇1,1 = ξ1,2

ξ̇1,2 =
U1

m
sin(θ◦) cos(φ◦)

ξ̇2,1 = ξ2,2

ξ̇2,2 = −
U1

m
sin(φ◦)

ξ̇3,1 = ξ3,2

ξ̇3,2 =
U1

m
cos(θ◦) cos(φ◦) − g.

(6)

Denoting with ξ◦i,j the desired trajectories of the new state

variables, the corresponding tracking error system is given

by
ė1,1 = e1,2

ė1,2 =
U1

m
sin(θ◦) cos(φ◦) − ξ̇◦1,2

ė2,1 = e2,2

ė2,2 = −
U1

m
sin(φ◦) − ξ̇◦2,2

ė3,1 = e3,2

ė3,2 =
U1

m
cos(θ◦) cos(φ◦) − g − ξ̇◦3,2,

(7)

where e = [e1,1, e1,2, e2,1, e2,2, e3,1, e3,2]
T is the error vec-

tor. Now to design a control law that exactly linearizes the

system by feedforward, take the system (7) and let

v1 =
U1

m
sin(θ◦) cos(φ◦)

v2 = −
U1

m
sin(φ◦)

v3 =
U1

m
cos(θ◦) cos(φ◦) − g

(8)
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φ = arcsin

(

mẍ sinψ −mÿ cosψ

U1

)

= arcsin

(

ẅ1 sinψ − ẅ2 cosψ
√

ẅ1
2 + ẅ2

2 + (ẅ3 + g)2

)

,

θ = arcsin

(

mẍ cosψ +mÿ sinψ

U1 cos(φ)

)

= arcsin













ẅ1 cosψ + ẅ2 sinψ

√

ẅ1
2 + ẅ2

2 + (ẅ3 + g)2 cos

(

arcsin

(

ẅ1 sinψ − ẅ2 cosψ
√

ẅ1
2 + ẅ2

2 + (ẅ3 + g)2

))













.

(4)

where vi, i = 1, 2, 3 are the new control inputs. The

original control variables U1, φ◦ and θ◦ are easily obtained

as functions of these new inputs as

U1 = m
√

v2
1 + v2

2 + (v3 + g)2

φ◦ = arcsin

(

−
v2

√

v2
1 + v2

2 + (v3 + g)2

)

θ◦ = arctan

(

v1

v3 + g

)

.

(9)

The new inputs are then chosen as the combination of a

feedforward part taking into account the desired rates of the

Brunovsky states, returned by the trajectory generator, and

a feedback part taking the tracking error into account vi =
ξ̇o
i,2+Λi(e), i = 1, 2, 3. The “exact feedforward action” uo is

the one that satisfies (8), when v corresponds to the reference

trajectory ξo(·); a correction term Λ is further added for

correcting feedforward compensation errors. The latter part

can be any type of control; extended PID control (see [7])

is considered in this work. Specifically, compensations of

linearization errors are defined as

Λi(e) =

nj
∑

j=0

λiijeij +
∑

i6=j

nj
∑

j=0

µiljelj , i = 1, . . . , nj ,

ei0 =

∫ t

0

ei1(τ)dτ, i = 1, . . . , nj ,

where λiij are the extended PID coefficients and nj is the

length of the chain i of integrators in the Brunovsky form

ξi1, . . . , ξinj
(with i = 1, . . . ,m and m is the number of

chains of integrators). In this case, nj = 2, then the control

law only includes the integral, proportional and derivative

terms of the classical PID control law (the extended and

the standard PID formulation coincide). Obviously, for the

dynamics to be decoupled on the three axes, all µilj must

be zero.

B. Yaw compensator

Consider now the more general case in which ψ 6= 0. The

error model (7) can be rewritten as

ė1,1 = e1,2

ė1,2 =
U1

m
(sin(ψ◦) sin(φ◦) + cos(ψ) sin(θ◦) cos(φ◦)) − ξ̇◦

1,2

ė2,1 = e2,2

ė2,2 =
U1

m
(− cos(ψ◦) sin(φ◦) + sin(ψ) sin(θ◦) cos(φ◦)) − ξ̇◦

2,2

ė3,1 = e3,2

ė3,2 =
U1

m
(cos(θ◦) cos(φ◦)) − g − ξ̇◦

3,2

(10)

Note that the effect of yaw on position dynamics can be

interpreted geometrically as a rotation of the control action

on the plane (x, y), so that the modification to the control

law to account for nonzero yaw is simply the following. By

keeping v as in (8), the error equation becomes

ė1,1 = e1,2

ė1,2 = v1 cos(ψ) − v2 sin(ψ) − ξ̇◦1,2

ė2,1 = e2,2

ė2,2 = v2 cos(ψ) + v1 sin(ψ) − ξ̇◦2,2

ė3,1 = e3,2

ė3,2 = v3 − ξ̇◦3,2

(11)

that is, the new control vector is no longer given by v =
[v1 v2]

T , but rather by v∗ = [v∗1 v
∗
2 ]T , where v∗ is defined

as
v∗1 = v1 cos(ψ) − v2 sin(ψ)
v∗2 = v2 cos(ψ) + v1 sin(ψ)
v∗3 = v3.

(12)

It follows that the real control variables can still be recovered

from v, but this one now has to be computed as

v1 = w1 cos(ψ) + w2 sin(ψ)
v2 = −w1 sin(ψ) + w2 cos(ψ)
v3 = w3.

(13)

The v∗ vector can be used to place the eigenvalues of the

linearized system as before via extended PID. Notice that in

both the cases where ψ = 0 and ψ 6= 0, this approach allows

complete freedom in the specification of the desired closed

loop performance as the nominal eigenvalues are completely

user-defined.

C. Kinematic transformation and passivity-based attitude

control

In the previous subsections it has been assumed that the

attitude control system is ideal (i.e., reference and output

attitude coincide). In all realistic cases, attitude control is

one of the most tricky tasks, see [16], and the above “ideal”

situation is far from being obtained. First of all, Euler angles

are used since they are physically easy to understand and

they allow one to design the flatness-based scheme described

in Subsection IV-A. It is well-known though that the Euler

representation of the attitude is not unique. As a matter of

fact, to maintain a unique set of angle, one usually demands

0 ≤ φ < 2π, −π/2 ≤ θ ≤ π/2, 0 ≤ ψ < 2π.

Moreover, even if simple PD controllers can be easily tuned

to assign the closed-loop dynamics to the linearized system,

stability of the output trajectories cannot be guaranteed for
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the nonlinear system. In this subsection a solution to these

two problems will be proposed, by means of a kinematic

transformation. Consider the attitude representation given by

the Modified Rodrigues Parameters (MRPs) σ. This new set

of coordinates is such that σ = eE tan (αE/4), where eE

and αE are the Euler axis and angle that describe the three

consecutive rotations roll, pitch and yaw (see again [16]). The

set of kinematic and dynamic equations become respectively

σ̇ = G(σ)ω, σ(0) = σ0, (14)

Jω̇ = S(ω)Jω + u, ω(0) = ω0, (15)

where ω = [p, q, r]T , u = [U2, U3, U4]
T and J is the

symmetric inertia matrix composed by Ix, Iy and Iz . The

matrix S(ω) denotes a skew-symmetric matrix representing

the cross product between two vectors, i.e., S(ω)Jω =
−ω × Jω, whereas the kinematic matrix G(σ) is defined

as

G(σ) =
1

2

(

1 − σTσ

2
I − S(σ) + σσT

)

.

Although MRPs still include the occurrence of discontinuous

jumps in the parameter space when incrementing the rota-

tion, this fact is now less critical, as only 2π-rotations are

forbidden. Moreover, the following important result holds

(see [17]).

Theorem 1: The linear Proportional Derivative (PD) con-

trol law u = −Kpσ −Kdω almost globally asymptotically

stabilizes (14) and (15) at the origin, for any positive value

of Kp and Kd.

Proof: See [17].

Note that almost global asymptotic stability can only be

guaranteed, as obviously singular points are not considered.

This is a general point, since the topological structure of

the attitude motion is not a contractible space and it does

not allow for globally continuously stabilizing control laws.

However, the above theorem is very useful as it allows one to

guarantee the stability of output trajectories also for nonlinear

attitude dynamics with a simple PD controller for each

degree of freedom. The linear controller can be designed

based on the linearized model (i.e., the representation for

small angles) described by σ̇ = 1/4ω and Jω̇ = u, by simply

making the characteristic polynomial equal to a desired one

via PD gains Kp and Kd. Notice that a feedforward action

can also be added to improve dynamic performance without

affecting the stability property.

V. SIMULATION RESULTS

In this Section, the proposed control strategy is tested in

a simulation environment, where also actuators and sensors

dynamics are modeled and values of the physical parameters

are chosen as in Table I. The following second-order pole-

assignment requirements have been considered: for attitude

control loop, natural frequency of 4.24 Hz and unitary

damping, whereas for position loop, natural frequency of

0.27 Hz and damping equal to 0.86.

The response of the closed-loop system to multi-step excita-

tion of the reference flat outputs is illustrated in Figure 2 in

name symbol value m.u.

mass m 0.5 kg

inertia on x Ix 5 · 10−3 N m s2

inertia on y Iy 5 · 10−3 N m s2

inertia on z Iz 9 · 10−3 N m s2

motor inertia Jm 3.4 · 10−5 N m s2

drag factor d 1.1 · 10−5 N m s2

thrust factor b 7.2 · 10−5 N s2

body center-propeller distance l 0.25 m

TABLE I

NUMERICAL VALUES FOR THE MODEL PARAMETERS IN THE SIMULATOR.

the nominal case where the values of all parameters in Table I

are known. Notice that transient and static requirements are

satisfied for both ascending and descending excitations. In

the same Figure the response of the system controlled with-

out the yaw compensator can be seen and evaluated. It can
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m
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2

z
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m
]
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1
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t [s]

ψ
 [

ra
d

]

Fig. 2. Step response with and without yaw-compensator: reference
signal (dotted line), ideal response (dashed line), actual output with yaw
compensator (solid line) and actual output without yaw compensator (dash-
dotted line).

be easily verified that the overall control scheme is linearized

by the flatness-based control by testing different scaled step-

excitations. As an example, in Figure 3, responses of the

same control system are reported for reference signals of

increasing amplitude. Robustness analysis in the simulation

environment can be completed by showing the behaviour of

the control strategy in the case of uncertanties for m and for

the body inertias on the three axes. As an example, the case

of strong inertia overestimation is shown in Figure 4, where

robustness of the overall system is evident. Finally, sensitivity

to mass variations can be also highlighted. Specifically, since

θ◦ and φ◦ do not depend on vehicle mass, the effect of errors

in mass estimation only affects the gravity compensation

along the z-axis via U1. Formally, by substituting expressions

of φ◦ and θ◦ in the altitude error equation, the closed-loop

dynamics

ė3,2 =
U1

m
cos(θ◦) cos(φ◦) − g − ξ̇◦3,2 =

m̂

m
Λ3(e) − g − ξ̇◦3,2,

is obtained, where m̂ is the estimate of m. On the error

dynamics it can be verified that the constant exogenous term

(m̂−m)g/m appears. This means that the PD action is not
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Fig. 3. Step response of positioning control loop for small and large
reference variations: reference signal (dotted line), ideal response (dashed
line, overlapped) and actual output (solid line).
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Fig. 4. The case of overestimated inertias (3 times the real value): reference
signal (dotted line), ideal response (dashed line) and actual output (solid
line).

sufficient to guarantee static performance, i.e., null tracking

error for t→ ∞ and constant reference signals. However, it

is sufficient to add integral action into the altitude loop in

order to counteract this effect. Obviously, this additional term

does not affect anyway the case of correct mass estimation.

In Figure 5, the case of 20% estimation-error is reported for

both the cases with and without integral action.

VI. CONCLUSIONS

In this paper, the problem of designing a control system

for a quadrotor helicopter has been addressed. Specifically,

differential flatness of position dynamics has been exploited

to linearize the system via feedforward and a passivity-based

scheme has been employed to (almost) globally stabilize the

attitude dynamics. Moreover, a suitable rotation of control

variables has been implemented to compensate yaw varia-

tions, leading to a simpler design procedure. The proposed

control solutions have been finally tested on a simulator,

where also robustness to uncertainty on dynamic parameters

has been shown.
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Fig. 5. Comparison between flat control system with and without integral
action in case of underestimated mass (20% less than the real value):
reference signal (dotted line), ideal response (dashed line) and actual output
signals (solid lines).
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