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Abstract— We first present a formulation for the real-time
tracking of a scalar continuous-time linear process over an Ad-
ditive White Gaussian Noise (AWGN) channel without channel
feedback and prove several results for minimum mean-squared
error (MMSE) tracking. For the one-to-one channel case, we
give an optimal encoder-decoder pair along with the optimal
tracking performance. With the Gaussian distributed source
innovation, one optimal form of the encoder is shown to be a
linear innovation encoder, which scales the source innovation
to match with the power constraint of the channel input. We
then extend the formulation to the case where multiple source
processes are tracked via a shared AWGN channel.

I. INTRODUCTION

In this paper, a formulation of real-time tracking without
channel feedback is studied and several results are shown
for the MMSE optimality. It has been noted (e.g., by [2,4])
that Shannon’s classical information theorems [1] cannot
be applied directly to real-time control/tracking problems.
For example, many channels that have the same Shannon’s
capacity do not behave the same way when the encoded
sequence is short; they only function similarly when the
encoded sequence is long enough to achieve decoding typi-
cality and thus channel capacity [1]. Since real-time tracking
cannot tolerate such a long encoding delay, many different
real-time formulations have been proposed to approach the
question of how to track a source process over an unreliable
channel, e.g., see [2-9].

For real-time tracking with perfect channel feedback, Wal-
rand and Varaiya [2] give one optimal information structure
of the encoder. In [2], a discrete-time discrete-state Markov
source is tracked over an unreliable discrete-time channel
with perfect feedback, i.e., the encoder knows exactly what
has been received by the decoder. One of the optimal
encoders is shown to be a function of the current state of the
Markov source. The formulation is extended by Teneketzis
[9] with the channel feedback removed. The optimal encoder
in [9] turns out to be a function of current state and the prob-
ability distribution of the decoder memory (as a sufficient
statistic at the encoder for the decoder’s knowledge of the
source). The question of how to use minimum information
bit rate to control/stabilize a system through feedback is
first introduced in [15,27]. Tatikonda [3], Sahai [4], and
Mitter specifically treat the case of the unstable Linear Time-
Invariant (LTI) source and extend Shannon’s results to real-
time information measures, namely 1) the sequential rate
distortion [3] for the bit rate at the source encoder required
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Fig. 1. Analyzed one-to-one channel formulation: the real-time tracking
of a scalar linear process over an AWGN channel without feedback

to achieve stable tracking; and 2) the anytime capacity [4]
which the channel input bit rate cannot exceed so that the
channel bit errors can be corrected exponentially fast and
thus enabling uses of the channel for stable real-time tracking
of an unstable LTI source.

For real-time tracking without channel feedback, the lit-
erature also has the packet formulation (e.g., see [5-8]).
These papers assume that the source state information (a real
number) can be transferred by the packet without distortion.
Once the latest measurement arrives at the decoder, any
past tracking error is reset as that in a renewal process. In
[5], Seiler and Sengupta assume a discrete-time, continuous-
state Markov source and derive the necessary and sufficient
condition as a linear matrix inequality (LMI) to achieve
stable tracking. Sinopoli et. al. [6] use a time-varying Kalman
filter as the decoder and derive a bound for the channel error
probability limiting stable tracking. Xu and Hespanha [7]
derive the minimum required packet rate to achieve a stable
mean-squared error (MSE) when tracking an unstable LTI
source. In [7], the error-dependent transmission is shown to
guarantee the stability of tracking MSE. Gupta and Murray
[8,29] derive the optimal encoder from a special information
structure of the Kalman filter. A packet contains a real
number and carries the accumulated source state innovation.
The arrival of the latest packet gives all the past source
innovation and washes away all previous channel errors. A
good survey of related studies can be found in [28].

Different from previous real-time tracking formulations
(e.g., [2-9]), we start with a continuous-time, continuous-
state assumption to formulate the MMSE real-time tracking
problem. Like [9], we formulate without channel feedback.
We also focus only on the scalar AWGN channel. Our work
can be considered as the continuous-time, continuous-state
counterpart of the formulation in [9]. We show that an
MMSE encoding of the innovation of the source process
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at each time epoch gives the MMSE state estimates for
all time. For the case of tracking one source, we derive
an optimal encoder-decoder pair and the achievable MMSE.
Our one-to-one channel formulation is then extended to a
multiple-access case with multiple source processes (see Fig.
2). Again, the optimality of innovation encoders is shown for
the multiple access formulation. As a corollary, we show that
it is impossible to achieve finite asymptotic MSE for real-
time tracking an unstable process without feedback.

This paper is organized as follows: The formulation of
tracking one source over an AWGN channel is presented
in Section II along with our main results. The multiple-
access AWGN channel formulation is presented in Section
III. Section IV summarizes this paper.

II. ONE-TO-ONE CHANNEL FORMULATION

Fig. 1 shows the analyzed framework. We consider a finite
time horizon problem formulation for time t ∈ [0, 1]. Let C
be the Banach space of all continuous functions z : [0, 1]→
R with norm ‖z‖ = max{|z(t)||0 ≤ t ≤ 1}, where |r| is
the Euclidean norm of r ∈ R. Let Γt be the smallest σ-
field of subsets of C which contains all sets of the form
{z|z(τ) ∈ β} where τ ∈ [0, t] and β is a Borel subset of
R. Let Γ = Γ1. Let B be the set of the Borel measurable
subsets of [0, 1].

The source is a specific type of Itô processes (e.g., see
[16]) with the differential structure in eq. (1). More specifi-
cally, the source process xt is a scalar linear continuous-time
process described by the stochastic differential equation:

dxt = atxtdt+ dwt, x0 ∼ N(0,Λ0) (1)

where t ∈ [0, 1] is the time, xt ∈ R is the process state, at ∈
R, at > 0 is the amplification factor, and w0 = 0, wt ∈ R is
a Wiener process [19,21] that steers the source process. For
0 ≤ s < t ≤ 1, wt − ws ∼ N(0, V (t − s)) for V > 0. The
dwt in eq. (1) is defined as dwt ≡ wt+dt−wt and thus dwt ∼
N(0, V dt). The trajectory of a Wiener process is known to be
continuous but not differentiable almost everywhere [19,21].
However, a generalized sense of derivative (defined with the
integration by parts) for Wiener process can be shown to be
a white Gaussian noise [21]. This can be understood as that
a Wiener process can be viewed as the limiting behavior of a
random walk consisting of small independent increments. In
our formulation, this Wiener process wt is equipped with a
generalized sense of derivative d

dtw
t, denoted as vt ≡ d

dtw
t

for convenience. This white Gaussian process vt has E[vt] =
0 and E[vtvs] = V δ(t − s), for t, s ∈ (0, 1]. Throughout
this paper, this process vt is referred as the innovation of
the source process. The initial condition x0 is assumed to be
zero-mean and Gaussian distributed with variance Λ0 > 0. In
addition, the Wiener process w[0,1] (and thus the innovation
process v(0,1]) is independent of the initial state x0.

The process xt in eq. (1) is a Gaussian process [21].
The probability distribution of state trajectory x[0,t] depends
on the probability distribution of the initial state x0 and
the Wiener measure of the trajectory w[0,t]. The probability
measure on x[0,t] is absolutely continuous with respect to the

Wiener measure on the space C of all continuous functions
from [0, 1] into R (e.g., see Lemma 2 and Corollary 2 of
[20]). The source process xt is observed perfectly by the
causal measurable encoder function at time t, denoted as f ,
which produces ut as the input to the AWGN channel at time
t. Let f : [0, 1]×C → R be causal, i.e., f is not only B⊗Γ
measurable but also measurable with respect to Γt for each
fixed t ∈ [0, 1). The encoder f can be parameterized as:

ut = f(t, x[0,t]) (2)

where x[0,t] represents the trajectory of the source process
as the full history up to time t. The channel input ut ∈ R
is chosen to deliver information to the decoder so that the
decoder can produce an estimate of the state of the source
process. The encoder function f can be time-varying and
hence has the parameter t (i.e., one can specify a different
encoder function f for each t). With the given trajectory of
x[0,t], the trajectory of w[0,t] can be perfectly reconstructed
for each t (e.g., see the discussion on pp. 355-358 and
Theorem 1 of [20]). Therefore, both the trajectory of x[0,t]

and the trajectory of w[0,t] (and thus v(0,t]) are measurable
by the encoder function f(t, ·).

The AWGN channel output is the superposition of channel
input ut and the channel noise qt:

yt = ut + qt (3)

where yt ∈ R is the channel output at time t, and qt ∈ R
is a white Gaussian noise process independent of the source
initial state x0, the Wiener process w[0,1], and the innovation
process v(0,1]. The noise process qt has E[qt] = 0 and
E[qtqs] = Qtδ(t−s), Qt > 0, for t, s ∈ [0, 1]. We choose the
formulation in eq. (3) instead of a stochastic differential form
(e.g., eq. (1)) to match with most definitions of an AWGN
channel [13,14]. The channel output yt is observed by the
decoder, denoted as g, which produces a real-time estimate of
current state of the source process xt. Let g : [0, 1]×C → R
be causal, i.e., g is not only B ⊗ Γ measurable but also
measurable with respect to Γt for each fixed t ∈ [0, 1). The
decoder g can be parameterized as:

x̂t = g(t, y[0,t]) (4)

where x̂t ∈ R is the estimate of xt and y[0,t] is the full
history of observed channel outputs up to time t. In this
real-time tracking formulation, causality is imposed on the
encoder f and decoder g. Once this estimate x̂t is produced
at time t, it is final and can not be improved later based on
future channel outputs y(t,1]. This decoder function g can
be time-varying and hence has the parameter t (i.e., one can
specify a different encoder function g for each t).

The cost function J(1) is defined over a finite time horizon
t ∈ [0, 1]:

J(1) ≡
∫ 1

0

E[|xt − x̂t|2]dt (5)

of which the expectation is taken with respect to the probabil-
ity distribution of the initial condition x0, the Wiener process
w[0,1], and the white Gaussian channel noise process q[0,1].
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With a given pair of encoder-decoder, the MSE E[|xt− x̂t|2]
can be calculated for each t. This cost function J(1) ∈
R, J(1) ≥ 0 is essentially the Lebesgue integral of the real-
time MSE over the unit time interval [0, 1].

We define a finite time horizon optimization problem
based on the cost function J(1) in eq. (5) to find an encoder-
decoder pair, denoted as {f, g}, such that the cost function
J(1) can be minimized:

{f∗, g∗} = argmin
E[|ut|2]≤P t,∀t∈[0,1]

J(1) (6)

where {f∗, g∗} denotes the optimal encoder-decoder pair and
P t < ∞ is the finite power constraint on the channel input
at time t. The total transmission energy allowed is also finite
over the same time horizon t ∈ [0, 1], i.e.,

∫ 1

0
P tdt < ∞.

This power constraint P t is meant to avoid the degenerate
formulation in which the encoder can amplify the channel
input signal to an arbitrarily large value to overwhelm the
channel noise qt and the decoder can then restore the signal
with an arbitrarily small error.

A. Preliminaries for One-to-One Channel Formulation

Let ḡ : [0, 1]×C → R be causal, i.e., ḡ is not only B⊗Γ
measurable but also measurable with respect to Γt for each
fixed t ∈ [0, 1). We define a differential decoder for x̂t (the
real-time estimate of the source process) in the stochastic
differential equation:

dx̂t = atx̂tdt+ ḡ(t, y[0,t])dt, x̂0 = ḡ(0, y0) (7)

where at is exactly the same amplification factor as that in
eq. (1) and the function ḡ(t, y[0,t]) steers the evolution of x̂t.
The similarity between eq. (1) and eq. (7) acknowledges the
rationale that the decoder output x̂t in eq. (7) incorporates
the knowledge of the model of the source process xt.

Lemma 1: Given the real-time tracking formulation in (6),
there is no loss of optimality (in the MMSE sense for each
t ∈ [0, 1]) by assuming the differential decoder in eq. (7).

Proof: The form of the differential decoder in eq. (7) is
MMSE optimal according to the nonlinear filtering analysis
by Clark [11], Frost and Kailath [12], and Lo [17] (e.g., see
Theorem 3 in [11], Theorem 3-5 in [12], and Theorem 1 in
[17]). The finite channel input energy and Gaussian channel
noise are the key elements to guarantee the optimality of
the differential decoder form in eq. (7). See specifically the
discussion of Gauss-Markov Process (Linear Case) on pp.
222 in [12].

Theorem 2: Let Σt ≡ E[(xt − x̂t)2] denote the tracking
MSE at time t. With the optimal differential decoder (defined
in eq. (7)), denoted as ḡ∗(t, y[0,t]), the MMSE at time t,
denoted as Σ∗t, can be described by the differential equation:
for t ∈ (0, 1],

dΣ∗t = 2atΣ∗tdt+ E[(dwt − ḡ∗(t, y[0,t])dt)2] (8)

with the initial condition, t = 0: Σ∗0 = E[(x0− ḡ∗(0, y0))2].
Proof: Let et ≡ xt − x̂t. We get the differential equation

of et based on eq. (1) and eq. (7):

det = atetdt+ dwt − ḡ(t, y[0,t])dt. (9)

With eq. (9) and the definition Σt = E[(et)2], the differential
of MMSE Σ∗t with the optimal differential decoder ḡ∗ can
be derived as follows:

dΣ∗t = Σ∗(t+dt) − Σ∗t = E[(e∗t + de∗t)2]− E[(e∗t)2]
= 2E[e∗tde∗t] + E[(de∗t)2]
= 2atE[(e∗t)2]dt+ 2E[e∗t(dwt − ḡ∗(t, y[0,t])dt)]

+E[(ate∗tdt+ dwt − ḡ∗(t, y[0,t])dt)2]
(since de∗t = ate∗tdt+ dwt − ḡ∗(t, y[0,t])dt from eq. (9))
= 2atE[(e∗t)2]dt− 2E[etḡ∗(t, y[0,t])dt]

+(at)2E[(e∗t)2](dt)2 + E[(dwt − ḡ∗(t, y[0,t])dt)2]
−2atE[e∗tḡ∗(t, y[0,t])dt]dt

(since the Wiener process has independent increments,
dwt is independent of e∗t)
= 2atE[(e∗t)2]dt+ (at)2E[(e∗t)2](dt)2

+E[(dwt − ḡ∗(t, y[0,t])dt)2]
(due to a general form of Orthogonality Principle: the
optimal tracking error is orthogonal to any function of
all the past observations, e.g., see pp. 268 in [18])
= 2atE[(e∗t)2]dt+ E[(dwt − ḡ∗(t, y[0,t])dt)2]
(neglect the higher order term associated with (dt)2)

which leads to the differential equation in (8).
Corollary 3: Given the real-time tracking formulation

in (6), the MMSE optimal differential decoder ḡ∗ can be
expressed, for t ∈ (0, 1], as

ḡ∗(t, y[0,t]) = E[vt|y[0,t]] (10)

with the initial condition, t = 0: ḡ∗(0, y0) = E[x0|y0].
Proof: It has been noted that conditional expectation given

observations minimizes the MSE (e.g., see the discussion
on pp. 218 in [12]). From the differential form in eq. (8),
observe that the MMSE Σ∗t can be minimized if all the
previous E[(dwτ − ḡ∗(τ, y[0,τ ])dτ)2] are minimized for all
0 < τ ≤ t and E[(x0 − ḡ∗(0, y0))2] is minimized for the
initial condition. The differential decoder function ḡ(t, ·) has
all the channel observations y[0,t] and can be chosen for each
t independently. This ḡ(t, ·) does not depend on previous
decoder function ḡ(τ, ·), 0 ≤ τ < t.

Because the conditional expectation E[dwτ |y[0,τ ]] mini-
mizes this expectation for each τ , we get ḡ∗(τ, y[0,τ ])dτ =
E[dwτ |y[0,τ ]] and thus ḡ∗(τ, y[0,τ ]) = E[ ddτw

τ |y[0,τ ]]. Since
the innovation process vt is defined as the generalized sense
of derivative of wt, i.e., vt ≡ d

dtw
t, we get eq. (10). For

the initial condition, t = 0, the decoder is the conditional
expectation of the source initial state x0 given the available
channel observation y0.

Corollary 4: Given the real-time tracking formulation in
(6) and at ≥ 0.5,∀t, it is impossible to have asymptotic
stable MSE, i.e., limt→∞ Σt →∞.

Proof: First partition the infinite time line into segments
of unit time length as in our formulation. In each unit
time segment, the same differential equation (8) for Σ∗t

still applies but with different initial conditions. Define the
variable Ψt

1 by

dΨt
1 = 2atΨt

1dt,Ψ
0
1 = Σ∗0 (11)
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and thus Ψt
1 ≤ Σ∗t,∀t > 0 by comparing eq. (11) and eq. (8)

and the fact that E[(dwt−ḡ∗(t, y[0,t])dt)2] > 0 for nontrivial
channel noise qt, ∀t > 0. Now define another variable Ψt

2

by
dΨt

2 = Ψt
2dt,Ψ

0
2 = Σ∗0 (12)

and thus, if 2at ≥ 1,∀t, Ψt
2 ≤ Ψt

1 ≤ Σ∗t,∀t > 0. The
solution of the differential equation (12) can be expressed as
Ψt

2 = exp(t)Ψ0
2. Since Ψ0

2 = E[(x0 − ḡ∗(0, y0))2] > 0 for
nontrivial channel noise q0,

∞ = lim
t→∞

Ψt
2 ≤ lim

t→∞
Ψt

1 ≤ lim
t→∞

Σ∗t.

Therefore, in our formulation without channel feedback, if
2at ≥ 1,∀t, no encoder-decoder pair can achieve stable MSE
tracking asymptotically.

B. Main Results for One-to-One Channel Formulation
In this subsection, we state an optimal encoder-decoder

pair for the one-to-one channel formulation and the optimal
tracking performance. With the Gaussian distributed source
innovation vt, the encoder is shown to be a linear innovation
encoder and the associated decoder is a differential decoder
that steers the state estimate x̂t according to eq. (7).

Lemma 5: Given the real-time tracking formulation in (6),
one optimal form of the encoder function and the differential
decoder function (defined in eq. (7)) can be expressed as
follows: for each t ∈ (0, 1], the encoder is a function of vt,
denoted as f̄∗(t, vt), and the associated differential decoder
is denoted as ḡ∗(t, yt) = E[vt|yt]. For the initial condition,
t = 0, the optimal encoder can be expressed as f̄∗(0, x0)
with the associated optimal decoder ḡ∗(0, y0) = E[x0|y0].

Proof: Assume a pair of optimal encoder-decoder at t:
f∗(t, ·) and ḡ∗(t, ·). The optimal differential decoder form
ḡ∗ follows from Corollary 3:

ḡ∗(t, y[0,t]) = E[vt|y[0,t]] = E[vt|yt]
(since vt is independent of x0, v(0,t), past channel outputs
y[0,t) do not contain any information of vt due to causality)
= E[vt|qt + ut]
= E[vt|qt + f∗(t, {x0, v(0,t), vt})]
(the source, encoder f∗, channel, and decoder ḡ∗ form a
Markov chain: {x0, v(0,t), vt} → ut → yt → E[vt|yt])
= E[vt|qt + f̄∗(t, vt)] for some function f̄∗(t, ·)
(since vt is independent of x0, v(0,t), the set {vt} is the
same informative as the set {x0, v(0,t), vt} for the decoder
to estimate vt, e.g., see Theorem 3 and 4 in [24]; thus one
can design another function f̄∗(t, ·) to focus on delivering
the sufficient statistic {vt} without loss of optimality)

Therefore, without loss of optimality, the encoder at time
t ∈ (0, 1] can focus on delivering vt to help the decoder
better estimate the innovation vt to steer the state estimate
x̂t according to eq. (7). The decoder can be a function of
current channel observation yt mainly due to causality.

Theorem 6: Given the real-time tracking formulation in
(6), one pair of optimal encoder function f̄∗ and associated
differential decoder ḡ∗ can be expressed, for t ∈ (0, 1], as:

f̄∗(t, vt) = vt
√
P t

V
(13)

and

ḡ∗(t, yt) = yt
√
V P t

P t +Qt
. (14)

For the initial condition, t = 0, f̄∗0(x0) = x0
√

P 0

Λ0 and

ḡ∗0(y0) = y0
√

Λ0P 0

P 0+Q0 .
Proof: Based on Lemma 5, the optimal encoder scales the

Gaussian distributed innovation vt to match with the channel
input power constraint P t (see pp. 561-562, 564 in Goblick
[13] and pp. 1153 in Gastpar [14]), and this direct transmis-
sion can minimize the term E[(dwt− ḡ∗(t, y[0,t])dt)2] in eq.
(8) for each t ∈ (0, 1] and achieves MMSE optimal. The
optimal differential decoder in eq. (14) is the conditional
expectation of the source innovation vt given yt and the
linear innovation encoder in eq. (13). The initial condition
for t = 0 follows similarly.

Corollary 7: Given the real-time tracking formulation in
(6), the optimal cost J∗(1) achievable is given by

J∗(1) =

∫ 1

0

Σ∗tdt (15)

where Σ∗t can be described by the differential equation:

d

dt
Σ∗t = 2atΣ∗t + V (

Qt

P t +Qt
)2,Σ∗0 =

Λ0Q0

P 0 +Q0
. (16)

Proof: Based on the optimal encoder and differential
decoder in Theorem 6,

E[(dwt − ḡ∗(t, y[0,t])dt)2]

= E[(dwt − (vt
√

P t

V + qt)
√
V P t

P t+Qt dt)
2]

= E[(dwt − vtdt P t

P t+Qt − qtdt
√
V P t

P t+Qt )2]

= E[(dwt Qt

P t+Qt − qtdt
√
V P t

P t+Qt )2]

= E[(dwt Qt

P t+Qt )2] + E[(qtdt
√
V P t

P t+Qt )2]

(since dwt is independent of the channel noise qt)
= ( Qt

P t+Qt )2E[(dwt)2] + V P tQt

(P t+Qt)2 (dt)2 = ( Qt

P t+Qt )2V dt

(neglect the higher order term associated with (dt)2; apply
the property of the Wiener process E[(dwt)2] = V dt)

Together with eq. (8), we get the differential form in eq. (16).
The initial condition, t = 0, can be derived as follows:

E[(x0 − ḡ∗(0, y0))2] = E[(x0 − (x0
√

P 0

Λ0 + q0)
√

Λ0P 0

P 0+Q0 )2]

= E[(x0 Q0

P 0+Q0 − q0
√

Λ0P 0

P 0+Q0 )2]

= E[(x0 Q0

P 0+Q0 )2] + E[(q0
√

Λ0P 0

P 0+Q0 )2]

(since x0 is independent of the channel noise q0)
= ( Q0

P 0+Q0 )2Λ0 + Λ0P 0

(P 0+Q0)2Q
0 = Λ0Q0

P 0+Q0

which leads to the Σ∗0 in eq. (16). The simple form of
the optimal encoder-decoder pair in eq. (13) and eq. (14)
is mainly due to the fact that the Gaussian distributed source
innovation vt and Gaussian channel noise qt are matched
(see pp. 1152-1153 in Gastpar [14]).
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Fig. 2. Analyzed multiple-access channel formulation: the real-time
tracking of n = 2 linear processes over an AWGN channel without feedback

III. MULTIPLE-ACCESS CHANNEL FORMULATION

In this section, we extend the one-to-one channel formu-
lation in Section II to a multiple-access channel formulation
with n source processes, n ≥ 2. Fig. 2 shows one example
of the analyzed formulation with n = 2 sources. Similar
to the Itô process defined in eq. (1), each source process
xti, i = 1, ..., n, is a scalar linear continuous-time process
described by the stochastic differential equation:

dxti = atix
t
idt+ dwti , x

0
i ∼ N(0,Λ0

i ) (17)

where t ∈ [0, 1] is the time, xti ∈ R is the process state,
ati ∈ R is the amplification factor, and wti ∈ R is a Wiener
process that steers the i-th source process. For 0 ≤ s < t ≤
1, wti−wsi ∼ N(0, Vi(t−s)) for Vi > 0. This Wiener process
wti is equipped with a generalized sense of derivative d

dtw
t
i ,

denoted as the i-th innovation process vti ≡ d
dtw

t
i . This white

Gaussian process vti has E[vti ] = 0 and E[vtiv
s
i ] = Viδ(t−s),

for t, s ∈ (0, 1]. The initial condition x0
i is assumed to be

zero-mean and Gaussian distributed with variance Λ0
i > 0.

Among n sources, the initial condition x0
i and the innovation

vti are assumed to be mutually independent for all t and i.
Each source process xti, i = 1, ..., n, is observed perfectly

by the i-th causal measurable encoder function fi which
produces uti ∈ R as the i-th input to the AWGN channel.
Let fi : [0, 1]×C → R be causal, i.e., fi is not only B⊗Γ
measurable but also measurable with respect to Γt for each
fixed t ∈ [0, 1). The encoder fi can be parameterized as:

uti = fi(t, x
[0,t]
i ) (18)

where x
[0,t]
i represents the trajectory of the i-th source

process as the full history up to time t. Note that the
information structure of our formulation only allows the i-th
encoder to observe the i-th source process.

The AWGN channel output is the superposition of the sum
of the channel inputs

∑n
i=1 u

t
i and the channel noise qt:

yt =

n∑
i=1

uti + qt (19)

where yt ∈ R is the channel output at time t, and qt ∈ R is a
white Gaussian noise process independent of x0

i , i = 1, ..., n,
w

[0,1]
i , i = 1, ..., n, and v(0,1]

i , i = 1, ..., n. The noise process
qt has E[qt] = 0 and E[qtqs] = Qtδ(t − s), Qt > 0, for
t, s ∈ [0, 1]. The channel output yt is observed by the decoder
g to produce a vector of estimates of xti, i = 1, ..., n. Let
g : [0, 1] × C → Rn×1 be causal, i.e., g is not only B ⊗ Γ
measurable but also measurable with respect to Γt for each
fixed t ∈ [0, 1). The decoder g can be parameterized as:

[x̂t1, ..., x̂
t
n]′ = g(t, y[0,t]) (20)

where each x̂ti ∈ R is the estimate of xti and y[0,t] is the full
history of observed channel outputs up to time t.

The cost function J(n) is defined over a finite time horizon
t ∈ [0, 1]:

J(n) ≡
∫ 1

0

n∑
i=1

E[|xti − x̂ti|2]dt (21)

where n is the number of source processes and the expec-
tation is taken with respect to the probability distribution
of the initial condition x0

i , i = 1, ..., n, the Wiener processes
w

[0,1]
i , i = 1, ..., n, and the channel noise process q[0,1]. With

a given set of encoders-decoder, the MSE E[|xti − x̂ti|2],∀i
can be calculated for each t. This cost function J(n) ∈
R, J(n) ≥ 0 is essentially the Lebesgue integral of the sum
of all the real-time tracking MSE over the unit time interval
[0, 1]. The subscript of J(n) means that this multiple-access
formulation considers tracking of n multiple sources, which
is different from the cost function in eq. (5).

We define an optimization problem based on the cost
function J(n) in eq. (21) to find the set of encoders and
decoder for t ∈ [0, 1], denoted as {f1, ..., fn, g}, such that
the cost function J(n) can be minimized:

{f∗1 , ..., f∗n, g∗} = argmin
E[|ut

i|2]≤P t
i ,∀i,∀t∈[0,1]

J(n) (22)

where f∗i is the optimal encoder for the i-th source, g∗ is the
optimal decoder, and P ti <∞ is the finite power constraint
on uti, the channel input from the i-th encoder, at time t ∈
[0, 1], and the total energy is also finite:

∑n
i=1

∫ 1

0
P ti dt <∞.

Again, this finite power/energy constraint is meant to avoid
the degenerate formulation mentioned in Section II.

A. Preliminaries for Multiple-Access Channel Formulation

Let xt ≡ [xt1, ..., x
t
n]′ denote the vector of the source states

and similarly wt ≡ [wt1, ..., w
t
n]′. The source processes can

then be described in the stochastic differential equation:

dxt = atxtdt+ dwt (23)

with at ≡ diag(at1, ..., a
t
n) where diag represents a diagonal

matrix with indicated diagonal elements of the same order.
Let ḡ : [0, 1] × C → Rn×1 be causal, i.e., ḡ is not only

B ⊗ Γ measurable but also measurable with respect to Γt
for each fixed t ∈ [0, 1). We define a differential decoder
for real-time estimate x̂t ≡ [x̂t1, ..., x̂

t
n]′ in the stochastic

differential equation:

dx̂t = atx̂tdt+ ḡ(t, y[0,t])dt, x̂0 = ḡ(0, y0) (24)
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where at is exactly the same amplification factors as that
in eq. (23) and the function ḡ(t, y[0,t]) produces the n × 1
vector that steers the evolution of x̂t, the decoder output.

Lemma 8: Given the multiple-access real-time tracking
formulation in (22), there is no loss of optimality by assum-
ing the differential decoder in eq. (24).

Proof: Similar to the proof of Lemma 1.
Theorem 9: Let Σt ≡ E[(xt − x̂t)(xt − x̂t)′] denote the

tracking error covariance matrix at time t. The optimal error
covariance Σ∗t can be described by the differential equation:

dΣ∗t = 2atΣ∗tdt+ E[Ψt(Ψt)′] (25)

where Ψt ≡ dwt−ḡ∗(t, y[0,t])dt. The vector wt is the vector
of Wiener processes as defined in eq. (23). The function
ḡ∗(t, y[0,t]) is the optimal differential decoder in eq. (24).

Proof: Let et ≡ xt − x̂t denote the error vector. We get
the differential equation of et based on eq. (23) and eq. (24):

det = atetdt+ dwt − ḡ(t, y[0,t])dt. (26)

With eq. (26) and Σt = E[et(et)′], dΣ∗t with the optimal
differential decoder ḡ∗ can be expressed as eq. (25) with
similar arguments as in the proof of Theorem 2.

Theorem 10: Let tr(·) denote the trace of the input matrix.
Given the multiple-access real-time tracking formulation in
(22), the optimal differential decoder ḡ∗ that achieves the
Minimum Sum of MSE (MSMSE) tr(Σ∗t) can be expressed,
for t ∈ (0, 1], as:

ḡ∗(t, yt) = E[vt|yt] (27)

where the innovation vector vt ≡ [vt1, ..., v
t
n]′. One optimal

form of encoders is the innovation encoders: for t ∈ (0, 1],
f̄∗i (t, vti), i = 1, ..., n. For the initial condition, t = 0, optimal
encoders can be expressed as f̄∗i (0, x0), i = 1, ..., n, with the
associated optimal decoder ḡ∗(0, y0) = E[x0|y0].

Proof: Based on the differential form of Σ∗t in eq. (25)
and similar arguments as in the proof of Corollary 3, to
achieve MSMSE tr(Σ∗t), ḡ∗(t, y[0,t])dt = E[dwt|y[0,t]] and
thus ḡ∗(t, y[0,t]) = E[ ddtw

t|y[0,t]]. Since vti ≡ d
dtw

t
i ,∀i, we

get ḡ∗(t, y[0,t]) = E[vt|y[0,t]]. Based on similar arguments
in the proof of Lemma 5, ḡ∗(t, y[0,t]) = E[vt|yt] due
to causality. Since the i-th source innovation can only be
observed by the corresponding i-th encoder, one optimal
form of encoders is to focus on delivering the innovation
vti at each time t similar to those arguments in the proof of
Lemma 5. The initial condition t = 0 follows similarly.

Theorem 10 says that, at each t, the i-th encoder can focus
on communicating vti to the decoder. However, how to design
optimal encoders to communicate vti over a shared channel to
the decoder is an on-going research [25,26]. We will extend
this multiple-access formulation in our future work.

IV. SUMMARY

We first analyze the real-time tracking MMSE of a scalar
linear continuous-time source over a scalar AGWN channel
without channel feedback. With the Gaussian distributed
source innovation, the optimality of the linear innovation
encoder and associated optimal tracking performance are

shown for the one-to-one channel case. We then extend
the one-to-one channel formulation to the case of tracking
multiple sources over a shared AWGN channel.
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